1 /*
2 * Copyright 2021 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "experimental/graphite/src/geom/IntersectionTree.h"
9
10 #include "include/private/SkTPin.h"
11 #include <algorithm>
12 #include <limits>
13
14 namespace skgpu {
15
16 // BSP node. Space is partitioned by an either vertical or horizontal line. Note that if a rect
17 // straddles the partition line, it will need to go on both sides of the tree.
18 template<IntersectionTree::SplitType kSplitType>
19 class IntersectionTree::TreeNode final : public Node {
20 public:
TreeNode(float splitCoord,Node * lo,Node * hi)21 TreeNode(float splitCoord, Node* lo, Node* hi)
22 : fSplitCoord(splitCoord), fLo(lo), fHi(hi) {
23 }
24
intersects(Rect rect)25 bool intersects(Rect rect) override {
26 if (GetLoVal(rect) < fSplitCoord && fLo->intersects(rect)) {
27 return true;
28 }
29 if (GetHiVal(rect) > fSplitCoord && fHi->intersects(rect)) {
30 return true;
31 }
32 return false;
33 }
34
addNonIntersecting(Rect rect,SkArenaAlloc * arena)35 Node* addNonIntersecting(Rect rect, SkArenaAlloc* arena) override {
36 if (GetLoVal(rect) < fSplitCoord) {
37 fLo = fLo->addNonIntersecting(rect, arena);
38 }
39 if (GetHiVal(rect) > fSplitCoord) {
40 fHi = fHi->addNonIntersecting(rect, arena);
41 }
42 return this;
43 }
44
45 private:
GetLoVal(const Rect & rect)46 SK_ALWAYS_INLINE static float GetLoVal(const Rect& rect) {
47 return (kSplitType == SplitType::kX) ? rect.left() : rect.top();
48 }
GetHiVal(const Rect & rect)49 SK_ALWAYS_INLINE static float GetHiVal(const Rect& rect) {
50 return (kSplitType == SplitType::kX) ? rect.right() : rect.bot();
51 }
52
53 float fSplitCoord;
54 Node* fLo;
55 Node* fHi;
56 };
57
58 // Leaf node. Rects are kept in a simple list and intersection testing is performed by brute force.
59 class IntersectionTree::LeafNode final : public Node {
60 public:
61 // Max number of rects to store in this node before splitting. With SSE/NEON optimizations, ~64
62 // brute force rect comparisons seems to be the optimal number.
63 constexpr static int kMaxRectsInList = 64;
64
LeafNode()65 LeafNode() {
66 this->popAll();
67 // Initialize our arrays with maximally negative rects. These have the advantage of always
68 // failing intersection tests, thus allowing us to test for intersection beyond fNumRects
69 // without failing.
70 constexpr static float infinity = std::numeric_limits<float>::infinity();
71 std::fill_n(fLefts, kMaxRectsInList, infinity);
72 std::fill_n(fTops, kMaxRectsInList, infinity);
73 std::fill_n(fNegRights, kMaxRectsInList, infinity);
74 std::fill_n(fNegBots, kMaxRectsInList, infinity);
75 }
76
popAll()77 void popAll() {
78 fNumRects = 0;
79 fSplittableBounds = -std::numeric_limits<float>::infinity();
80 fRectValsSum = 0;
81 // Leave the rect arrays untouched. Since we know they are either already valid in the tree,
82 // or else maximally negative, this allows the future list to check for intersection beyond
83 // fNumRects without failing.
84 }
85
intersects(Rect rect)86 bool intersects(Rect rect) override {
87 // Test for intersection in sets of 4. Since all the data in our rect arrays is either
88 // maximally negative, or valid from somewhere else in the tree, we can test beyond
89 // fNumRects without failing.
90 static_assert(kMaxRectsInList % 4 == 0);
91 SkASSERT(fNumRects <= kMaxRectsInList);
92 float4 comp = Rect::ComplementRect(rect).fVals;
93 for (int i = 0; i < fNumRects; i += 4) {
94 float4 l = float4::Load(fLefts + i);
95 float4 t = float4::Load(fTops + i);
96 float4 nr = float4::Load(fNegRights + i);
97 float4 nb = float4::Load(fNegBots + i);
98 if (any((l < comp[0]) &
99 (t < comp[1]) &
100 (nr < comp[2]) &
101 (nb < comp[3]))) {
102 return true;
103 }
104 }
105 return false;
106 }
107
addNonIntersecting(Rect rect,SkArenaAlloc * arena)108 Node* addNonIntersecting(Rect rect, SkArenaAlloc* arena) override {
109 if (fNumRects == kMaxRectsInList) {
110 // The new rect doesn't fit. Split our rect list first and then add.
