1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
9
10 #include <memory>
11
12 #include "src/gpu/GrCaps.h"
13 #include "src/gpu/GrFragmentProcessor.h"
14 #include "src/gpu/GrGeometryProcessor.h"
15 #include "src/gpu/GrPipeline.h"
16 #include "src/gpu/GrRenderTarget.h"
17 #include "src/gpu/GrShaderCaps.h"
18 #include "src/gpu/GrTexture.h"
19 #include "src/gpu/GrXferProcessor.h"
20 #include "src/gpu/effects/GrTextureEffect.h"
21 #include "src/gpu/glsl/GrGLSLVarying.h"
22 #include "src/sksl/SkSLCompiler.h"
23 #include "src/sksl/dsl/priv/DSLFPs.h"
24
25 const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
26
GrGLSLProgramBuilder(const GrProgramDesc & desc,const GrProgramInfo & programInfo)27 GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrProgramDesc& desc,
28 const GrProgramInfo& programInfo)
29 : fVS(this)
30 , fFS(this)
31 , fDesc(desc)
32 , fProgramInfo(programInfo)
33 , fNumFragmentSamplers(0) {}
34
35 GrGLSLProgramBuilder::~GrGLSLProgramBuilder() = default;
36
addFeature(GrShaderFlags shaders,uint32_t featureBit,const char * extensionName)37 void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
38 uint32_t featureBit,
39 const char* extensionName) {
40 if (shaders & kVertex_GrShaderFlag) {
41 fVS.addFeature(featureBit, extensionName);
42 }
43 if (shaders & kFragment_GrShaderFlag) {
44 fFS.addFeature(featureBit, extensionName);
45 }
46 }
47
emitAndInstallProcs()48 bool GrGLSLProgramBuilder::emitAndInstallProcs() {
49 // First we loop over all of the installed processors and collect coord transforms. These will
50 // be sent to the ProgramImpl in its emitCode function
51 SkSL::dsl::Start(this->shaderCompiler());
52 SkString inputColor;
53 SkString inputCoverage;
54 if (!this->emitAndInstallPrimProc(&inputColor, &inputCoverage)) {
55 return false;
56 }
57 if (!this->emitAndInstallDstTexture()) {
58 return false;
59 }
60 if (!this->emitAndInstallFragProcs(&inputColor, &inputCoverage)) {
61 return false;
62 }
63 if (!this->emitAndInstallXferProc(inputColor, inputCoverage)) {
64 return false;
65 }
66 fGPImpl->emitTransformCode(&fVS, this->uniformHandler());
67 SkSL::dsl::End();
68
69 return this->checkSamplerCounts();
70 }
71
emitAndInstallPrimProc(SkString * outputColor,SkString * outputCoverage)72 bool GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) {
73 const GrGeometryProcessor& geomProc = this->geometryProcessor();
74
75 // Program builders have a bit of state we need to clear with each effect
76 this->advanceStage();
77 this->nameExpression(outputColor, "outputColor");
78 this->nameExpression(outputCoverage, "outputCoverage");
79
80 SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
81 GrShaderFlags rtAdjustVisibility;
82 if (geomProc.willUseTessellationShaders()) {
83 rtAdjustVisibility = kTessEvaluation_GrShaderFlag;
84 } else {
85 rtAdjustVisibility = kVertex_GrShaderFlag;
86 }
87 fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(
88 nullptr, rtAdjustVisibility, kFloat4_GrSLType, SkSL::Compiler::RTADJUST_NAME);
89
90 fFS.codeAppendf("// Stage %d, %s\n", fStageIndex, geomProc.name());
91 fVS.codeAppendf("// Primitive Processor %s\n", geomProc.name());
92
93 SkASSERT(!fGPImpl);
94 fGPImpl = geomProc.makeProgramImpl(*this->shaderCaps());
95
96 SkAutoSTArray<4, SamplerHandle> texSamplers(geomProc.numTextureSamplers());
97 for (int i = 0; i < geomProc.numTextureSamplers(); ++i) {
98 SkString name;
99 name.printf("TextureSampler_%d", i);
100 const auto& sampler = geomProc.textureSampler(i);
101 texSamplers[i] = this->emitSampler(geomProc.textureSampler(i).backendFormat(),
102 sampler.samplerState(),
103 sampler.swizzle(),
104 name.c_str());
105 if (!texSamplers[i].isValid()) {
106 return false;
107 }
108 }
109
110 GrGeometryProcessor::ProgramImpl::EmitArgs args(&fVS,
111 &fFS,
112 this->varyingHandler(),
113 this->uniformHandler(),
114 this->shaderCaps(),
115 geomProc,
116 outputColor->c_str(),
117 outputCoverage->c_str(),
118 texSamplers.get());
119 fFPCoordsMap = fGPImpl->emitCode(args, this->pipeline());
120
