• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkBitmap.h"
9 #include "include/core/SkMaskFilter.h"
10 #include "include/core/SkPathBuilder.h"
11 #include "include/core/SkRRect.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/core/SkVertices.h"
14 #include "src/core/SkBlurMask.h"
15 #include "src/core/SkGpuBlurUtils.h"
16 #include "src/core/SkMaskFilterBase.h"
17 #include "src/core/SkMathPriv.h"
18 #include "src/core/SkMatrixProvider.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkReadBuffer.h"
21 #include "src/core/SkStringUtils.h"
22 #include "src/core/SkWriteBuffer.h"
23 
24 #if SK_SUPPORT_GPU
25 #include "include/gpu/GrRecordingContext.h"
26 #include "src/core/SkRuntimeEffectPriv.h"
27 #include "src/gpu/GrFragmentProcessor.h"
28 #include "src/gpu/GrRecordingContextPriv.h"
29 #include "src/gpu/GrResourceProvider.h"
30 #include "src/gpu/GrShaderCaps.h"
31 #include "src/gpu/GrStyle.h"
32 #include "src/gpu/GrTextureProxy.h"
33 #include "src/gpu/GrThreadSafeCache.h"
34 #include "src/gpu/SkGr.h"
35 #include "src/gpu/effects/GrMatrixEffect.h"
36 #include "src/gpu/effects/GrSkSLFP.h"
37 #include "src/gpu/effects/GrTextureEffect.h"
38 #include "src/gpu/geometry/GrStyledShape.h"
39 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
40 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
41 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
42 #if SK_GPU_V1
43 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
44 #endif // SK_GPU_V1
45 #endif // SK_SUPPORT_GPU
46 
47 class SkBlurMaskFilterImpl : public SkMaskFilterBase {
48 public:
49     SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, bool respectCTM);
50 
51     // overrides from SkMaskFilter
52     SkMask::Format getFormat() const override;
53     bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
54                     SkIPoint* margin) const override;
55 
56 #if SK_SUPPORT_GPU && SK_GPU_V1
57     bool canFilterMaskGPU(const GrStyledShape& shape,
58                           const SkIRect& devSpaceShapeBounds,
59                           const SkIRect& clipBounds,
60                           const SkMatrix& ctm,
61                           SkIRect* maskRect) const override;
62     bool directFilterMaskGPU(GrRecordingContext*,
63                              skgpu::v1::SurfaceDrawContext*,
64                              GrPaint&&,
65                              const GrClip*,
66                              const SkMatrix& viewMatrix,
67                              const GrStyledShape&) const override;
68     GrSurfaceProxyView filterMaskGPU(GrRecordingContext*,
69                                      GrSurfaceProxyView srcView,
70                                      GrColorType srcColorType,
71                                      SkAlphaType srcAlphaType,
72                                      const SkMatrix& ctm,
73                                      const SkIRect& maskRect) const override;
74 #endif
75 
76     void computeFastBounds(const SkRect&, SkRect*) const override;
77     bool asABlur(BlurRec*) const override;
78 
79 
80 protected:
81     FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
82                                    const SkIRect& clipBounds,
83                                    NinePatch*) const override;
84 
85     FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
86                                    const SkIRect& clipBounds,
87                                    NinePatch*) const override;
88 
89     bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
90                         SkIPoint* margin, SkMask::CreateMode createMode) const;
91     bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
92                         SkIPoint* margin, SkMask::CreateMode createMode) const;
93 
ignoreXform() const94     bool ignoreXform() const { return !fRespectCTM; }
95 
96 private:
97     SK_FLATTENABLE_HOOKS(SkBlurMaskFilterImpl)
98     // To avoid unseemly allocation requests (esp. for finite platforms like
99     // handset) we limit the radius so something manageable. (as opposed to
100     // a request like 10,000)
101     static const SkScalar kMAX_BLUR_SIGMA;
102 
103     SkScalar    fSigma;
104     SkBlurStyle fBlurStyle;
105     bool        fRespectCTM;
106 
107     SkBlurMaskFilterImpl(SkReadBuffer&);
108     void flatten(SkWriteBuffer&) const override;
109 
computeXformedSigma(const SkMatrix & ctm) const110     SkScalar computeXformedSigma(const SkMatrix& ctm) const {
111         SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
112         return std::min(xformedSigma, kMAX_BLUR_SIGMA);
113     }
114 
115     friend class SkBlurMaskFilter;
116 
117     using INHERITED = SkMaskFilter;
118     friend void sk_register_blur_maskfilter_createproc();
119 };
120 
121 const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
122 
123 ///////////////////////////////////////////////////////////////////////////////
124 
SkBlurMaskFilterImpl(SkScalar sigma,SkBlurStyle style,bool respectCTM)125 SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, bool respectCTM)
126     : fSigma(sigma)
127     , fBlurStyle(style)
128     , fRespectCTM(respectCTM) {
129     SkASSERT(fSigma > 0);
130     SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
131 }
132 
getFormat() const133 SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
134     return SkMask::kA8_Format;
135 }
136 
asABlur(BlurRec * rec) const137 bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
138     if (this->ignoreXform()) {
139         return false;
140     }
141 
142     if (rec) {
143         rec->fSigma = fSigma;
144         rec->fStyle = fBlurStyle;
145     }
146     return true;
147 }
148 
filterMask(SkMask * dst,const SkMask & src,const SkMatrix & matrix,SkIPoint * margin) const149 bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
150                                       const SkMatrix& matrix,
151                                       SkIPoint* margin) const {
152     SkScalar sigma = this->computeXformedSigma(matrix);
153     return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin);
154 }
155 
filterRectMask(SkMask * dst,const SkRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const156 bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
157                                           const SkMatrix& matrix,
158                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
159     SkScalar sigma = computeXformedSigma(matrix);
160 
161     return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
162 }
163 
filterRRectMask(SkMask * dst,const SkRRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const164 bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
165                                           const SkMatrix& matrix,
166                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
167     SkScalar sigma = computeXformedSigma(matrix);
168 
169     return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
170 }
171 
172 #include "include/core/SkCanvas.h"
173 
prepare_to_draw_into_mask(const SkRect & bounds,SkMask * mask)174 static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
175     SkASSERT(mask != nullptr);
176 
177     mask->fBounds = bounds.roundOut();
178     mask->fRowBytes = SkAlign4(mask->fBounds.width());
179     mask->fFormat = SkMask::kA8_Format;
180     const size_t size = mask->computeImageSize();
181     mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
182     if (nullptr == mask->fImage) {
183         return false;
184     }
185     return true;
186 }
187 
draw_rrect_into_mask(const SkRRect rrect,SkMask * mask)188 static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
189     if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
190         return false;
191     }
192 
193     // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
194     // clean way to share more code?
195     SkBitmap bitmap;
196     bitmap.installMaskPixels(*mask);
197 
198     SkCanvas canvas(bitmap);
199     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
200                      -SkIntToScalar(mask->fBounds.top()));
201 
202     SkPaint paint;
203     paint.setAntiAlias(true);
204     canvas.drawRRect(rrect, paint);
205     return true;
206 }
207 
draw_rects_into_mask(const SkRect rects[],int count,SkMask * mask)208 static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
209     if (!prepare_to_draw_into_mask(rects[0], mask)) {
210         return false;
211     }
212 
213     SkBitmap bitmap;
214     bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
215                                            mask->fBounds.height(),
216                                            kAlpha_8_SkColorType,
217                                            kPremul_SkAlphaType),
218                          mask->fImage, mask->fRowBytes);
219 
220     SkCanvas canvas(bitmap);
221     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
222                      -SkIntToScalar(mask->fBounds.top()));
223 
224     SkPaint paint;
225     paint.setAntiAlias(true);
226 
227     if (1 == count) {
228         canvas.drawRect(rects[0], paint);
229     } else {
230         // todo: do I need a fast way to do this?
