• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * NB: these functions have been "upgraded", the deprecated versions (which
12  * are compatibility wrappers using these functions) are in rsa_depr.c. -
13  * Geoff
14  */
15 
16 #include <stdio.h>
17 #include <time.h>
18 #include "internal/cryptlib.h"
19 #include <openssl/bn.h>
20 #include "rsa_local.h"
21 
22 static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
23                               BN_GENCB *cb);
24 
25 /*
26  * NB: this wrapper would normally be placed in rsa_lib.c and the static
27  * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
28  * so that we don't introduce a new linker dependency. Eg. any application
29  * that wasn't previously linking object code related to key-generation won't
30  * have to now just because key-generation is part of RSA_METHOD.
31  */
RSA_generate_key_ex(RSA * rsa,int bits,BIGNUM * e_value,BN_GENCB * cb)32 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
33 {
34     if (rsa->meth->rsa_keygen != NULL)
35         return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
36 
37     return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
38                                         e_value, cb);
39 }
40 
RSA_generate_multi_prime_key(RSA * rsa,int bits,int primes,BIGNUM * e_value,BN_GENCB * cb)41 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
42                                  BIGNUM *e_value, BN_GENCB *cb)
43 {
44     /* multi-prime is only supported with the builtin key generation */
45     if (rsa->meth->rsa_multi_prime_keygen != NULL) {
46         return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
47                                                  e_value, cb);
48     } else if (rsa->meth->rsa_keygen != NULL) {
49         /*
50          * However, if rsa->meth implements only rsa_keygen, then we
51          * have to honour it in 2-prime case and assume that it wouldn't
52          * know what to do with multi-prime key generated by builtin
53          * subroutine...
54          */
55         if (primes == 2)
56             return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
57         else
58             return 0;
59     }
60 
61     return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
62 }
63 
rsa_builtin_keygen(RSA * rsa,int bits,int primes,BIGNUM * e_value,BN_GENCB * cb)64 static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
65                               BN_GENCB *cb)
66 {
67     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
68     int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
69     int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
70     RSA_PRIME_INFO *pinfo = NULL;
71     STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
72     BN_CTX *ctx = NULL;
73     BN_ULONG bitst = 0;
74     unsigned long error = 0;
75 
76     if (bits < RSA_MIN_MODULUS_BITS) {
77         ok = 0;             /* we set our own err */
78         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
79         goto err;
80     }
81 
82     if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
83         ok = 0;             /* we set our own err */
84         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
85         goto err;
86     }
87 
88     ctx = BN_CTX_new();
89     if (ctx == NULL)
90         goto err;
91     BN_CTX_start(ctx);
92     r0 = BN_CTX_get(ctx);
93     r1 = BN_CTX_get(ctx);
94     r2 = BN_CTX_get(ctx);
95     if (r2 == NULL)
96         goto err;
97 
98     /* divide bits into 'primes' pieces evenly */
99     quo = bits / primes;
100     rmd = bits % primes;
101 
102     for (i = 0; i < primes; i++)
103         bitsr[i] = (i < rmd) ? quo + 1 : quo;
104 
105     /* We need the RSA components non-NULL */
106     if (!rsa->n && ((rsa->n = BN_new()) == NULL))
107         goto err;
108     if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
109         goto err;
110     if (!rsa->e && ((rsa->e = BN_new()) == NULL))
111         goto err;
112     if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
113         goto err;
114     if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
115         goto err;
116     if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
117         goto err;
118     if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
119         goto err;
120     if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
121         goto err;
122 
123     /* initialize multi-prime components */
124     if (primes > RSA_DEFAULT_PRIME_NUM) {
125         rsa->version = RSA_ASN1_VERSION_MULTI;
126         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
127         if (prime_infos == NULL)
128             goto err;
129         if (rsa->prime_infos != NULL) {
130             /* could this happen? */
131             sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
132         }
133         rsa->prime_infos = prime_infos;
134 
135         /* prime_info from 2 to |primes| -1 */
136         for (i = 2; i < primes; i++) {
137             pinfo = rsa_multip_info_new();
138             if (pinfo == NULL)
139                 goto err;
140             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
141         }
142     }
143 
144     if (BN_copy(rsa->e, e_value) == NULL)
145         goto err;
146 
147     /* generate p, q and other primes (if any) */
148     for (i = 0; i < primes; i++) {
149         adj = 0;
150         retries = 0;
151 
152         if (i == 0) {
153             prime = rsa->p;
154         } else if (i == 1) {
155             prime = rsa->q;
156         } else {
157             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
158             prime = pinfo->r;
159         }
160         BN_set_flags(prime, BN_FLG_CONSTTIME);
161 
162         for (;;) {
163  redo:
164             if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
165                 goto err;
166             /*
167              * prime should not be equal to p, q, r_3...
