1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include "internal/cryptlib.h"
12 #include "internal/numbers.h"
13 #include <openssl/stack.h>
14 #include <openssl/objects.h>
15 #include <errno.h>
16 #include <openssl/e_os2.h> /* For ossl_inline */
17
18 /*
19 * The initial number of nodes in the array.
20 */
21 static const int min_nodes = 4;
22 static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
23 ? (int)(SIZE_MAX / sizeof(void *))
24 : INT_MAX;
25
26 struct stack_st {
27 int num;
28 const void **data;
29 int sorted;
30 int num_alloc;
31 OPENSSL_sk_compfunc comp;
32 };
33
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_compfunc c)34 OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
35 {
36 OPENSSL_sk_compfunc old = sk->comp;
37
38 if (sk->comp != c)
39 sk->sorted = 0;
40 sk->comp = c;
41
42 return old;
43 }
44
OPENSSL_sk_dup(const OPENSSL_STACK * sk)45 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
46 {
47 OPENSSL_STACK *ret;
48
49 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
50 CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
51 return NULL;
52 }
53
54 /* direct structure assignment */
55 *ret = *sk;
56
57 if (sk->num == 0) {
58 /* postpone |ret->data| allocation */
59 ret->data = NULL;
60 ret->num_alloc = 0;
61 return ret;
62 }
63 /* duplicate |sk->data| content */
64 if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
65 goto err;
66 memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
67 return ret;
68 err:
69 OPENSSL_sk_free(ret);
70 return NULL;
71 }
72
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_copyfunc copy_func,OPENSSL_sk_freefunc free_func)73 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
74 OPENSSL_sk_copyfunc copy_func,
75 OPENSSL_sk_freefunc free_func)
76 {
77 OPENSSL_STACK *ret;
78 int i;
79
80 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
81 CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
82 return NULL;
83 }
84
85 /* direct structure assignment */
86 *ret = *sk;
87
88 if (sk->num == 0) {
89 /* postpone |ret| data allocation */
90 ret->data = NULL;
91 ret->num_alloc = 0;
92 return ret;
93 }
94
95 ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
96 ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
97 if (ret->data == NULL) {
98 OPENSSL_free(ret);
99 return NULL;
100 }
101
102 for (i = 0; i < ret->num; ++i) {
103 if (sk->data[i] == NULL)
104 continue;
105 if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
106 while (--i >= 0)
107 if (ret->data[i] != NULL)
108 free_func((void *)ret->data[i]);
109 OPENSSL_sk_free(ret);
110 return NULL;
111 }
112 }
113 return ret;
114 }
115
OPENSSL_sk_new_null(void)116 OPENSSL_STACK *OPENSSL_sk_new_null(void)
117 {
118 return OPENSSL_sk_new_reserve(NULL, 0);
119 }
120
OPENSSL_sk_new(OPENSSL_sk_compfunc c)121 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
122 {
123 return OPENSSL_sk_new_reserve(c, 0);
124 }
125
126 /*
127 * Calculate the array growth based on the target size.
128 *
129 * The growth fraction is a rational number and is defined by a numerator
130 * and a denominator. According to Andrew Koenig in his paper "Why Are
131 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
132 * than the golden ratio (1.618...).
133 *
134 * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
135 * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
136 * computation is more difficult.
137 *
138 * The limit to avoid overflow is spot on. The modulo three correction term
139 * ensures that the limit is the largest number than can be expanded by the
140 * growth factor without exceeding the hard limit.
141 *
142 * Do not call it with |current| lower than 2, or it will infinitely loop.