231         SkPath path = SkPathBuilder().addRect(rects[0])
232                                      .addRect(rects[1])
233                                      .setFillType(SkPathFillType::kEvenOdd)
234                                      .detach();
235         canvas.drawPath(path, paint);
236     }
237     return true;
238 }
239 
rect_exceeds(const SkRect & r,SkScalar v)240 static bool rect_exceeds(const SkRect& r, SkScalar v) {
241     return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
242            r.width() > v || r.height() > v;
243 }
244 
245 #include "src/core/SkMaskCache.h"
246 
copy_mask_to_cacheddata(SkMask * mask)247 static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
248     const size_t size = mask->computeTotalImageSize();
249     SkCachedData* data = SkResourceCache::NewCachedData(size);
250     if (data) {
251         memcpy(data->writable_data(), mask->fImage, size);
252         SkMask::FreeImage(mask->fImage);
253         mask->fImage = (uint8_t*)data->data();
254     }
255     return data;
256 }
257 
find_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)258 static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
259                                        const SkRRect& rrect) {
260     return SkMaskCache::FindAndRef(sigma, style, rrect, mask);
261 }
262 
add_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)263 static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
264                                       const SkRRect& rrect) {
265     SkCachedData* cache = copy_mask_to_cacheddata(mask);
266     if (cache) {
267         SkMaskCache::Add(sigma, style, rrect, *mask, cache);
268     }
269     return cache;
270 }
271 
find_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)272 static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
273                                        const SkRect rects[], int count) {
274     return SkMaskCache::FindAndRef(sigma, style, rects, count, mask);
275 }
276 
add_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)277 static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
278                                       const SkRect rects[], int count) {
279     SkCachedData* cache = copy_mask_to_cacheddata(mask);
280     if (cache) {
281         SkMaskCache::Add(sigma, style, rects, count, *mask, cache);
282     }
283     return cache;
284 }
285 
286 static const bool c_analyticBlurRRect{true};
287 
288 SkMaskFilterBase::FilterReturn
filterRRectToNine(const SkRRect & rrect,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const289 SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
290                                         const SkIRect& clipBounds,
291                                         NinePatch* patch) const {
292     SkASSERT(patch != nullptr);
293     switch (rrect.getType()) {
294         case SkRRect::kEmpty_Type:
295             // Nothing to draw.
296             return kFalse_FilterReturn;
297 
298         case SkRRect::kRect_Type:
299             // We should have caught this earlier.
300             SkASSERT(false);
301             [[fallthrough]];
302         case SkRRect::kOval_Type:
303             // The nine patch special case does not handle ovals, and we
304             // already have code for rectangles.
305             return kUnimplemented_FilterReturn;
306 
307         // These three can take advantage of this fast path.
308         case SkRRect::kSimple_Type:
309         case SkRRect::kNinePatch_Type:
310         case SkRRect::kComplex_Type:
311             break;
312     }
313 
314     // TODO: report correct metrics for innerstyle, where we do not grow the
315     // total bounds, but we do need an inset the size of our blur-radius
316     if (kInner_SkBlurStyle == fBlurStyle) {
317         return kUnimplemented_FilterReturn;
318     }
319 
320     // TODO: take clipBounds into account to limit our coordinates up front
321     // for now, just skip too-large src rects (to take the old code path).
322     if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
323         return kUnimplemented_FilterReturn;
324     }
325 
326     SkIPoint margin;
327     SkMask  srcM, dstM;
328     srcM.fBounds = rrect.rect().roundOut();
329     srcM.fFormat = SkMask::kA8_Format;
330     srcM.fRowBytes = 0;
331 
332     bool filterResult = false;
333     if (c_analyticBlurRRect) {
334         // special case for fast round rect blur
335         // don't actually do the blur the first time, just compute the correct size
336         filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
337                                             SkMask::kJustComputeBounds_CreateMode);
338     }
339 
340     if (!filterResult) {
341         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
342     }
343 
344     if (!filterResult) {
345         return kFalse_FilterReturn;
346     }
347 
348     // Now figure out the appropriate width and height of the smaller round rectangle
349     // to stretch. It will take into account the larger radius per side as well as double
350     // the margin, to account for inner and outer blur.
351     const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
352     const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
353     const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
354     const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
355 
356     const SkScalar leftUnstretched = std::max(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
357     const SkScalar rightUnstretched = std::max(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
358 
359     // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
360     // any fractional space on either side plus 1 for the part to stretch.
361     const SkScalar stretchSize = SkIntToScalar(3);
362 
363     const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
364     if (totalSmallWidth >= rrect.rect().width()) {
365         // There is no valid piece to stretch.
366         return kUnimplemented_FilterReturn;
367     }
368 
369     const SkScalar topUnstretched = std::max(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
370     const SkScalar bottomUnstretched = std::max(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
371 
372     const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
373     if (totalSmallHeight >= rrect.rect().height()) {
374         // There is no valid piece to stretch.
375         return kUnimplemented_FilterReturn;
376     }
377 
378     SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
379 
380     SkRRect smallRR;
381     SkVector radii[4];
382     radii[SkRRect::kUpperLeft_Corner] = UL;
383     radii[SkRRect::kUpperRight_Corner] = UR;
384     radii[SkRRect::kLowerRight_Corner] = LR;
385     radii[SkRRect::kLowerLeft_Corner] = LL;
386     smallRR.setRectRadii(smallR, radii);
387 
388     const SkScalar sigma = this->computeXformedSigma(matrix);
389     SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
390     if (!cache) {
391         bool analyticBlurWorked = false;
392         if (c_analyticBlurRRect) {
393             analyticBlurWorked =
394                 this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
395                                       SkMask::kComputeBoundsAndRenderImage_CreateMode);
396         }
397 
398         if (!analyticBlurWorked) {
399             if (!draw_rrect_into_mask(smallRR, &srcM)) {
400                 return kFalse_FilterReturn;
401             }
402 
403             SkAutoMaskFreeImage amf(srcM.fImage);
404 
405             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
406                 return kFalse_FilterReturn;
407             }
408         }
409         cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
410     }
411 
412     patch->fMask.fBounds.offsetTo(0, 0);
413     patch->fOuterRect = dstM.fBounds;
414     patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
415     patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
416     SkASSERT(nullptr == patch->fCache);
417     patch->fCache = cache;  // transfer ownership to patch
418     return kTrue_FilterReturn;
419 }
420 
421 // Use the faster analytic blur approach for ninepatch rects
422 static const bool c_analyticBlurNinepatch{true};
423 
424 SkMaskFilterBase::FilterReturn
filterRectsToNine(const SkRect rects[],int count,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const425 SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
426                                         const SkMatrix& matrix,
427                                         const SkIRect& clipBounds,
428                                         NinePatch* patch) const {
429     if (count < 1 || count > 2) {
430         return kUnimplemented_FilterReturn;
431     }
432 
433     // TODO: report correct metrics for innerstyle, where we do not grow the
434     // total bounds, but we do need an inset the size of our blur-radius
435     if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
436         return kUnimplemented_FilterReturn;
437     }
438 
439     // TODO: take clipBounds into account to limit our coordinates up front
440     // for now, just skip too-large src rects (to take the old code path).
441     if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
442         return kUnimplemented_FilterReturn;
443     }
444 
445     SkIPoint margin;
446     SkMask  srcM, dstM;
447     srcM.fBounds = rects[0].roundOut();
448     srcM.fFormat = SkMask::kA8_Format;
449     srcM.fRowBytes = 0;
450 
451     bool filterResult = false;
452     if (count == 1 && c_analyticBlurNinepatch) {
453         // special case for fast rect blur
454         // don't actually do the blur the first time, just compute the correct size
455         filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
456                                             SkMask::kJustComputeBounds_CreateMode);
457     } else {
458         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
459     }
460 
461     if (!filterResult) {
462         return kFalse_FilterReturn;
463     }
464 
465     /*
466      *  smallR is the smallest version of 'rect' that will still guarantee that
467      *  we get the same blur results on all edges, plus 1 center row/col that is
468      *  representative of the extendible/stretchable edges of the ninepatch.