168              * (those primes prior to this one)
169              */
170             {
171                 int j;
172 
173                 for (j = 0; j < i; j++) {
174                     BIGNUM *prev_prime;
175 
176                     if (j == 0)
177                         prev_prime = rsa->p;
178                     else if (j == 1)
179                         prev_prime = rsa->q;
180                     else
181                         prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
182                                                              j - 2)->r;
183 
184                     if (!BN_cmp(prime, prev_prime)) {
185                         goto redo;
186                     }
187                 }
188             }
189             if (!BN_sub(r2, prime, BN_value_one()))
190                 goto err;
191             ERR_set_mark();
192             BN_set_flags(r2, BN_FLG_CONSTTIME);
193             if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
194                /* GCD == 1 since inverse exists */
195                 break;
196             }
197             error = ERR_peek_last_error();
198             if (ERR_GET_LIB(error) == ERR_LIB_BN
199                 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
200                 /* GCD != 1 */
201                 ERR_pop_to_mark();
202             } else {
203                 goto err;
204             }
205             if (!BN_GENCB_call(cb, 2, n++))
206                 goto err;
207         }
208 
209         bitse += bitsr[i];
210 
211         /* calculate n immediately to see if it's sufficient */
212         if (i == 1) {
213             /* we get at least 2 primes */
214             if (!BN_mul(r1, rsa->p, rsa->q, ctx))
215                 goto err;
216         } else if (i != 0) {
217             /* modulus n = p * q * r_3 * r_4 ... */
218             if (!BN_mul(r1, rsa->n, prime, ctx))
219                 goto err;
220         } else {
221             /* i == 0, do nothing */
222             if (!BN_GENCB_call(cb, 3, i))
223                 goto err;
224             continue;
225         }
226         /*
227          * if |r1|, product of factors so far, is not as long as expected
228          * (by checking the first 4 bits are less than 0x9 or greater than
229          * 0xF). If so, re-generate the last prime.
230          *
231          * NOTE: This actually can't happen in two-prime case, because of
232          * the way factors are generated.
233          *
234          * Besides, another consideration is, for multi-prime case, even the
235          * length modulus is as long as expected, the modulus could start at
236          * 0x8, which could be utilized to distinguish a multi-prime private
237          * key by using the modulus in a certificate. This is also covered
238          * by checking the length should not be less than 0x9.
239          */
240         if (!BN_rshift(r2, r1, bitse - 4))
241             goto err;
242         bitst = BN_get_word(r2);
243 
244         if (bitst < 0x9 || bitst > 0xF) {
245             /*
246              * For keys with more than 4 primes, we attempt longer factor to
247              * meet length requirement.
248              *
249              * Otherwise, we just re-generate the prime with the same length.
250              *
251              * This strategy has the following goals:
252              *
253              * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
254              * 2. stay the same logic with normal 2-prime key
255              */
256             bitse -= bitsr[i];
257             if (!BN_GENCB_call(cb, 2, n++))
258                 goto err;
259             if (primes > 4) {
260                 if (bitst < 0x9)
261                     adj++;
262                 else
263                     adj--;
264             } else if (retries == 4) {
265                 /*
266                  * re-generate all primes from scratch, mainly used
267                  * in 4 prime case to avoid long loop. Max retry times
268                  * is set to 4.
269                  */
270                 i = -1;
271                 bitse = 0;
272                 continue;
273             }
274             retries++;
275             goto redo;
276         }
277         /* save product of primes for further use, for multi-prime only */
278         if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
279             goto err;
280         if (BN_copy(rsa->n, r1) == NULL)
281             goto err;
282         if (!BN_GENCB_call(cb, 3, i))
283             goto err;
284     }
285 
286     if (BN_cmp(rsa->p, rsa->q) < 0) {
287         tmp = rsa->p;
288         rsa->p = rsa->q;
289         rsa->q = tmp;
290     }
291 
292     /* calculate d */
293 
294     /* p - 1 */
295     if (!BN_sub(r1, rsa->p, BN_value_one()))
296         goto err;
297     /* q - 1 */
298     if (!BN_sub(r2, rsa->q, BN_value_one()))
299         goto err;
300     /* (p - 1)(q - 1) */
301     if (!BN_mul(r0, r1, r2, ctx))
302         goto err;
303     /* multi-prime */
304     for (i = 2; i < primes; i++) {
305         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
306         /* save r_i - 1 to pinfo->d temporarily */
307         if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
308             goto err;
309         if (!BN_mul(r0, r0, pinfo->d, ctx))
310             goto err;
311     }
312 
313     {
314         BIGNUM *pr0 = BN_new();
315 
316         if (pr0 == NULL)
317             goto err;
318 
319         BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
320         if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
321             BN_free(pr0);
322             goto err;               /* d */
323         }
324         /* We MUST free pr0 before any further use of r0 */
325         BN_free(pr0);
326     }
327 
328     {
329         BIGNUM *d = BN_new();
330 
331         if (d == NULL)
332             goto err;
333 
334         BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
335 
336         /* calculate d mod (p-1) and d mod (q - 1) */
337         if (!BN_mod(rsa->dmp1, d, r1, ctx)
338             || !BN_mod(rsa->dmq1, d, r2, ctx)) {
339             BN_free(d);
340             goto err;
341         }
342 
343         /* calculate CRT exponents */
344         for (i = 2; i < primes; i++) {
345             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
346             /* pinfo->d == r_i - 1 */
347             if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
348                 BN_free(d);
349                 goto err;
350             }
351         }
352 
353         /* We MUST free d before any further use of rsa->d */
354         BN_free(d);
355     }
356 
357     {
358         BIGNUM *p = BN_new();
359 
360         if (p == NULL)
361             goto err;
362         BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
363 
364         /* calculate inverse of q mod p */
365         if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
366             BN_free(p);
367             goto err;
368         }
369 
370         /* calculate CRT coefficient for other primes */
371         for (i = 2; i < primes; i++) {
372             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
373             BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
374             if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
375                 BN_free(p);
376                 goto err;
377             }
378         }
379 
380         /* We MUST free p before any further use of rsa->p */
381         BN_free(p);
382     }
383 
384     ok = 1;
385  err:
386     if (ok == -1) {
387         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
388         ok = 0;
389     }
390     BN_CTX_end(ctx);
391     BN_CTX_free(ctx);
392     return ok;
393 }
394