• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
9 
10 #include <memory>
11 
12 #include "src/gpu/GrCaps.h"
13 #include "src/gpu/GrFragmentProcessor.h"
14 #include "src/gpu/GrGeometryProcessor.h"
15 #include "src/gpu/GrPipeline.h"
16 #include "src/gpu/GrRenderTarget.h"
17 #include "src/gpu/GrShaderCaps.h"
18 #include "src/gpu/GrTexture.h"
19 #include "src/gpu/GrXferProcessor.h"
20 #include "src/gpu/effects/GrTextureEffect.h"
21 #include "src/gpu/glsl/GrGLSLVarying.h"
22 #include "src/sksl/SkSLCompiler.h"
23 #include "src/sksl/dsl/priv/DSLFPs.h"
24 
25 const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
26 
GrGLSLProgramBuilder(const GrProgramDesc & desc,const GrProgramInfo & programInfo)27 GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrProgramDesc& desc,
28                                            const GrProgramInfo& programInfo)
29         : fVS(this)
30         , fFS(this)
31         , fDesc(desc)
32         , fProgramInfo(programInfo)
33         , fNumFragmentSamplers(0) {}
34 
35 GrGLSLProgramBuilder::~GrGLSLProgramBuilder() = default;
36 
addFeature(GrShaderFlags shaders,uint32_t featureBit,const char * extensionName)37 void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
38                                       uint32_t featureBit,
39                                       const char* extensionName) {
40     if (shaders & kVertex_GrShaderFlag) {
41         fVS.addFeature(featureBit, extensionName);
42     }
43     if (shaders & kFragment_GrShaderFlag) {
44         fFS.addFeature(featureBit, extensionName);
45     }
46 }
47 
emitAndInstallProcs()48 bool GrGLSLProgramBuilder::emitAndInstallProcs() {
49     // First we loop over all of the installed processors and collect coord transforms.  These will
50     // be sent to the ProgramImpl in its emitCode function
51     SkSL::dsl::Start(this->shaderCompiler());
52     SkString inputColor;
53     SkString inputCoverage;
54     if (!this->emitAndInstallPrimProc(&inputColor, &inputCoverage)) {
55         return false;
56     }
57     if (!this->emitAndInstallDstTexture()) {
58         return false;
59     }
60     if (!this->emitAndInstallFragProcs(&inputColor, &inputCoverage)) {
61         return false;
62     }
63     if (!this->emitAndInstallXferProc(inputColor, inputCoverage)) {
64         return false;
65     }
66     fGPImpl->emitTransformCode(&fVS, this->uniformHandler());
67     SkSL::dsl::End();
68 
69     return this->checkSamplerCounts();
70 }
71 
emitAndInstallPrimProc(SkString * outputColor,SkString * outputCoverage)72 bool GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) {
73     const GrGeometryProcessor& geomProc = this->geometryProcessor();
74 
75     // Program builders have a bit of state we need to clear with each effect
76     this->advanceStage();
77     this->nameExpression(outputColor, "outputColor");
78     this->nameExpression(outputCoverage, "outputCoverage");
79 
80     SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
81     GrShaderFlags rtAdjustVisibility;
82     if (geomProc.willUseTessellationShaders()) {
83         rtAdjustVisibility = kTessEvaluation_GrShaderFlag;
84     } else {
85         rtAdjustVisibility = kVertex_GrShaderFlag;
86     }
87     fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(
88             nullptr, rtAdjustVisibility, kFloat4_GrSLType, SkSL::Compiler::RTADJUST_NAME);
89 
90     fFS.codeAppendf("// Stage %d, %s\n", fStageIndex, geomProc.name());
91     fVS.codeAppendf("// Primitive Processor %s\n", geomProc.name());
92 
93     SkASSERT(!fGPImpl);
94     fGPImpl = geomProc.makeProgramImpl(*this->shaderCaps());
95 
96     SkAutoSTArray<4, SamplerHandle> texSamplers(geomProc.numTextureSamplers());
97     for (int i = 0; i < geomProc.numTextureSamplers(); ++i) {
98         SkString name;
99         name.printf("TextureSampler_%d", i);
100         const auto& sampler = geomProc.textureSampler(i);
101         texSamplers[i] = this->emitSampler(geomProc.textureSampler(i).backendFormat(),
102                                            sampler.samplerState(),
103                                            sampler.swizzle(),
104                                            name.c_str());
105         if (!texSamplers[i].isValid()) {
106             return false;
107         }
108     }
109 
110     GrGeometryProcessor::ProgramImpl::EmitArgs args(&fVS,
111                                                     &fFS,
112                                                     this->varyingHandler(),