469      *  Since our actual edge may be fractional we inset 1 more to be sure we
470      *  don't miss any interior blur.
471      *  x is an added pixel of blur, and { and } are the (fractional) edge
472      *  pixels from the original rect.
473      *
474      *   x x { x x .... x x } x x
475      *
476      *  Thus, in this case, we inset by a total of 5 (on each side) beginning
477      *  with our outer-rect (dstM.fBounds)
478      */
479     SkRect smallR[2];
480     SkIPoint center;
481 
482     // +2 is from +1 for each edge (to account for possible fractional edges
483     int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
484     int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
485     SkIRect innerIR;
486 
487     if (1 == count) {
488         innerIR = srcM.fBounds;
489         center.set(smallW, smallH);
490     } else {
491         SkASSERT(2 == count);
492         rects[1].roundIn(&innerIR);
493         center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
494                    smallH + (innerIR.top() - srcM.fBounds.top()));
495     }
496 
497     // +1 so we get a clean, stretchable, center row/col
498     smallW += 1;
499     smallH += 1;
500 
501     // we want the inset amounts to be integral, so we don't change any
502     // fractional phase on the fRight or fBottom of our smallR.
503     const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
504     const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
505     if (dx < 0 || dy < 0) {
506         // we're too small, relative to our blur, to break into nine-patch,
507         // so we ask to have our normal filterMask() be called.
508         return kUnimplemented_FilterReturn;
509     }
510 
511     smallR[0].setLTRB(rects[0].left(),       rects[0].top(),
512                       rects[0].right() - dx, rects[0].bottom() - dy);
513     if (smallR[0].width() < 2 || smallR[0].height() < 2) {
514         return kUnimplemented_FilterReturn;
515     }
516     if (2 == count) {
517         smallR[1].setLTRB(rects[1].left(), rects[1].top(),
518                           rects[1].right() - dx, rects[1].bottom() - dy);
519         SkASSERT(!smallR[1].isEmpty());
520     }
521 
522     const SkScalar sigma = this->computeXformedSigma(matrix);
523     SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
524     if (!cache) {
525         if (count > 1 || !c_analyticBlurNinepatch) {
526             if (!draw_rects_into_mask(smallR, count, &srcM)) {
527                 return kFalse_FilterReturn;
528             }
529 
530             SkAutoMaskFreeImage amf(srcM.fImage);
531 
532             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
533                 return kFalse_FilterReturn;
534             }
535         } else {
536             if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
537                                       SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
538                 return kFalse_FilterReturn;
539             }
540         }
541         cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
542     }
543     patch->fMask.fBounds.offsetTo(0, 0);
544     patch->fOuterRect = dstM.fBounds;
545     patch->fCenter = center;
546     SkASSERT(nullptr == patch->fCache);
547     patch->fCache = cache;  // transfer ownership to patch
548     return kTrue_FilterReturn;
549 }
550 
computeFastBounds(const SkRect & src,SkRect * dst) const551 void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
552                                              SkRect* dst) const {
553     // TODO: if we're doing kInner blur, should we return a different outset?
554     //       i.e. pad == 0 ?
555 
556     SkScalar pad = 3.0f * fSigma;
557 
558     dst->setLTRB(src.fLeft  - pad, src.fTop    - pad,
559                  src.fRight + pad, src.fBottom + pad);
560 }
561 
CreateProc(SkReadBuffer & buffer)562 sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
563     const SkScalar sigma = buffer.readScalar();
564     SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle);
565 
566     uint32_t flags = buffer.read32LE(0x3);  // historically we only recorded 2 bits
567     bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit
568 
569     return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, respectCTM);
570 }
571 
flatten(SkWriteBuffer & buffer) const572 void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
573     buffer.writeScalar(fSigma);
574     buffer.writeUInt(fBlurStyle);
575     buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM
576 }
577 
578 
579 #if SK_SUPPORT_GPU && SK_GPU_V1
580 
581 ///////////////////////////////////////////////////////////////////////////////
582 //  Circle Blur
583 ///////////////////////////////////////////////////////////////////////////////
584 
585 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
586 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)587 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
588     const float invSigma = 1.f / sigma;
589     const float b = -0.5f * invSigma * invSigma;
590     float tot = 0.0f;
591     // Compute half kernel values at half pixel steps out from the center.
592     float t = 0.5f;
593     for (int i = 0; i < halfKernelSize; ++i) {
594         float value = expf(t * t * b);
595         tot += value;
596         halfKernel[i] = value;
597         t += 1.f;
598     }
599     return tot;
600 }
601 
602 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
603 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)604 static void make_half_kernel_and_summed_table(float* halfKernel,
605                                               float* summedHalfKernel,
606                                               int halfKernelSize,
607                                               float sigma) {
608     // The half kernel should sum to 0.5 not 1.0.
609     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
610     float sum = 0.f;
611     for (int i = 0; i < halfKernelSize; ++i) {
612         halfKernel[i] /= tot;
613         sum += halfKernel[i];
614         summedHalfKernel[i] = sum;
615     }
616 }
617 
618 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
619 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)620 void apply_kernel_in_y(float* results,
621                        int numSteps,
622                        float firstX,
623                        float circleR,
624                        int halfKernelSize,
625                        const float* summedHalfKernelTable) {
626     float x = firstX;
627     for (int i = 0; i < numSteps; ++i, x += 1.f) {
628         if (x < -circleR || x > circleR) {
629             results[i] = 0;
630             continue;
631         }
632         float y = sqrtf(circleR * circleR - x * x);
633         // In the column at x we exit the circle at +y and -y
634         // The summed table entry j is actually reflects an offset of j + 0.5.
635         y -= 0.5f;
636         int yInt = SkScalarFloorToInt(y);
637         SkASSERT(yInt >= -1);
638         if (y < 0) {
639             results[i] = (y + 0.5f) * summedHalfKernelTable[0];
640         } else if (yInt >= halfKernelSize - 1) {
641             results[i] = 0.5f;
642         } else {
643             float yFrac = y - yInt;
644             results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
645                          yFrac * summedHalfKernelTable[yInt + 1];
646         }
647     }
648 }
649 
650 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
651 // This relies on having a half kernel computed for the Gaussian and a table of applications of
652 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
653 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)654 static uint8_t eval_at(float evalX,
655                        float circleR,
656                        const float* halfKernel,
657                        int halfKernelSize,
658                        const float* yKernelEvaluations) {
659     float acc = 0;
660 
661     float x = evalX - halfKernelSize;
662     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
663         if (x < -circleR || x > circleR) {
664             continue;
665         }
666         float verticalEval = yKernelEvaluations[i];
667         acc += verticalEval * halfKernel[halfKernelSize - i - 1];
668     }
669     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
670         if (x < -circleR || x > circleR) {
671             continue;
672         }
673         float verticalEval = yKernelEvaluations[i + halfKernelSize];
674         acc += verticalEval * halfKernel[i];
675     }
676     // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
677     // the x axis).
678     return SkUnitScalarClampToByte(2.f * acc);
679 }
680 
681 // This function creates a profile of a blurred circle. It does this by computing a kernel for
682 // half the Gaussian and a matching summed area table. The summed area table is used to compute
683 // an array of vertical applications of the half kernel to the circle along the x axis. The
684 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
685 // the size of the profile being computed. Then for each of the n profile entries we walk out k
686 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
687 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(uint8_t * weights,float sigma,float circleR,int profileTextureWidth)688 static void create_circle_profile(uint8_t* weights,
689                                   float sigma,
690                                   float circleR,
691                                   int profileTextureWidth) {
692     const int numSteps = profileTextureWidth;
693 
694     // The full kernel is 6 sigmas wide.