121 // We have to check that effects and the code they emit are consistent, ie if an effect
122 // asks for dst color, then the emit code needs to follow suit
123 SkDEBUGCODE(verify(geomProc);)
124
125 return true;
126 }
127
emitAndInstallFragProcs(SkString * color,SkString * coverage)128 bool GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) {
129 int fpCount = this->pipeline().numFragmentProcessors();
130 SkASSERT(fFPImpls.empty());
131 fFPImpls.reserve(fpCount);
132 for (int i = 0; i < fpCount; ++i) {
133 SkString* inOut = this->pipeline().isColorFragmentProcessor(i) ? color : coverage;
134 SkString output;
135 const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
136 fFPImpls.push_back(fp.makeProgramImpl());
137 output = this->emitFragProc(fp, *fFPImpls.back(), *inOut, output);
138 if (output.isEmpty()) {
139 return false;
140 }
141 *inOut = std::move(output);
142 }
143 return true;
144 }
145
emitFragProc(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl,const SkString & input,SkString output)146 SkString GrGLSLProgramBuilder::emitFragProc(const GrFragmentProcessor& fp,
147 GrFragmentProcessor::ProgramImpl& impl,
148 const SkString& input,
149 SkString output) {
150 SkASSERT(input.size());
151
152 // Program builders have a bit of state we need to clear with each effect
153 this->advanceStage();
154 this->nameExpression(&output, "output");
155 fFS.codeAppendf("half4 %s;", output.c_str());
156 bool ok = true;
157 fp.visitWithImpls([&, samplerIdx = 0](const GrFragmentProcessor& fp,
158 GrFragmentProcessor::ProgramImpl& impl) mutable {
159 if (auto* te = fp.asTextureEffect()) {
160 SkString name;
161 name.printf("TextureSampler_%d", samplerIdx++);
162
163 GrSamplerState samplerState = te->samplerState();
164 const GrBackendFormat& format = te->view().proxy()->backendFormat();
165 GrSwizzle swizzle = te->view().swizzle();
166 SamplerHandle handle = this->emitSampler(format, samplerState, swizzle, name.c_str());
167 if (!handle.isValid()) {
168 ok = false;
169 return;
170 }
171 static_cast<GrTextureEffect::Impl&>(impl).setSamplerHandle(handle);
172 }
173 }, impl);
174 if (!ok) {
175 return {};
176 }
177
178 this->writeFPFunction(fp, impl);
179
180 if (fp.isBlendFunction()) {
181 fFS.codeAppendf(
182 "%s = %s(%s, half4(1));", output.c_str(), impl.functionName(), input.c_str());
183 } else {
184 fFS.codeAppendf("%s = %s(%s);", output.c_str(), impl.functionName(), input.c_str());
185 }
186
187 // We have to check that effects and the code they emit are consistent, ie if an effect asks
188 // for dst color, then the emit code needs to follow suit
189 SkDEBUGCODE(verify(fp);)
190
191 return output;
192 }
193
writeChildFPFunctions(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl)194 void GrGLSLProgramBuilder::writeChildFPFunctions(const GrFragmentProcessor& fp,
195 GrFragmentProcessor::ProgramImpl& impl) {
196 fSubstageIndices.push_back(0);
197 for (int i = 0; i < impl.numChildProcessors(); ++i) {
198 GrFragmentProcessor::ProgramImpl* childImpl = impl.childProcessor(i);
199 if (!childImpl) {
200 continue;
201 }
202
203 const GrFragmentProcessor* childFP = fp.childProcessor(i);
204 SkASSERT(childFP);
205
206 this->writeFPFunction(*childFP, *childImpl);
207 ++fSubstageIndices.back();
208 }
209 fSubstageIndices.pop_back();
210 }
211
writeFPFunction(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl)212 void GrGLSLProgramBuilder::writeFPFunction(const GrFragmentProcessor& fp,
213 GrFragmentProcessor::ProgramImpl& impl) {
214 constexpr const char* kDstColor = "_dst";
215 const char* const inputColor = fp.isBlendFunction() ? "_src" : "_input";
216 const char* sampleCoords = "_coords";
217 fFS.nextStage();
218 // Conceptually, an FP is always sampled at a particular coordinate. However, if it is only
219 // sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that
220 // would have been passed to _coords is lifted to the vertex shader and
221 // varying. In that case it uses that variable and we do not pass a second argument for _coords.