113                                                     this->uniformHandler(),
114                                                     this->shaderCaps(),
115                                                     geomProc,
116                                                     outputColor->c_str(),
117                                                     outputCoverage->c_str(),
118                                                     texSamplers.get());
119     fFPCoordsMap = fGPImpl->emitCode(args, this->pipeline());
120 
121     // We have to check that effects and the code they emit are consistent, ie if an effect
122     // asks for dst color, then the emit code needs to follow suit
123     SkDEBUGCODE(verify(geomProc);)
124 
125     return true;
126 }
127 
emitAndInstallFragProcs(SkString * color,SkString * coverage)128 bool GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) {
129     int fpCount = this->pipeline().numFragmentProcessors();
130     SkASSERT(fFPImpls.empty());
131     fFPImpls.reserve(fpCount);
132     for (int i = 0; i < fpCount; ++i) {
133         SkString* inOut = this->pipeline().isColorFragmentProcessor(i) ? color : coverage;
134         SkString output;
135         const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
136         fFPImpls.push_back(fp.makeProgramImpl());
137         output = this->emitFragProc(fp, *fFPImpls.back(), *inOut, output);
138         if (output.isEmpty()) {
139             return false;
140         }
141         *inOut = std::move(output);
142     }
143     return true;
144 }
145 
emitFragProc(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl,const SkString & input,SkString output)146 SkString GrGLSLProgramBuilder::emitFragProc(const GrFragmentProcessor& fp,
147                                             GrFragmentProcessor::ProgramImpl& impl,
148                                             const SkString& input,
149                                             SkString output) {
150     SkASSERT(input.size());
151 
152     // Program builders have a bit of state we need to clear with each effect
153     this->advanceStage();
154     this->nameExpression(&output, "output");
155     fFS.codeAppendf("half4 %s;", output.c_str());
156     bool ok = true;
157     fp.visitWithImpls([&, samplerIdx = 0](const GrFragmentProcessor& fp,
158                                           GrFragmentProcessor::ProgramImpl& impl) mutable {
159         if (auto* te = fp.asTextureEffect()) {
160             SkString name;
161             name.printf("TextureSampler_%d", samplerIdx++);
162 
163             GrSamplerState samplerState = te->samplerState();
164             const GrBackendFormat& format = te->view().proxy()->backendFormat();
165             GrSwizzle swizzle = te->view().swizzle();
166             SamplerHandle handle = this->emitSampler(format, samplerState, swizzle, name.c_str());
167             if (!handle.isValid()) {
168                 ok = false;
169                 return;
170             }
171             static_cast<GrTextureEffect::Impl&>(impl).setSamplerHandle(handle);
172         }
173     }, impl);
174     if (!ok) {
175         return {};
176     }
177 
178     this->writeFPFunction(fp, impl);
179 
180     if (fp.isBlendFunction()) {
181         fFS.codeAppendf(
182                 "%s = %s(%s, half4(1));", output.c_str(), impl.functionName(), input.c_str());
183     } else {
184         fFS.codeAppendf("%s = %s(%s);", output.c_str(), impl.functionName(), input.c_str());
185     }
186 
187     // We have to check that effects and the code they emit are consistent, ie if an effect asks
188     // for dst color, then the emit code needs to follow suit
189     SkDEBUGCODE(verify(fp);)
190 
191     return output;
192 }
193 
writeChildFPFunctions(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl)194 void GrGLSLProgramBuilder::writeChildFPFunctions(const GrFragmentProcessor& fp,
195                                                  GrFragmentProcessor::ProgramImpl& impl) {
196     fSubstageIndices.push_back(0);
197     for (int i = 0; i < impl.numChildProcessors(); ++i) {
198         GrFragmentProcessor::ProgramImpl* childImpl = impl.childProcessor(i);
199         if (!childImpl) {
200             continue;
201         }
202 
203         const GrFragmentProcessor* childFP = fp.childProcessor(i);
204         SkASSERT(childFP);
205 
206         this->writeFPFunction(*childFP, *childImpl);
207         ++fSubstageIndices.back();