695     int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
696     // round up to next multiple of 2 and then divide by 2
697     halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
698 
699     // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
700     int numYSteps = numSteps + 2 * halfKernelSize;
701 
702     SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
703     float* halfKernel = bulkAlloc.get();
704     float* summedKernel = bulkAlloc.get() + halfKernelSize;
705     float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
706     make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
707 
708     float firstX = -halfKernelSize + 0.5f;
709     apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
710 
711     for (int i = 0; i < numSteps - 1; ++i) {
712         float evalX = i + 0.5f;
713         weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
714     }
715     // Ensure the tail of the Gaussian goes to zero.
716     weights[numSteps - 1] = 0;
717 }
718 
create_half_plane_profile(uint8_t * profile,int profileWidth)719 static void create_half_plane_profile(uint8_t* profile, int profileWidth) {
720     SkASSERT(!(profileWidth & 0x1));
721     // The full kernel is 6 sigmas wide.
722     float sigma = profileWidth / 6.f;
723     int halfKernelSize = profileWidth / 2;
724 
725     SkAutoTArray<float> halfKernel(halfKernelSize);
726 
727     // The half kernel should sum to 0.5.
728     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
729     float sum = 0.f;
730     // Populate the profile from the right edge to the middle.
731     for (int i = 0; i < halfKernelSize; ++i) {
732         halfKernel[halfKernelSize - i - 1] /= tot;
733         sum += halfKernel[halfKernelSize - i - 1];
734         profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
735     }
736     // Populate the profile from the middle to the left edge (by flipping the half kernel and
737     // continuing the summation).
738     for (int i = 0; i < halfKernelSize; ++i) {
739         sum += halfKernel[i];
740         profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
741     }
742     // Ensure tail goes to 0.
743     profile[profileWidth - 1] = 0;
744 }
745 
create_profile_effect(GrRecordingContext * rContext,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)746 static std::unique_ptr<GrFragmentProcessor> create_profile_effect(GrRecordingContext* rContext,
747                                                                   const SkRect& circle,
748                                                                   float sigma,
749                                                                   float* solidRadius,
750                                                                   float* textureRadius) {
751     float circleR = circle.width() / 2.0f;
752     if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) {
753         return nullptr;
754     }
755 
756     auto threadSafeCache = rContext->priv().threadSafeCache();
757 
758     // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
759     // profile texture (binned by powers of 2).
760     SkScalar sigmaToCircleRRatio = sigma / circleR;
761     // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
762     // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
763     // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
764     // implemented this latter optimization.
765     sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f);
766     SkFixed sigmaToCircleRRatioFixed;
767     static const SkScalar kHalfPlaneThreshold = 0.1f;
768     bool useHalfPlaneApprox = false;
769     if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
770         useHalfPlaneApprox = true;
771         sigmaToCircleRRatioFixed = 0;
772         *solidRadius = circleR - 3 * sigma;
773         *textureRadius = 6 * sigma;
774     } else {
775         // Convert to fixed point for the key.
776         sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
777         // We shave off some bits to reduce the number of unique entries. We could probably
778         // shave off more than we do.
779         sigmaToCircleRRatioFixed &= ~0xff;
780         sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
781         sigma = circleR * sigmaToCircleRRatio;
782         *solidRadius = 0;
783         *textureRadius = circleR + 3 * sigma;
784     }
785 
786     static constexpr int kProfileTextureWidth = 512;
787     // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do
788     // the calculation of the profile coord in a coord space that has already been scaled by
789     // 1 / textureRadius. This is done to avoid overflow in length().
790     SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f);
791 
792     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
793     GrUniqueKey key;
794     GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur");
795     builder[0] = sigmaToCircleRRatioFixed;
796     builder.finish();
797 
798     GrSurfaceProxyView profileView = threadSafeCache->find(key);
799     if (profileView) {
800         SkASSERT(profileView.asTextureProxy());
801         SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin);
802         return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
803     }
804 
805     SkBitmap bm;
806     if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) {
807         return nullptr;
808     }
809 
810     if (useHalfPlaneApprox) {
811         create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth);
812     } else {
813         // Rescale params to the size of the texture we're creating.
814         SkScalar scale = kProfileTextureWidth / *textureRadius;
815         create_circle_profile(
816                 bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth);
817     }
818     bm.setImmutable();
819 
820     profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm));
821     if (!profileView) {
822         return nullptr;
823     }
824 
825     profileView = threadSafeCache->add(key, profileView);
826     return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
827 }
828 
make_circle_blur(GrRecordingContext * context,const SkRect & circle,float sigma)829 static std::unique_ptr<GrFragmentProcessor> make_circle_blur(GrRecordingContext* context,
830                                                              const SkRect& circle,
831                                                              float sigma) {
832     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) {
833         return nullptr;
834     }
835 
836     float solidRadius;
837     float textureRadius;
838     std::unique_ptr<GrFragmentProcessor> profile =
839             create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius);
840     if (!profile) {
841         return nullptr;
842     }
843 
844     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
845         uniform shader blurProfile;
846         uniform half4 circleData;
847 
848         half4 main(float2 xy, half4 inColor) {
849             // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need
850             // to rearrange to avoid passing large values to length() that would overflow.
851             half2 vec = half2((sk_FragCoord.xy - circleData.xy) * circleData.w);
852             half dist = length(vec) + (0.5 - circleData.z) * circleData.w;
853             return inColor * blurProfile.eval(half2(dist, 0.5)).a;
854         }
855     )");
856 
857     SkV4 circleData = {circle.centerX(), circle.centerY(), solidRadius, 1.f / textureRadius};
858     return GrSkSLFP::Make(effect, "CircleBlur", /*inputFP=*/nullptr,
859                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
860                           "blurProfile", GrSkSLFP::IgnoreOptFlags(std::move(profile)),
861                           "circleData", circleData);
862 }
863 
864 ///////////////////////////////////////////////////////////////////////////////
865 //  Rect Blur
866 ///////////////////////////////////////////////////////////////////////////////
867 
make_rect_integral_fp(GrRecordingContext * rContext,float sixSigma)868 static std::unique_ptr<GrFragmentProcessor> make_rect_integral_fp(GrRecordingContext* rContext,
869                                                                   float sixSigma) {
870     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(sixSigma / 6.f));
871     auto threadSafeCache = rContext->priv().threadSafeCache();
872 
873     int width = SkGpuBlurUtils::CreateIntegralTable(sixSigma, nullptr);
874 
875     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
876     GrUniqueKey key;
877     GrUniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
878     builder[0] = width;
879     builder.finish();
880 
881     SkMatrix m = SkMatrix::Scale(width / sixSigma, 1.f);
882 
883     GrSurfaceProxyView view = threadSafeCache->find(key);
884 
885     if (view) {
886         SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
887         return GrTextureEffect::Make(
888                 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
889     }
890 
891     SkBitmap bitmap;
892     if (!SkGpuBlurUtils::CreateIntegralTable(sixSigma, &bitmap)) {
893         return {};
894     }
895 
896     view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bitmap));
897     if (!view) {
898         return {};
899     }
900 
901     view = threadSafeCache->add(key, view);
902 
903     SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
904     return GrTextureEffect::Make(
905             std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
906 }
907 
make_rect_blur(GrRecordingContext * context,const GrShaderCaps & caps,const SkRect & srcRect,const SkMatrix & viewMatrix,float transformedSigma)908 static std::unique_ptr<GrFragmentProcessor> make_rect_blur(GrRecordingContext* context,
909                                                            const GrShaderCaps& caps,
910                                                            const SkRect& srcRect,
911                                                            const SkMatrix& viewMatrix,
912                                                            float transformedSigma) {
913     SkASSERT(viewMatrix.preservesRightAngles());
914     SkASSERT(srcRect.isSorted());
915 
916     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(transformedSigma)) {
917         // No need to blur the rect
918         return nullptr;
919     }
920 
921     SkMatrix invM;
922     SkRect rect;
923     if (viewMatrix.rectStaysRect()) {
924         invM = SkMatrix::I();
925         // We can do everything in device space when the src rect projects to a rect in device space
926         SkAssertResult(viewMatrix.mapRect(&rect, srcRect));
927     } else {
928         // The view matrix may scale, perhaps anisotropically. But we want to apply our device space
929         // "transformedSigma" to the delta of frag coord from the rect edges. Factor out the scaling
930         // to define a space that is purely rotation/translation from device space (and scale from
931         // src space) We'll meet in the middle: pre-scale the src rect to be in this space and then
932         // apply the inverse of the rotation/translation portion to the frag coord.