111 return this->split(arena)->addNonIntersecting(rect, arena);
112 }
113 this->appendToList(rect);
114 return this;
115 }
116
117 private:
appendToList(Rect rect)118 void appendToList(Rect rect) {
119 SkASSERT(fNumRects < kMaxRectsInList);
120 int i = fNumRects++;
121 // [maxLeft, maxTop, -minRight, -minBot]
122 fSplittableBounds = max(fSplittableBounds, rect.vals());
123 fRectValsSum += rect.vals(); // [sum(left), sum(top), -sum(right), -sum(bot)]
124 fLefts[i] = rect.vals()[0];
125 fTops[i] = rect.vals()[1];
126 fNegRights[i] = rect.vals()[2];
127 fNegBots[i] = rect.vals()[3];
128 }
129
loadRect(int i) const130 Rect loadRect(int i) const {
131 return Rect::FromVals(float4(fLefts[i], fTops[i], fNegRights[i], fNegBots[i]));
132 }
133
134 // Splits this node with a new LeafNode, then returns a TreeNode that reuses our "this" pointer
135 // along with the new node.
split(SkArenaAlloc * arena)136 IntersectionTree::Node* split(SkArenaAlloc* arena) {
137 // This should only get called when our list is full.
138 SkASSERT(fNumRects == kMaxRectsInList);
139
140 // Since rects cannot overlap, there will always be a split that places at least one pairing
141 // of rects on opposite sides. The region:
142 //
143 // fSplittableBounds == [maxLeft, maxTop, -minRight, -minBot] == [r, b, -l, -t]
144 //
145 // Represents the region of splits that guarantee a strict subdivision of our rect list.
146 float2 splittableSize = fSplittableBounds.xy() + fSplittableBounds.zw(); // == [r-l, b-t]
147 SkASSERT(max(splittableSize) >= 0);
148 SplitType splitType = (splittableSize.x() > splittableSize.y()) ? SplitType::kX
149 : SplitType::kY;
150
151 float splitCoord;
152 const float *loVals, *negHiVals;
153 if (splitType == SplitType::kX) {
154 // Split horizontally, at the geometric midpoint if it falls within the splittable
155 // bounds.
156 splitCoord = (fRectValsSum.x() - fRectValsSum.z()) * (.5f/kMaxRectsInList);
157 splitCoord = SkTPin(splitCoord, -fSplittableBounds.z(), fSplittableBounds.x());
158 loVals = fLefts;
159 negHiVals = fNegRights;
160 } else {
161 // Split vertically, at the geometric midpoint if it falls within the splittable bounds.
162 splitCoord = (fRectValsSum.y() - fRectValsSum.w()) * (.5f/kMaxRectsInList);
163 splitCoord = SkTPin(splitCoord, -fSplittableBounds.w(), fSplittableBounds.y());
164 loVals = fTops;
165 negHiVals = fNegBots;
166 }
167
168 // Split "this", leaving all rects below "splitCoord" in this, and placing all rects above
169 // splitCoord in "hiNode". There may be some reduncancy between lists, but we made sure to
170 // select a split that would leave both lists strictly smaller than the original.
171 LeafNode* hiNode = arena->make<LeafNode>();
172 int numCombinedRects = fNumRects;
173 float negSplitCoord = -splitCoord;
174 this->popAll();
175 for (int i = 0; i < numCombinedRects; ++i) {
176 Rect rect = this->loadRect(i);
177 if (loVals[i] < splitCoord) {
178 this->appendToList(rect);
179 }
180 if (negHiVals[i] < negSplitCoord) {
181 hiNode->appendToList(rect);
182 }
183 }
184
185 SkASSERT(0 < fNumRects && fNumRects < numCombinedRects);
186 SkASSERT(0 < hiNode->fNumRects && hiNode->fNumRects < numCombinedRects);
187
188 return (splitType == SplitType::kX)
189 ? (Node*)arena->make<TreeNode<SplitType::kX>>(splitCoord, this, hiNode)
190 : (Node*)arena->make<TreeNode<SplitType::kY>>(splitCoord, this, hiNode);
191 }
192
193 int fNumRects;
194 float4 fSplittableBounds; // [maxLeft, maxTop, -minRight, -minBot]
195 float4 fRectValsSum; // [sum(left), sum(top), -sum(right), -sum(bot)]
196 alignas(float4) float fLefts[kMaxRectsInList];
197 alignas(float4) float fTops[kMaxRectsInList];
198 alignas(float4) float fNegRights[kMaxRectsInList];
199 alignas(float4) float fNegBots[kMaxRectsInList];
200 static_assert((kMaxRectsInList * sizeof(float)) % sizeof(float4) == 0);
201 };
202
IntersectionTree()203 IntersectionTree::IntersectionTree()
204 : fRoot(fArena.make<LeafNode>()) {
205 static_assert(kTreeNodeSize == sizeof(TreeNode<SplitType::kX>));
206 static_assert(kTreeNodeSize == sizeof(TreeNode<SplitType::kY>));
207 static_assert(kLeafNodeSize == sizeof(LeafNode));
208 }
209
210 } // namespace skgpu
211