208     }
209     fSubstageIndices.pop_back();
210 }
211 
writeFPFunction(const GrFragmentProcessor & fp,GrFragmentProcessor::ProgramImpl & impl)212 void GrGLSLProgramBuilder::writeFPFunction(const GrFragmentProcessor& fp,
213                                            GrFragmentProcessor::ProgramImpl& impl) {
214     constexpr const char*       kDstColor    = "_dst";
215               const char* const inputColor   = fp.isBlendFunction() ? "_src" : "_input";
216               const char*       sampleCoords = "_coords";
217     fFS.nextStage();
218     // Conceptually, an FP is always sampled at a particular coordinate. However, if it is only
219     // sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that
220     // would have been passed to _coords is lifted to the vertex shader and
221     // varying. In that case it uses that variable and we do not pass a second argument for _coords.
222     GrShaderVar params[3];
223     int numParams = 0;
224 
225     params[numParams++] = GrShaderVar(inputColor, kHalf4_GrSLType);
226 
227     if (fp.isBlendFunction()) {
228         // Blend functions take a dest color as input.
229         params[numParams++] = GrShaderVar(kDstColor, kHalf4_GrSLType);
230     }
231 
232     if (this->fragmentProcessorHasCoordsParam(&fp)) {
233         params[numParams++] = GrShaderVar(sampleCoords, kFloat2_GrSLType);
234     } else {
235         // Either doesn't use coords at all or sampled through a chain of passthrough/matrix
236         // samples usages. In the latter case the coords are emitted in the vertex shader as a
237         // varying, so this only has to access it. Add a float2 _coords variable that maps to the
238         // associated varying and replaces the absent 2nd argument to the fp's function.
239         GrShaderVar varying = fFPCoordsMap[&fp].coordsVarying;
240 
241         switch (varying.getType()) {
242             case kVoid_GrSLType:
243                 SkASSERT(!fp.usesSampleCoordsDirectly());
244                 break;
245             case kFloat2_GrSLType:
246                 // Just point the local coords to the varying
247                 sampleCoords = varying.getName().c_str();
248                 break;
249             case kFloat3_GrSLType:
250                 // Must perform the perspective divide in the frag shader based on the
251                 // varying, and since we won't actually have a function parameter for local
252                 // coords, add it as a local variable.
253                 fFS.codeAppendf("float2 %s = %s.xy / %s.z;\n",
254                                 sampleCoords,
255                                 varying.getName().c_str(),
256                                 varying.getName().c_str());
257                 break;
258             default:
259                 SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n",
260                              varying.getName().c_str(),
261                              (int)varying.getType());
262                 break;
263         }
264     }
265 
266     SkASSERT(numParams <= (int)SK_ARRAY_COUNT(params));
267 
268     // First, emit every child's function. This needs to happen (even for children that aren't
269     // sampled), so that all of the expected uniforms are registered.
270     this->writeChildFPFunctions(fp, impl);
271     GrFragmentProcessor::ProgramImpl::EmitArgs args(&fFS,
272                                                     this->uniformHandler(),
273                                                     this->shaderCaps(),
274                                                     fp,
275                                                     inputColor,
276                                                     kDstColor,
277                                                     sampleCoords);
278 
279     impl.emitCode(args);
280     impl.setFunctionName(fFS.getMangledFunctionName(args.fFp.name()));
281 
282     fFS.emitFunction(kHalf4_GrSLType,
283                      impl.functionName(),
284                      SkMakeSpan(params, numParams),
285                      fFS.code().c_str());
286     fFS.deleteStage();
287 }
288 
emitAndInstallDstTexture()289 bool GrGLSLProgramBuilder::emitAndInstallDstTexture() {
290     fDstTextureOrigin = kTopLeft_GrSurfaceOrigin;
291 
292     const GrSurfaceProxyView& dstView = this->pipeline().dstProxyView();
293     if (this->pipeline().usesDstTexture()) {
294         // Set up a sampler handle for the destination texture.