222 GrShaderVar params[3];
223 int numParams = 0;
224
225 params[numParams++] = GrShaderVar(inputColor, kHalf4_GrSLType);
226
227 if (fp.isBlendFunction()) {
228 // Blend functions take a dest color as input.
229 params[numParams++] = GrShaderVar(kDstColor, kHalf4_GrSLType);
230 }
231
232 if (this->fragmentProcessorHasCoordsParam(&fp)) {
233 params[numParams++] = GrShaderVar(sampleCoords, kFloat2_GrSLType);
234 } else {
235 // Either doesn't use coords at all or sampled through a chain of passthrough/matrix
236 // samples usages. In the latter case the coords are emitted in the vertex shader as a
237 // varying, so this only has to access it. Add a float2 _coords variable that maps to the
238 // associated varying and replaces the absent 2nd argument to the fp's function.
239 GrShaderVar varying = fFPCoordsMap[&fp].coordsVarying;
240
241 switch (varying.getType()) {
242 case kVoid_GrSLType:
243 SkASSERT(!fp.usesSampleCoordsDirectly());
244 break;
245 case kFloat2_GrSLType:
246 // Just point the local coords to the varying
247 sampleCoords = varying.getName().c_str();
248 break;
249 case kFloat3_GrSLType:
250 // Must perform the perspective divide in the frag shader based on the
251 // varying, and since we won't actually have a function parameter for local
252 // coords, add it as a local variable.
253 fFS.codeAppendf("float2 %s = %s.xy / %s.z;\n",
254 sampleCoords,
255 varying.getName().c_str(),
256 varying.getName().c_str());
257 break;
258 default:
259 SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n",
260 varying.getName().c_str(),
261 (int)varying.getType());
262 break;
263 }
264 }
265
266 SkASSERT(numParams <= (int)SK_ARRAY_COUNT(params));
267
268 // First, emit every child's function. This needs to happen (even for children that aren't
269 // sampled), so that all of the expected uniforms are registered.
270 this->writeChildFPFunctions(fp, impl);
271 GrFragmentProcessor::ProgramImpl::EmitArgs args(&fFS,
272 this->uniformHandler(),
273 this->shaderCaps(),
274 fp,
275 inputColor,
276 kDstColor,
277 sampleCoords);
278
279 impl.emitCode(args);
280 impl.setFunctionName(fFS.getMangledFunctionName(args.fFp.name()));
281
282 fFS.emitFunction(kHalf4_GrSLType,
283 impl.functionName(),
284 SkMakeSpan(params, numParams),
285 fFS.code().c_str());
286 fFS.deleteStage();
287 }
288
emitAndInstallDstTexture()289 bool GrGLSLProgramBuilder::emitAndInstallDstTexture() {
290 fDstTextureOrigin = kTopLeft_GrSurfaceOrigin;
291
292 const GrSurfaceProxyView& dstView = this->pipeline().dstProxyView();
293 if (this->pipeline().usesDstTexture()) {
294 // Set up a sampler handle for the destination texture.