933         SkMatrix m;
934         SkSize scale;
935         if (!viewMatrix.decomposeScale(&scale, &m)) {
936             return nullptr;
937         }
938         if (!m.invert(&invM)) {
939             return nullptr;
940         }
941         rect = {srcRect.left() * scale.width(),
942                 srcRect.top() * scale.height(),
943                 srcRect.right() * scale.width(),
944                 srcRect.bottom() * scale.height()};
945     }
946 
947     if (!caps.floatIs32Bits()) {
948         // We promote the math that gets us into the Gaussian space to full float when the rect
949         // coords are large. If we don't have full float then fail. We could probably clip the rect
950         // to an outset device bounds instead.
951         if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
952             SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
953             return nullptr;
954         }
955     }
956 
957     const float sixSigma = 6 * transformedSigma;
958     std::unique_ptr<GrFragmentProcessor> integral = make_rect_integral_fp(context, sixSigma);
959     if (!integral) {
960         return nullptr;
961     }
962 
963     // In the fast variant we think of the midpoint of the integral texture as aligning with the
964     // closest rect edge both in x and y. To simplify texture coord calculation we inset the rect so
965     // that the edge of the inset rect corresponds to t = 0 in the texture. It actually simplifies
966     // things a bit in the !isFast case, too.
967     float threeSigma = sixSigma / 2;
968     SkRect insetRect = {rect.left() + threeSigma,
969                         rect.top() + threeSigma,
970                         rect.right() - threeSigma,
971                         rect.bottom() - threeSigma};
972 
973     // In our fast variant we find the nearest horizontal and vertical edges and for each do a
974     // lookup in the integral texture for each and multiply them. When the rect is less than 6 sigma
975     // wide then things aren't so simple and we have to consider both the left and right edge of the
976     // rectangle (and similar in y).
977     bool isFast = insetRect.isSorted();
978 
979     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
980         // Effect that is a LUT for integral of normal distribution. The value at x:[0,6*sigma] is
981         // the integral from -inf to (3*sigma - x). I.e. x is mapped from [0, 6*sigma] to
982         // [3*sigma to -3*sigma]. The flip saves a reversal in the shader.
983         uniform shader integral;
984 
985         uniform float4 rect;
986         uniform int isFast;  // specialized
987 
988         half4 main(float2 pos, half4 inColor) {
989             half xCoverage, yCoverage;
990             if (bool(isFast)) {
991                 // Get the smaller of the signed distance from the frag coord to the left and right
992                 // edges and similar for y.
993                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma), So, the below
994                 // computations align the left edge of the integral texture with the inset rect's
995                 // edge extending outward 6 * sigma from the inset rect.
996                 half2 xy = max(half2(rect.LT - pos), half2(pos - rect.RB));
997                 xCoverage = integral.eval(half2(xy.x, 0.5)).a;
998                 yCoverage = integral.eval(half2(xy.y, 0.5)).a;
999             } else {
1000                 // We just consider just the x direction here. In practice we compute x and y
1001                 // separately and multiply them together.
1002                 // We define our coord system so that the point at which we're evaluating a kernel
1003                 // defined by the normal distribution (K) at 0. In this coord system let L be left
1004                 // edge and R be the right edge of the rectangle.
1005                 // We can calculate C by integrating K with the half infinite ranges outside the
1006                 // L to R range and subtracting from 1:
1007                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from R to inf>
1008                 // K is symmetric about x=0 so:
1009                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from -inf to -R>
1010 
1011                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma) which is
1012                 // factored in to the below calculations.
1013                 // Also, our rect uniform was pre-inset by 3 sigma from the actual rect being
1014                 // blurred, also factored in.
1015                 half4 rect = half4(half2(rect.LT - pos), half2(pos - rect.RB));
1016                 xCoverage = 1 - integral.eval(half2(rect.L, 0.5)).a
1017                               - integral.eval(half2(rect.R, 0.5)).a;
1018                 yCoverage = 1 - integral.eval(half2(rect.T, 0.5)).a
1019                               - integral.eval(half2(rect.B, 0.5)).a;
1020             }
1021             return inColor * xCoverage * yCoverage;
1022         }
1023     )");
1024 
1025     std::unique_ptr<GrFragmentProcessor> fp =
1026             GrSkSLFP::Make(effect, "RectBlur", /*inputFP=*/nullptr,
1027                            GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1028                            "integral", GrSkSLFP::IgnoreOptFlags(std::move(integral)),
1029                            "rect", insetRect,
1030                            "isFast", GrSkSLFP::Specialize<int>(isFast));
1031     if (!invM.isIdentity()) {
1032         fp = GrMatrixEffect::Make(invM, std::move(fp));
1033     }
1034     return GrFragmentProcessor::DeviceSpace(std::move(fp));
1035 }
1036 
1037 ///////////////////////////////////////////////////////////////////////////////
1038 //  RRect Blur
1039 ///////////////////////////////////////////////////////////////////////////////
1040 
1041 static constexpr auto kBlurredRRectMaskOrigin = kTopLeft_GrSurfaceOrigin;
1042 
make_blurred_rrect_key(GrUniqueKey * key,const SkRRect & rrectToDraw,float xformedSigma)1043 static void make_blurred_rrect_key(GrUniqueKey* key,
1044                                    const SkRRect& rrectToDraw,
1045                                    float xformedSigma) {
1046     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1047     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
1048 
1049     GrUniqueKey::Builder builder(key, kDomain, 9, "RoundRect Blur Mask");
1050     builder[0] = SkScalarCeilToInt(xformedSigma - 1 / 6.0f);
1051 
1052     int index = 1;
1053     // TODO: this is overkill for _simple_ circular rrects
1054     for (auto c : {SkRRect::kUpperLeft_Corner,
1055                    SkRRect::kUpperRight_Corner,
1056                    SkRRect::kLowerRight_Corner,
1057                    SkRRect::kLowerLeft_Corner}) {
1058         SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
1059         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
1060         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
1061     }
1062     builder.finish();
1063 }
1064 
fillin_view_on_gpu(GrDirectContext * dContext,const GrSurfaceProxyView & lazyView,sk_sp<GrThreadSafeCache::Trampoline> trampoline,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1065 static bool fillin_view_on_gpu(GrDirectContext* dContext,
1066                                const GrSurfaceProxyView& lazyView,
1067                                sk_sp<GrThreadSafeCache::Trampoline> trampoline,
1068                                const SkRRect& rrectToDraw,
1069                                const SkISize& dimensions,
1070                                float xformedSigma) {
1071 #if SK_GPU_V1
1072     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1073 
1074     // We cache blur masks. Use default surface props here so we can use the same cached mask
1075     // regardless of the final dst surface.