295         GrTextureProxy* dstTextureProxy = dstView.asTextureProxy();
296         SkASSERT(dstTextureProxy);
297         const GrSwizzle& swizzle = dstView.swizzle();
298         fDstTextureSamplerHandle = this->emitSampler(dstTextureProxy->backendFormat(),
299                                                     GrSamplerState(), swizzle, "DstTextureSampler");
300         if (!fDstTextureSamplerHandle.isValid()) {
301             return false;
302         }
303         fDstTextureOrigin = dstView.origin();
304         SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal);
305 
306         // Declare a _dstColor global variable which samples from the dest-texture sampler at the
307         // top of the fragment shader.
308         const char* dstTextureCoordsName;
309         fUniformHandles.fDstTextureCoordsUni = this->uniformHandler()->addUniform(
310                 /*owner=*/nullptr,
311                 kFragment_GrShaderFlag,
312                 kHalf4_GrSLType,
313                 "DstTextureCoords",
314                 &dstTextureCoordsName);
315         fFS.codeAppend("// Read color from copy of the destination\n");
316         fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy) * %s.zw;\n",
317                         dstTextureCoordsName, dstTextureCoordsName);
318         if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) {
319             fFS.codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n");
320         }
321         const char* dstColor = fFS.dstColor();
322         SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
323         fFS.definitionAppend(dstColorDecl.c_str());
324         fFS.codeAppendf("%s = ", dstColor);
325         fFS.appendTextureLookup(fDstTextureSamplerHandle, "_dstTexCoord");
326         fFS.codeAppend(";\n");
327     } else if (this->pipeline().usesDstInputAttachment()) {
328         // Set up an input attachment for the destination texture.
329         const GrSwizzle& swizzle = dstView.swizzle();
330         fDstTextureSamplerHandle = this->emitInputSampler(swizzle, "DstTextureInput");
331         if (!fDstTextureSamplerHandle.isValid()) {
332             return false;
333         }
334 
335         // Populate the _dstColor variable by loading from the input attachment at the top of the
336         // fragment shader.
337         fFS.codeAppend("// Read color from input attachment\n");
338         const char* dstColor = fFS.dstColor();
339         SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
340         fFS.definitionAppend(dstColorDecl.c_str());
341         fFS.codeAppendf("%s = ", dstColor);
342         fFS.appendInputLoad(fDstTextureSamplerHandle);
343         fFS.codeAppend(";\n");
344     }
345 
346     return true;
347 }
348 
emitAndInstallXferProc(const SkString & colorIn,const SkString & coverageIn)349 bool GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn,
350                                                   const SkString& coverageIn) {
351     // Program builders have a bit of state we need to clear with each effect
352     this->advanceStage();
353 
354     SkASSERT(!fXPImpl);
355     const GrXferProcessor& xp = this->pipeline().getXferProcessor();
356     fXPImpl = xp.makeProgramImpl();
357 
358     // Enable dual source secondary output if we have one
359     if (xp.hasSecondaryOutput()) {
360         fFS.enableSecondaryOutput();
361     }
362 
363     if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) {
364         fFS.enableCustomOutput();
365     }
366 
367     SkString openBrace;
368     openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
369     fFS.codeAppend(openBrace.c_str());
370 
371     SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)");
372 
373     GrXferProcessor::ProgramImpl::EmitArgs args(
374             &fFS,
375             this->uniformHandler(),
376             this->shaderCaps(),
377             xp,
378             finalInColor.c_str(),
379             coverageIn.size() ? coverageIn.c_str() : "float4(1)",
380             fFS.getPrimaryColorOutputName(),
381             fFS.getSecondaryColorOutputName(),
382             fDstTextureSamplerHandle,
383             fDstTextureOrigin,
384             this->pipeline().writeSwizzle());
385     fXPImpl->emitCode(args);
386 
387     // We have to check that effects and the code they emit are consistent, ie if an effect
388     // asks for dst color, then the emit code needs to follow suit
389     SkDEBUGCODE(verify(xp);)
390     fFS.codeAppend("}");