295 GrTextureProxy* dstTextureProxy = dstView.asTextureProxy();
296 SkASSERT(dstTextureProxy);
297 const GrSwizzle& swizzle = dstView.swizzle();
298 fDstTextureSamplerHandle = this->emitSampler(dstTextureProxy->backendFormat(),
299 GrSamplerState(), swizzle, "DstTextureSampler");
300 if (!fDstTextureSamplerHandle.isValid()) {
301 return false;
302 }
303 fDstTextureOrigin = dstView.origin();
304 SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal);
305
306 // Declare a _dstColor global variable which samples from the dest-texture sampler at the
307 // top of the fragment shader.
308 const char* dstTextureCoordsName;
309 fUniformHandles.fDstTextureCoordsUni = this->uniformHandler()->addUniform(
310 /*owner=*/nullptr,
311 kFragment_GrShaderFlag,
312 kHalf4_GrSLType,
313 "DstTextureCoords",
314 &dstTextureCoordsName);
315 fFS.codeAppend("// Read color from copy of the destination\n");
316 fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy) * %s.zw;\n",
317 dstTextureCoordsName, dstTextureCoordsName);
318 if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) {
319 fFS.codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n");
320 }
321 const char* dstColor = fFS.dstColor();
322 SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
323 fFS.definitionAppend(dstColorDecl.c_str());
324 fFS.codeAppendf("%s = ", dstColor);
325 fFS.appendTextureLookup(fDstTextureSamplerHandle, "_dstTexCoord");
326 fFS.codeAppend(";\n");
327 } else if (this->pipeline().usesDstInputAttachment()) {
328 // Set up an input attachment for the destination texture.
329 const GrSwizzle& swizzle = dstView.swizzle();
330 fDstTextureSamplerHandle = this->emitInputSampler(swizzle, "DstTextureInput");
331 if (!fDstTextureSamplerHandle.isValid()) {
332 return false;
333 }
334
335 // Populate the _dstColor variable by loading from the input attachment at the top of the
336 // fragment shader.
337 fFS.codeAppend("// Read color from input attachment\n");
338 const char* dstColor = fFS.dstColor();
339 SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
340 fFS.definitionAppend(dstColorDecl.c_str());
341 fFS.codeAppendf("%s = ", dstColor);
342 fFS.appendInputLoad(fDstTextureSamplerHandle);
343 fFS.codeAppend(";\n");
344 }
345
346 return true;
347 }
348
emitAndInstallXferProc(const SkString & colorIn,const SkString & coverageIn)349 bool GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn,
350 const SkString& coverageIn) {
351 // Program builders have a bit of state we need to clear with each effect
352 this->advanceStage();
353
354 SkASSERT(!fXPImpl);
355 const GrXferProcessor& xp = this->pipeline().getXferProcessor();
356 fXPImpl = xp.makeProgramImpl();
357
358 // Enable dual source secondary output if we have one
359 if (xp.hasSecondaryOutput()) {
360 fFS.enableSecondaryOutput();
361 }
362
363 if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) {
364 fFS.enableCustomOutput();
365 }
366
367 SkString openBrace;
368 openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
369 fFS.codeAppend(openBrace.c_str());
370
371 SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)");
372
373 GrXferProcessor::ProgramImpl::EmitArgs args(
374 &fFS,
375 this->uniformHandler(),
376 this->shaderCaps(),
377 xp,
378 finalInColor.c_str(),
379 coverageIn.size() ? coverageIn.c_str() : "float4(1)",
380 fFS.getPrimaryColorOutputName(),
381 fFS.getSecondaryColorOutputName(),
382 fDstTextureSamplerHandle,
383 fDstTextureOrigin,
384 this->pipeline().writeSwizzle());
385 fXPImpl->emitCode(args);
386
387 // We have to check that effects and the code they emit are consistent, ie if an effect
388 // asks for dst color, then the emit code needs to follow suit
389 SkDEBUGCODE(verify(xp);)
390 fFS.codeAppend("}");
391 return true;
392 }
393