1076     SkSurfaceProps defaultSurfaceProps;
1077 
1078     std::unique_ptr<skgpu::v1::SurfaceDrawContext> sdc =
1079             skgpu::v1::SurfaceDrawContext::MakeWithFallback(dContext,
1080                                                             GrColorType::kAlpha_8,
1081                                                             nullptr,
1082                                                             SkBackingFit::kExact,
1083                                                             dimensions,
1084                                                             defaultSurfaceProps,
1085                                                             1,
1086                                                             GrMipmapped::kNo,
1087                                                             GrProtected::kNo,
1088                                                             kBlurredRRectMaskOrigin);
1089     if (!sdc) {
1090         return false;
1091     }
1092 
1093     GrPaint paint;
1094 
1095     sdc->clear(SK_PMColor4fTRANSPARENT);
1096     sdc->drawRRect(nullptr,
1097                    std::move(paint),
1098                    GrAA::kYes,
1099                    SkMatrix::I(),
1100                    rrectToDraw,
1101                    GrStyle::SimpleFill());
1102 
1103     GrSurfaceProxyView srcView = sdc->readSurfaceView();
1104     SkASSERT(srcView.asTextureProxy());
1105     auto rtc2 = SkGpuBlurUtils::GaussianBlur(dContext,
1106                                              std::move(srcView),
1107                                              sdc->colorInfo().colorType(),
1108                                              sdc->colorInfo().alphaType(),
1109                                              nullptr,
1110                                              SkIRect::MakeSize(dimensions),
1111                                              SkIRect::MakeSize(dimensions),
1112                                              xformedSigma,
1113                                              xformedSigma,
1114                                              SkTileMode::kClamp,
1115                                              SkBackingFit::kExact);
1116     if (!rtc2 || !rtc2->readSurfaceView()) {
1117         return false;
1118     }
1119 
1120     auto view = rtc2->readSurfaceView();
1121     SkASSERT(view.swizzle() == lazyView.swizzle());
1122     SkASSERT(view.origin() == lazyView.origin());
1123     trampoline->fProxy = view.asTextureProxyRef();
1124 
1125     return true;
1126 #else
1127     return false;
1128 #endif
1129 }
1130 
1131 // Evaluate the vertical blur at the specified 'y' value given the location of the top of the
1132 // rrect.
eval_V(float top,int y,const uint8_t * integral,int integralSize,float sixSigma)1133 static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
1134     if (top < 0) {
1135         return 0;  // an empty column
1136     }
1137 
1138     float fT = (top - y - 0.5f) * (integralSize / sixSigma);
1139     if (fT < 0) {
1140         return 255;
1141     } else if (fT >= integralSize - 1) {
1142         return 0;
1143     }
1144 
1145     int lower = (int)fT;
1146     float frac = fT - lower;
1147 
1148     SkASSERT(lower + 1 < integralSize);
1149 
1150     return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
1151 }
1152 
1153 // Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
eval_H(int x,int y,const std::vector<float> & topVec,const float * kernel,int kernelSize,const uint8_t * integral,int integralSize,float sixSigma)1154 static uint8_t eval_H(int x,
1155                       int y,
1156                       const std::vector<float>& topVec,
1157                       const float* kernel,
1158                       int kernelSize,
1159                       const uint8_t* integral,
1160                       int integralSize,
1161                       float sixSigma) {
1162     SkASSERT(0 <= x && x < (int)topVec.size());
1163     SkASSERT(kernelSize % 2);
1164 
1165     float accum = 0.0f;
1166 
1167     int xSampleLoc = x - (kernelSize / 2);
1168     for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
1169         if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
1170             continue;
1171         }
1172 
1173         accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
1174     }
1175 
1176     return accum + 0.5f;
1177 }
1178 
1179 // Create a cpu-side blurred-rrect mask that is close to the version the gpu would've produced.
1180 // The match needs to be close bc the cpu- and gpu-generated version must be interchangeable.
create_mask_on_cpu(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1181 static GrSurfaceProxyView create_mask_on_cpu(GrRecordingContext* rContext,
1182                                              const SkRRect& rrectToDraw,
1183                                              const SkISize& dimensions,
1184                                              float xformedSigma) {
1185     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1186     int radius = SkGpuBlurUtils::SigmaRadius(xformedSigma);
1187     int kernelSize = 2 * radius + 1;
1188 
1189     SkASSERT(kernelSize % 2);
1190     SkASSERT(dimensions.width() % 2);
1191     SkASSERT(dimensions.height() % 2);
1192 
1193     SkVector radii = rrectToDraw.getSimpleRadii();
1194     SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
1195 
1196     const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
1197     const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
1198 
1199     std::unique_ptr<float[]> kernel(new float[kernelSize]);
1200 
1201     SkGpuBlurUtils::Compute1DGaussianKernel(kernel.get(), xformedSigma, radius);
1202 
1203     SkBitmap integral;
1204     if (!SkGpuBlurUtils::CreateIntegralTable(6 * xformedSigma, &integral)) {
1205         return {};
1206     }
1207 
1208     SkBitmap result;
1209     if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
1210         return {};
1211     }
1212 
1213     std::vector<float> topVec;
1214     topVec.reserve(dimensions.width());
1215     for (int x = 0; x < dimensions.width(); ++x) {
1216         if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
1217             topVec.push_back(-1);
1218         } else {
1219             if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) {  // in the circular section
1220                 float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
1221                 float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
1222                 SkASSERT(0 <= h && h < radii.fY);
1223                 topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * xformedSigma);
1224             } else {
1225                 topVec.push_back(rrectToDraw.rect().fTop + 3 * xformedSigma);
1226             }
1227         }
1228     }
1229 
1230     for (int y = 0; y < halfHeightPlus1; ++y) {
1231         uint8_t* scanline = result.getAddr8(0, y);
1232 
1233         for (int x = 0; x < halfWidthPlus1; ++x) {
1234             scanline[x] = eval_H(x,
1235                                  y,
1236                                  topVec,
1237                                  kernel.get(),
1238                                  kernelSize,
1239                                  integral.getAddr8(0, 0),
1240                                  integral.width(),
1241                                  6 * xformedSigma);
1242             scanline[dimensions.width() - x - 1] = scanline[x];
1243         }
1244 
1245         memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
1246     }
1247 
1248     result.setImmutable();
1249 
1250     auto view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, result));
1251     if (!view) {
1252         return {};
1253     }
1254 
1255     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1256     return view;
1257 }
1258 
find_or_create_rrect_blur_mask_fp(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1259 static std::unique_ptr<GrFragmentProcessor> find_or_create_rrect_blur_mask_fp(
1260         GrRecordingContext* rContext,
1261         const SkRRect& rrectToDraw,
1262         const SkISize& dimensions,
1263         float xformedSigma) {
1264     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1265     GrUniqueKey key;
1266     make_blurred_rrect_key(&key, rrectToDraw, xformedSigma);
1267 
1268     auto threadSafeCache = rContext->priv().threadSafeCache();
1269 
1270     // It seems like we could omit this matrix and modify the shader code to not normalize
1271     // the coords used to sample the texture effect. However, the "proxyDims" value in the
1272     // shader is not always the actual the proxy dimensions. This is because 'dimensions' here
1273     // was computed using integer corner radii as determined in
1274     // SkComputeBlurredRRectParams whereas the shader code uses the float radius to compute
1275     // 'proxyDims'. Why it draws correctly with these unequal values is a mystery for the ages.
1276     auto m = SkMatrix::Scale(dimensions.width(), dimensions.height());
1277 
1278     GrSurfaceProxyView view;
1279 
1280     if (GrDirectContext* dContext = rContext->asDirectContext()) {
1281         // The gpu thread gets priority over the recording threads. If the gpu thread is first,
1282         // it crams a lazy proxy into the cache and then fills it in later.