391     return true;
392 }
393 
emitSampler(const GrBackendFormat & backendFormat,GrSamplerState state,const GrSwizzle & swizzle,const char * name)394 GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(
395         const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
396         const char* name) {
397     ++fNumFragmentSamplers;
398     return this->uniformHandler()->addSampler(backendFormat, state, swizzle, name,
399                                               this->shaderCaps());
400 }
401 
emitInputSampler(const GrSwizzle & swizzle,const char * name)402 GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitInputSampler(const GrSwizzle& swizzle,
403                                                                            const char* name) {
404     return this->uniformHandler()->addInputSampler(swizzle, name);
405 }
406 
checkSamplerCounts()407 bool GrGLSLProgramBuilder::checkSamplerCounts() {
408     const GrShaderCaps& shaderCaps = *this->shaderCaps();
409     if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) {
410         GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
411         return false;
412     }
413     return true;
414 }
415 
416 #ifdef SK_DEBUG
verify(const GrGeometryProcessor & geomProc)417 void GrGLSLProgramBuilder::verify(const GrGeometryProcessor& geomProc) {
418     SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly);
419 }
420 
verify(const GrFragmentProcessor & fp)421 void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
422     SkASSERT(fp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
423 }
424 
verify(const GrXferProcessor & xp)425 void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
426     SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
427 }
428 #endif
429 
getMangleSuffix() const430 SkString GrGLSLProgramBuilder::getMangleSuffix() const {
431     SkASSERT(fStageIndex >= 0);
432     SkString suffix;
433     suffix.printf("_S%d", fStageIndex);
434     for (auto c : fSubstageIndices) {
435         suffix.appendf("_c%d", c);
436     }
437     return suffix;
438 }
439 
nameVariable(char prefix,const char * name,bool mangle)440 SkString GrGLSLProgramBuilder::nameVariable(char prefix, const char* name, bool mangle) {
441     SkString out;
442     if ('\0' == prefix) {
443         out = name;
444     } else {
445         out.printf("%c%s", prefix, name);
446     }
447     if (mangle) {
448         SkString suffix = this->getMangleSuffix();
449         // Names containing "__" are reserved; add "x" if needed to avoid consecutive underscores.
450         const char *underscoreSplitter = out.endsWith('_') ? "x" : "";
451         out.appendf("%s%s", underscoreSplitter, suffix.c_str());
452     }
453     return out;
454 }
455 
nameExpression(SkString * output,const char * baseName)456 void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) {
457     // Name a variable to hold stage result. If we already have a valid output name, use that as-is;
458     // otherwise, create a new mangled one.
459     if (output->isEmpty()) {
460         *output = this->nameVariable(/*prefix=*/'\0', baseName);
461     }
462 }
463 
appendUniformDecls(GrShaderFlags visibility,SkString * out) const464 void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
465     this->uniformHandler()->appendUniformDecls(visibility, out);
466 }
467 
addRTFlipUniform(const char * name)468 void GrGLSLProgramBuilder::addRTFlipUniform(const char* name) {
469     SkASSERT(!fUniformHandles.fRTFlipUni.isValid());
470     GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
471     fUniformHandles.fRTFlipUni =
472             uniformHandler->internalAddUniformArray(nullptr,
473                                                     kFragment_GrShaderFlag,
474                                                     kFloat2_GrSLType,
475                                                     name,
476                                                     false,
477                                                     0,
478                                                     nullptr);
479 }
480 
fragmentProcessorHasCoordsParam(const GrFragmentProcessor * fp)481 bool GrGLSLProgramBuilder::fragmentProcessorHasCoordsParam(const GrFragmentProcessor* fp) {
482     return fFPCoordsMap[fp].hasCoordsParam;
483 }
484 
finalizeShaders()485 void GrGLSLProgramBuilder::finalizeShaders() {
486     this->varyingHandler()->finalize();
487     fVS.finalize(kVertex_GrShaderFlag);
488     fFS.finalize(kFragment_GrShaderFlag);
489 }
490