143 */
compute_growth(int target,int current)144 static ossl_inline int compute_growth(int target, int current)
145 {
146 const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
147
148 while (current < target) {
149 /* Check to see if we're at the hard limit */
150 if (current >= max_nodes)
151 return 0;
152
153 /* Expand the size by a factor of 3/2 if it is within range */
154 current = current < limit ? current + current / 2 : max_nodes;
155 }
156 return current;
157 }
158
159 /* internal STACK storage allocation */
sk_reserve(OPENSSL_STACK * st,int n,int exact)160 static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
161 {
162 const void **tmpdata;
163 int num_alloc;
164
165 /* Check to see the reservation isn't exceeding the hard limit */
166 if (n > max_nodes - st->num)
167 return 0;
168
169 /* Figure out the new size */
170 num_alloc = st->num + n;
171 if (num_alloc < min_nodes)
172 num_alloc = min_nodes;
173
174 /* If |st->data| allocation was postponed */
175 if (st->data == NULL) {
176 /*
177 * At this point, |st->num_alloc| and |st->num| are 0;
178 * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
179 */
180 if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
181 CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
182 return 0;
183 }
184 st->num_alloc = num_alloc;
185 return 1;
186 }
187
188 if (!exact) {
189 if (num_alloc <= st->num_alloc)
190 return 1;
191 num_alloc = compute_growth(num_alloc, st->num_alloc);
192 if (num_alloc == 0)
193 return 0;
194 } else if (num_alloc == st->num_alloc) {
195 return 1;
196 }
197
198 tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
199 if (tmpdata == NULL)
200 return 0;
201
202 st->data = tmpdata;
203 st->num_alloc = num_alloc;
204 return 1;
205 }
206
OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c,int n)207 OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
208 {
209 OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
210
211 if (st == NULL)
212 return NULL;
213
214 st->comp = c;
215
216 if (n <= 0)
217 return st;
218
219 if (!sk_reserve(st, n, 1)) {
220 OPENSSL_sk_free(st);
221 return NULL;
222 }
223
224 return st;
225 }
226
OPENSSL_sk_reserve(OPENSSL_STACK * st,int n)227 int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
228 {
229 if (st == NULL)
230 return 0;
231
232 if (n < 0)
233 return 1;
234 return sk_reserve(st, n, 1);
235 }
236
OPENSSL_sk_insert(OPENSSL_STACK * st,const void * data,int loc)237 int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
238 {
239 if (st == NULL || st->num == max_nodes)
240 return 0;
241
242 if (!sk_reserve(st, 1, 0))
243 return 0;
244
245 if ((loc >= st->num) || (loc < 0)) {
246 st->data[st->num] = data;
247 } else {
248 memmove(&st->data[loc + 1], &st->data[loc],
249 sizeof(st->data[0]) * (st->num - loc));
250 st->data[loc] = data;
251 }
252 st->num++;
253 st->sorted = 0;
254 return st->num;
255 }
256
internal_delete(OPENSSL_STACK * st,int loc)257 static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
258 {
259 const void *ret = st->data[loc];
260
261 if (loc != st->num - 1)
262 memmove(&st->data[loc], &st->data[loc + 1],
263 sizeof(st->data[0]) * (st->num - loc - 1));
264 st->num--;
265
266 return (void *)ret;
267 }
268
OPENSSL_sk_delete_ptr(OPENSSL_STACK * st,const void * p)269 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
270 {
271 int i;
272
273 for (i = 0; i < st->num; i++)
274 if (st->data[i] == p)
275 return internal_delete(st, i);
276 return NULL;
277 }
278
OPENSSL_sk_delete(OPENSSL_STACK * st,int loc)279 void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
280 {
281 if (st == NULL || loc < 0 || loc >= st->num)
282 return NULL;
283
284 return internal_delete(st, loc);
285 }
286