1283         auto [lazyView, trampoline] = GrThreadSafeCache::CreateLazyView(dContext,
1284                                                                         GrColorType::kAlpha_8,
1285                                                                         dimensions,
1286                                                                         kBlurredRRectMaskOrigin,
1287                                                                         SkBackingFit::kExact);
1288         if (!lazyView) {
1289             return nullptr;
1290         }
1291 
1292         view = threadSafeCache->findOrAdd(key, lazyView);
1293         if (view != lazyView) {
1294             SkASSERT(view.asTextureProxy());
1295             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1296             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1297         }
1298 
1299         if (!fillin_view_on_gpu(dContext,
1300                                 lazyView,
1301                                 std::move(trampoline),
1302                                 rrectToDraw,
1303                                 dimensions,
1304                                 xformedSigma)) {
1305             // In this case something has gone disastrously wrong so set up to drop the draw
1306             // that needed this resource and reduce future pollution of the cache.
1307             threadSafeCache->remove(key);
1308             return nullptr;
1309         }
1310     } else {
1311         view = threadSafeCache->find(key);
1312         if (view) {
1313             SkASSERT(view.asTextureProxy());
1314             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1315             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1316         }
1317 
1318         view = create_mask_on_cpu(rContext, rrectToDraw, dimensions, xformedSigma);
1319         if (!view) {
1320             return nullptr;
1321         }
1322 
1323         view = threadSafeCache->add(key, view);
1324     }
1325 
1326     SkASSERT(view.asTextureProxy());
1327     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1328     return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1329 }
1330 
make_rrect_blur(GrRecordingContext * context,float sigma,float xformedSigma,const SkRRect & srcRRect,const SkRRect & devRRect)1331 static std::unique_ptr<GrFragmentProcessor> make_rrect_blur(GrRecordingContext* context,
1332                                                             float sigma,
1333                                                             float xformedSigma,
1334                                                             const SkRRect& srcRRect,
1335                                                             const SkRRect& devRRect) {
1336     // Should've been caught up-stream
1337 #ifdef SK_DEBUG
1338     SkASSERTF(!SkRRectPriv::IsCircle(devRRect),
1339               "Unexpected circle. %d\n\t%s\n\t%s",
1340               SkRRectPriv::IsCircle(srcRRect),
1341               srcRRect.dumpToString(true).c_str(),
1342               devRRect.dumpToString(true).c_str());
1343     SkASSERTF(!devRRect.isRect(),
1344               "Unexpected rect. %d\n\t%s\n\t%s",
1345               srcRRect.isRect(),
1346               srcRRect.dumpToString(true).c_str(),
1347               devRRect.dumpToString(true).c_str());
1348 #endif
1349 
1350     // TODO: loosen this up
1351     if (!SkRRectPriv::IsSimpleCircular(devRRect)) {
1352         return nullptr;
1353     }
1354 
1355     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1356         return nullptr;
1357     }
1358 
1359     // Make sure we can successfully ninepatch this rrect -- the blur sigma has to be sufficiently
1360     // small relative to both the size of the corner radius and the width (and height) of the rrect.
1361     SkRRect rrectToDraw;
1362     SkISize dimensions;
1363     SkScalar ignored[SkGpuBlurUtils::kBlurRRectMaxDivisions];
1364 
1365     bool ninePatchable = SkGpuBlurUtils::ComputeBlurredRRectParams(srcRRect,
1366                                                                    devRRect,
1367                                                                    sigma,
1368                                                                    xformedSigma,
1369                                                                    &rrectToDraw,
1370                                                                    &dimensions,
1371                                                                    ignored,
1372                                                                    ignored,
1373                                                                    ignored,
1374                                                                    ignored);
1375     if (!ninePatchable) {
1376         return nullptr;
1377     }
1378 
1379     std::unique_ptr<GrFragmentProcessor> maskFP =
1380             find_or_create_rrect_blur_mask_fp(context, rrectToDraw, dimensions, xformedSigma);
1381     if (!maskFP) {
1382         return nullptr;
1383     }
1384 
1385     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1386         uniform shader ninePatchFP;
1387 
1388         uniform half cornerRadius;
1389         uniform float4 proxyRect;
1390         uniform half blurRadius;
1391 
1392         half4 main(float2 xy, half4 inColor) {
1393             // Warp the fragment position to the appropriate part of the 9-patch blur texture by
1394             // snipping out the middle section of the proxy rect.
1395             float2 translatedFragPosFloat = sk_FragCoord.xy - proxyRect.LT;
1396             float2 proxyCenter = (proxyRect.RB - proxyRect.LT) * 0.5;
1397             half edgeSize = 2.0 * blurRadius + cornerRadius + 0.5;
1398 
1399             // Position the fragment so that (0, 0) marks the center of the proxy rectangle.
1400             // Negative coordinates are on the left/top side and positive numbers are on the
1401             // right/bottom.
1402             translatedFragPosFloat -= proxyCenter;
1403 
1404             // Temporarily strip off the fragment's sign. x/y are now strictly increasing as we
1405             // move away from the center.
1406             half2 fragDirection = half2(sign(translatedFragPosFloat));
1407             translatedFragPosFloat = abs(translatedFragPosFloat);
1408 
1409             // Our goal is to snip out the "middle section" of the proxy rect (everything but the
1410             // edge). We've repositioned our fragment position so that (0, 0) is the centerpoint
1411             // and x/y are always positive, so we can subtract here and interpret negative results
1412             // as being within the middle section.
1413             half2 translatedFragPosHalf = half2(translatedFragPosFloat - (proxyCenter - edgeSize));
1414 
1415             // Remove the middle section by clamping to zero.
1416             translatedFragPosHalf = max(translatedFragPosHalf, 0);
1417 
1418             // Reapply the fragment's sign, so that negative coordinates once again mean left/top
1419             // side and positive means bottom/right side.
1420             translatedFragPosHalf *= fragDirection;
1421 
1422             // Offset the fragment so that (0, 0) marks the upper-left again, instead of the center
1423             // point.
1424             translatedFragPosHalf += half2(edgeSize);
1425 
1426             half2 proxyDims = half2(2.0 * edgeSize);
1427             half2 texCoord = translatedFragPosHalf / proxyDims;
1428 
1429             return inColor * ninePatchFP.eval(texCoord).a;
1430         }
1431     )");
1432 
1433     float cornerRadius = SkRRectPriv::GetSimpleRadii(devRRect).fX;
1434     float blurRadius = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1435     SkRect proxyRect = devRRect.getBounds().makeOutset(blurRadius, blurRadius);
1436 
1437     return GrSkSLFP::Make(effect, "RRectBlur", /*inputFP=*/nullptr,
1438                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1439                           "ninePatchFP", GrSkSLFP::IgnoreOptFlags(std::move(maskFP)),
1440                           "cornerRadius", cornerRadius,
1441                           "proxyRect", proxyRect,
1442                           "blurRadius", blurRadius);
1443 }
1444 
1445 ///////////////////////////////////////////////////////////////////////////////
1446 
directFilterMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape) const1447 bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrRecordingContext* context,
1448                                                skgpu::v1::SurfaceDrawContext* sdc,
1449                                                GrPaint&& paint,
1450                                                const GrClip* clip,
1451                                                const SkMatrix& viewMatrix,
1452                                                const GrStyledShape& shape) const {
1453     SkASSERT(sdc);
1454 
1455     if (fBlurStyle != kNormal_SkBlurStyle) {
1456         return false;
1457     }
1458 
1459     // TODO: we could handle blurred stroked circles
1460     if (!shape.style().isSimpleFill()) {
1461         return false;
1462     }
1463 
1464     SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1465     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1466         sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1467         return true;
1468     }
1469 
1470     SkRRect srcRRect;
1471     bool inverted;
1472     if (!shape.asRRect(&srcRRect, nullptr, nullptr, &inverted) || inverted) {
1473         return false;
1474     }
1475 
1476     std::unique_ptr<GrFragmentProcessor> fp;
1477 
1478     SkRRect devRRect;
1479     bool devRRectIsValid = srcRRect.transform(viewMatrix, &devRRect);
1480 
1481     bool devRRectIsCircle = devRRectIsValid && SkRRectPriv::IsCircle(devRRect);
1482 
1483     bool canBeRect = srcRRect.isRect() && viewMatrix.preservesRightAngles();
1484     bool canBeCircle = (SkRRectPriv::IsCircle(srcRRect) && viewMatrix.isSimilarity()) ||
1485                        devRRectIsCircle;
1486 
1487     if (canBeRect || canBeCircle) {
1488         if (canBeRect) {
1489             fp = make_rect_blur(context, *context->priv().caps()->shaderCaps(),
1490                                 srcRRect.rect(), viewMatrix, xformedSigma);
1491         } else {
1492             SkRect devBounds;
1493             if (devRRectIsCircle) {
1494                 devBounds = devRRect.getBounds();
1495             } else {
1496                 SkPoint center = {srcRRect.getBounds().centerX(), srcRRect.getBounds().centerY()};
1497                 viewMatrix.mapPoints(&center, 1);
1498                 SkScalar radius = viewMatrix.mapVector(0, srcRRect.width()/2.f).length();
1499                 devBounds = {center.x() - radius,
1500                              center.y() - radius,
1501                              center.x() + radius,
1502                              center.y() + radius};
1503             }
1504             fp = make_circle_blur(context, devBounds, xformedSigma);
1505         }
1506 
1507         if (!fp) {
1508             return false;
1509         }
1510 
1511         SkRect srcProxyRect = srcRRect.rect();
1512         // Determine how much to outset the src rect to ensure we hit pixels within three sigma.