emitSampler(const GrBackendFormat & backendFormat,GrSamplerState state,const GrSwizzle & swizzle,const char * name)394 GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(
395 const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
396 const char* name) {
397 ++fNumFragmentSamplers;
398 return this->uniformHandler()->addSampler(backendFormat, state, swizzle, name,
399 this->shaderCaps());
400 }
401
emitInputSampler(const GrSwizzle & swizzle,const char * name)402 GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitInputSampler(const GrSwizzle& swizzle,
403 const char* name) {
404 return this->uniformHandler()->addInputSampler(swizzle, name);
405 }
406
checkSamplerCounts()407 bool GrGLSLProgramBuilder::checkSamplerCounts() {
408 const GrShaderCaps& shaderCaps = *this->shaderCaps();
409 if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) {
410 GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
411 return false;
412 }
413 return true;
414 }
415
416 #ifdef SK_DEBUG
verify(const GrGeometryProcessor & geomProc)417 void GrGLSLProgramBuilder::verify(const GrGeometryProcessor& geomProc) {
418 SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly);
419 }
420
verify(const GrFragmentProcessor & fp)421 void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
422 SkASSERT(fp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
423 }
424
verify(const GrXferProcessor & xp)425 void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
426 SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
427 }
428 #endif
429
getMangleSuffix() const430 SkString GrGLSLProgramBuilder::getMangleSuffix() const {
431 SkASSERT(fStageIndex >= 0);
432 SkString suffix;
433 suffix.printf("_S%d", fStageIndex);
434 for (auto c : fSubstageIndices) {
435 suffix.appendf("_c%d", c);
436 }
437 return suffix;
438 }
439
nameVariable(char prefix,const char * name,bool mangle)440 SkString GrGLSLProgramBuilder::nameVariable(char prefix, const char* name, bool mangle) {
441 SkString out;
442 if ('\0' == prefix) {
443 out = name;
444 } else {
445 out.printf("%c%s", prefix, name);
446 }
447 if (mangle) {
448 SkString suffix = this->getMangleSuffix();
449 // Names containing "__" are reserved; add "x" if needed to avoid consecutive underscores.
450 const char *underscoreSplitter = out.endsWith('_') ? "x" : "";
451 out.appendf("%s%s", underscoreSplitter, suffix.c_str());
452 }
453 return out;
454 }
455
nameExpression(SkString * output,const char * baseName)456 void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) {
457 // Name a variable to hold stage result. If we already have a valid output name, use that as-is;
458 // otherwise, create a new mangled one.
459 if (output->isEmpty()) {
460 *output = this->nameVariable(/*prefix=*/'\0', baseName);
461 }
462 }
463
appendUniformDecls(GrShaderFlags visibility,SkString * out) const464 void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
465 this->uniformHandler()->appendUniformDecls(visibility, out);
466 }
467
addRTFlipUniform(const char * name)468 void GrGLSLProgramBuilder::addRTFlipUniform(const char* name) {
469 SkASSERT(!fUniformHandles.fRTFlipUni.isValid());
470 GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
471 fUniformHandles.fRTFlipUni =
472 uniformHandler->internalAddUniformArray(nullptr,
473 kFragment_GrShaderFlag,
474 kFloat2_GrSLType,
475 name,
476 false,
477 0,
478 nullptr);
479 }
480
fragmentProcessorHasCoordsParam(const GrFragmentProcessor * fp)481 bool GrGLSLProgramBuilder::fragmentProcessorHasCoordsParam(const GrFragmentProcessor* fp) {
482 return fFPCoordsMap[fp].hasCoordsParam;
483 }
484
finalizeShaders()485 void GrGLSLProgramBuilder::finalizeShaders() {
486 this->varyingHandler()->finalize();
487 fVS.finalize(kVertex_GrShaderFlag);
488 fFS.finalize(kFragment_GrShaderFlag);
489 }
490