internal_find(OPENSSL_STACK * st,const void * data,int ret_val_options)287 static int internal_find(OPENSSL_STACK *st, const void *data,
288 int ret_val_options)
289 {
290 const void *r;
291 int i;
292
293 if (st == NULL || st->num == 0)
294 return -1;
295
296 if (st->comp == NULL) {
297 for (i = 0; i < st->num; i++)
298 if (st->data[i] == data)
299 return i;
300 return -1;
301 }
302
303 if (!st->sorted) {
304 if (st->num > 1)
305 qsort(st->data, st->num, sizeof(void *), st->comp);
306 st->sorted = 1; /* empty or single-element stack is considered sorted */
307 }
308 if (data == NULL)
309 return -1;
310 r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
311 ret_val_options);
312
313 return r == NULL ? -1 : (int)((const void **)r - st->data);
314 }
315
OPENSSL_sk_find(OPENSSL_STACK * st,const void * data)316 int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
317 {
318 return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
319 }
320
OPENSSL_sk_find_ex(OPENSSL_STACK * st,const void * data)321 int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
322 {
323 return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
324 }
325
OPENSSL_sk_push(OPENSSL_STACK * st,const void * data)326 int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
327 {
328 if (st == NULL)
329 return -1;
330 return OPENSSL_sk_insert(st, data, st->num);
331 }
332
OPENSSL_sk_unshift(OPENSSL_STACK * st,const void * data)333 int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
334 {
335 return OPENSSL_sk_insert(st, data, 0);
336 }
337
OPENSSL_sk_shift(OPENSSL_STACK * st)338 void *OPENSSL_sk_shift(OPENSSL_STACK *st)
339 {
340 if (st == NULL || st->num == 0)
341 return NULL;
342 return internal_delete(st, 0);
343 }
344
OPENSSL_sk_pop(OPENSSL_STACK * st)345 void *OPENSSL_sk_pop(OPENSSL_STACK *st)
346 {
347 if (st == NULL || st->num == 0)
348 return NULL;
349 return internal_delete(st, st->num - 1);
350 }
351
OPENSSL_sk_zero(OPENSSL_STACK * st)352 void OPENSSL_sk_zero(OPENSSL_STACK *st)
353 {
354 if (st == NULL || st->num == 0)
355 return;
356 memset(st->data, 0, sizeof(*st->data) * st->num);
357 st->num = 0;
358 }
359
OPENSSL_sk_pop_free(OPENSSL_STACK * st,OPENSSL_sk_freefunc func)360 void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
361 {
362 int i;
363
364 if (st == NULL)
365 return;
366 for (i = 0; i < st->num; i++)
367 if (st->data[i] != NULL)
368 func((char *)st->data[i]);
369 OPENSSL_sk_free(st);
370 }
371
OPENSSL_sk_free(OPENSSL_STACK * st)372 void OPENSSL_sk_free(OPENSSL_STACK *st)
373 {
374 if (st == NULL)
375 return;
376 OPENSSL_free(st->data);
377 OPENSSL_free(st);
378 }
379
OPENSSL_sk_num(const OPENSSL_STACK * st)380 int OPENSSL_sk_num(const OPENSSL_STACK *st)
381 {
382 return st == NULL ? -1 : st->num;
383 }
384
OPENSSL_sk_value(const OPENSSL_STACK * st,int i)385 void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
386 {
387 if (st == NULL || i < 0 || i >= st->num)
388 return NULL;
389 return (void *)st->data[i];
390 }
391
OPENSSL_sk_set(OPENSSL_STACK * st,int i,const void * data)392 void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
393 {
394 if (st == NULL || i < 0 || i >= st->num)
395 return NULL;
396 st->data[i] = data;
397 st->sorted = 0;
398 return (void *)st->data[i];
399 }
400
OPENSSL_sk_sort(OPENSSL_STACK * st)401 void OPENSSL_sk_sort(OPENSSL_STACK *st)
402 {
403 if (st != NULL && !st->sorted && st->comp != NULL) {
404 if (st->num > 1)
405 qsort(st->data, st->num, sizeof(void *), st->comp);
406 st->sorted = 1; /* empty or single-element stack is considered sorted */
407 }
408 }
409
OPENSSL_sk_is_sorted(const OPENSSL_STACK * st)410 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
411 {
412 return st == NULL ? 1 : st->sorted;
413 }
414