1513         SkScalar outsetX = 3.0f*xformedSigma;
1514         SkScalar outsetY = 3.0f*xformedSigma;
1515         if (viewMatrix.isScaleTranslate()) {
1516             outsetX /= SkScalarAbs(viewMatrix.getScaleX());
1517             outsetY /= SkScalarAbs(viewMatrix.getScaleY());
1518         } else {
1519             SkSize scale;
1520             if (!viewMatrix.decomposeScale(&scale, nullptr)) {
1521                 return false;
1522             }
1523             outsetX /= scale.width();
1524             outsetY /= scale.height();
1525         }
1526         srcProxyRect.outset(outsetX, outsetY);
1527 
1528         paint.setCoverageFragmentProcessor(std::move(fp));
1529         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1530         return true;
1531     }
1532     if (!viewMatrix.isScaleTranslate()) {
1533         return false;
1534     }
1535     if (!devRRectIsValid || !SkRRectPriv::AllCornersCircular(devRRect)) {
1536         return false;
1537     }
1538 
1539     fp = make_rrect_blur(context, fSigma, xformedSigma, srcRRect, devRRect);
1540     if (!fp) {
1541         return false;
1542     }
1543 
1544     if (!this->ignoreXform()) {
1545         SkRect srcProxyRect = srcRRect.rect();
1546         srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1547         paint.setCoverageFragmentProcessor(std::move(fp));
1548         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1549     } else {
1550         SkMatrix inverse;
1551         if (!viewMatrix.invert(&inverse)) {
1552             return false;
1553         }
1554 
1555         SkIRect proxyBounds;
1556         float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
1557         devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1558 
1559         paint.setCoverageFragmentProcessor(std::move(fp));
1560         sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1561     }
1562 
1563     return true;
1564 }
1565 
canFilterMaskGPU(const GrStyledShape & shape,const SkIRect & devSpaceShapeBounds,const SkIRect & clipBounds,const SkMatrix & ctm,SkIRect * maskRect) const1566 bool SkBlurMaskFilterImpl::canFilterMaskGPU(const GrStyledShape& shape,
1567                                             const SkIRect& devSpaceShapeBounds,
1568                                             const SkIRect& clipBounds,
1569                                             const SkMatrix& ctm,
1570                                             SkIRect* maskRect) const {
1571     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1572     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1573         *maskRect = devSpaceShapeBounds;
1574         return maskRect->intersect(clipBounds);
1575     }
1576 
1577     if (maskRect) {
1578         float sigma3 = 3 * SkScalarToFloat(xformedSigma);
1579 
1580         // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
1581         SkIRect clipRect = clipBounds.makeOutset(sigma3, sigma3);
1582         SkIRect srcRect = devSpaceShapeBounds.makeOutset(sigma3, sigma3);
1583 
1584         if (!srcRect.intersect(clipRect)) {
1585             srcRect.setEmpty();
1586         }
1587         *maskRect = srcRect;
1588     }
1589 
1590     // We prefer to blur paths with small blur radii on the CPU.
1591     static const SkScalar kMIN_GPU_BLUR_SIZE  = SkIntToScalar(64);
1592     static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
1593 
1594     if (devSpaceShapeBounds.width() <= kMIN_GPU_BLUR_SIZE &&
1595         devSpaceShapeBounds.height() <= kMIN_GPU_BLUR_SIZE &&
1596         xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
1597         return false;
1598     }
1599 
1600     return true;
1601 }
1602 
filterMaskGPU(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & ctm,const SkIRect & maskRect) const1603 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPU(GrRecordingContext* context,
1604                                                        GrSurfaceProxyView srcView,
1605                                                        GrColorType srcColorType,
1606                                                        SkAlphaType srcAlphaType,
1607                                                        const SkMatrix& ctm,
1608                                                        const SkIRect& maskRect) const {
1609     // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
1610     const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1611 
1612     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1613 
1614     // If we're doing a normal blur, we can clobber the pathTexture in the
1615     // gaussianBlur.  Otherwise, we need to save it for later compositing.
1616     bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1617     auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1618     auto surfaceDrawContext = SkGpuBlurUtils::GaussianBlur(context,
1619                                                             srcView,
1620                                                             srcColorType,
1621                                                             srcAlphaType,
1622                                                             nullptr,
1623                                                             clipRect,
1624                                                             srcBounds,
1625                                                             xformedSigma,
1626                                                             xformedSigma,
1627                                                             SkTileMode::kClamp);
1628     if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1629         return {};
1630     }
1631 
1632     if (!isNormalBlur) {
1633         GrPaint paint;
1634         // Blend pathTexture over blurTexture.
1635         paint.setCoverageFragmentProcessor(GrTextureEffect::Make(std::move(srcView), srcAlphaType));
1636         if (kInner_SkBlurStyle == fBlurStyle) {
1637             // inner:  dst = dst * src
1638             paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
1639         } else if (kSolid_SkBlurStyle == fBlurStyle) {
1640             // solid:  dst = src + dst - src * dst
1641             //             = src + (1 - src) * dst
1642             paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
1643         } else if (kOuter_SkBlurStyle == fBlurStyle) {
1644             // outer:  dst = dst * (1 - src)
1645             //             = 0 * src + (1 - src) * dst
1646             paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
1647         } else {
1648             paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
1649         }
1650 
1651         surfaceDrawContext->fillPixelsWithLocalMatrix(nullptr, std::move(paint), clipRect,
1652                                                       SkMatrix::I());
1653     }
1654 
1655     return surfaceDrawContext->readSurfaceView();
1656 }
1657 
1658 #endif // SK_SUPPORT_GPU && SK_GPU_V1
1659 
sk_register_blur_maskfilter_createproc()1660 void sk_register_blur_maskfilter_createproc() { SK_REGISTER_FLATTENABLE(SkBlurMaskFilterImpl); }
1661 
MakeBlur(SkBlurStyle style,SkScalar sigma,bool respectCTM)1662 sk_sp<SkMaskFilter> SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) {
1663     if (SkScalarIsFinite(sigma) && sigma > 0) {
1664         return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, respectCTM));
1665     }
1666     return nullptr;
1667 }
1668