• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/v1/ClipStack.h"
9 
10 #include "include/core/SkMatrix.h"
11 #include "src/core/SkMatrixProvider.h"
12 #include "src/core/SkPathPriv.h"
13 #include "src/core/SkRRectPriv.h"
14 #include "src/core/SkRectPriv.h"
15 #include "src/core/SkTaskGroup.h"
16 #include "src/gpu/GrClip.h"
17 #include "src/gpu/GrDeferredProxyUploader.h"
18 #include "src/gpu/GrDirectContextPriv.h"
19 #include "src/gpu/GrFragmentProcessor.h"
20 #include "src/gpu/GrProxyProvider.h"
21 #include "src/gpu/GrRecordingContextPriv.h"
22 #include "src/gpu/GrSWMaskHelper.h"
23 #include "src/gpu/effects/GrBlendFragmentProcessor.h"
24 #include "src/gpu/effects/GrConvexPolyEffect.h"
25 #include "src/gpu/effects/GrRRectEffect.h"
26 #include "src/gpu/effects/GrTextureEffect.h"
27 #include "src/gpu/geometry/GrQuadUtils.h"
28 #include "src/gpu/ops/AtlasPathRenderer.h"
29 #include "src/gpu/ops/GrDrawOp.h"
30 #include "src/gpu/v1/StencilMaskHelper.h"
31 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
32 
33 namespace {
34 
35 // This captures which of the two elements in (A op B) would be required when they are combined,
36 // where op is intersect or difference.
37 enum class ClipGeometry {
38     kEmpty,
39     kAOnly,
40     kBOnly,
41     kBoth
42 };
43 
44 // A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering,
45 // (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw).
46 template<typename A, typename B>
get_clip_geometry(const A & a,const B & b)47 ClipGeometry get_clip_geometry(const A& a, const B& b) {
48     // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result
49     // is empty). This behavior is desired for the following clip effect policies.
50     if (a.op() == SkClipOp::kIntersect) {
51         if (b.op() == SkClipOp::kIntersect) {
52             // Intersect (A) + Intersect (B)
53             if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
54                 // Regions with non-zero coverage are disjoint, so intersection = empty
55                 return ClipGeometry::kEmpty;
56             } else if (b.contains(a)) {
57                 // B's full coverage region contains entirety of A, so intersection = A
58                 return ClipGeometry::kAOnly;
59             } else if (a.contains(b)) {
60                 // A's full coverage region contains entirety of B, so intersection = B
61                 return ClipGeometry::kBOnly;
62             } else {
63                 // The shapes intersect in some non-trivial manner
64                 return ClipGeometry::kBoth;
65             }
66         } else {
67             SkASSERT(b.op() == SkClipOp::kDifference);
68             // Intersect (A) + Difference (B)
69             if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
70                 // A only intersects B's full coverage region, so intersection = A
71                 return ClipGeometry::kAOnly;
72             } else if (b.contains(a)) {
73                 // B's zero coverage region completely contains A, so intersection = empty
74                 return ClipGeometry::kEmpty;
75             } else {
76                 // Intersection cannot be simplified. Note that the combination of a intersect
77                 // and difference op in this order cannot produce kBOnly
78                 return ClipGeometry::kBoth;
79             }
80         }
81     } else {
82         SkASSERT(a.op() == SkClipOp::kDifference);
83         if (b.op() == SkClipOp::kIntersect) {
84             // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
85             // but combining is commutative so this is equivalent barring naming.
86             if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) {
87                 // B only intersects A's full coverage region, so intersection = B
88                 return ClipGeometry::kBOnly;
89             } else if (a.contains(b)) {
90                 // A's zero coverage region completely contains B, so intersection = empty
91                 return ClipGeometry::kEmpty;
92             } else {
93                 // Cannot be simplified
94                 return ClipGeometry::kBoth;
95             }
96         } else {
97             SkASSERT(b.op() == SkClipOp::kDifference);
98             // Difference (A) + Difference (B)
99             if (a.contains(b)) {
100                 // A's zero coverage region contains B, so B doesn't remove any extra
101                 // coverage from their intersection.
102                 return ClipGeometry::kAOnly;
103             } else if (b.contains(a)) {
104                 // Mirror of the above case, intersection = B instead
105                 return ClipGeometry::kBOnly;
106             } else {
107                 // Intersection of the two differences cannot be simplified. Note that for
108                 // this op combination it is not possible to produce kEmpty.
109                 return ClipGeometry::kBoth;
110             }
111         }
112     }
113 }
114 
115 // a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local
116 // space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces.
117 // Automatically takes into account if the anti-aliasing policies differ. When the policies match,
118 // we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so
119 // we can compare the original shapes. When the modes are mixed, we outset B in device space first.
shape_contains_rect(const GrShape & a,const SkMatrix & aToDevice,const SkMatrix & deviceToA,const SkRect & b,const SkMatrix & bToDevice,bool mixedAAMode)120 bool shape_contains_rect(const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA,
121                          const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) {
122     if (!a.convex()) {
123         return false;
124     }
125 
126     if (!mixedAAMode && aToDevice == bToDevice) {
127         // A and B are in the same coordinate space, so don't bother mapping
128         return a.conservativeContains(b);
129     } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) {
130         // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes,
131         // instead of checking the four corners separately.
132         SkRect bInA = b;
133         if (mixedAAMode) {
134             bInA.outset(0.5f, 0.5f);
135         }
136         SkAssertResult(deviceToA.mapRect(&bInA));
137         return a.conservativeContains(bInA);
138     }
139 
140     // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are
141     // contained, then the entirety of b is within a.
142     GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice);
143     if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) {
144         // Something in B actually projects behind the W = 0 plane and would be clipped to infinity,
145         // so it's extremely unlikely that A can contain B.
146         return false;
147     }
148     if (mixedAAMode) {
149         // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA
150         // clip or draw would snap outside an aa element.
151         GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad);
152     }
153 
154     for (int i = 0; i < 4; ++i) {
155         SkPoint cornerInA = deviceQuad.point(i);
156         deviceToA.mapPoints(&cornerInA, 1);
157         if (!a.conservativeContains(cornerInA)) {
158             return false;
159         }
160     }
161 
162     return true;
163 }
164 
subtract(const SkIRect & a,const SkIRect & b,bool exact)165 SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) {
166     SkIRect diff;
167     if (SkRectPriv::Subtract(a, b, &diff) || !exact) {
168         // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
169         // and can settle for the subrect of A excluded from B (which is also 'diff')
170         return diff;
171     } else {
172         // For our purposes, we want the original A when A-B cannot be exactly represented
173         return a;
174     }
175 }
176 
get_clip_edge_type(SkClipOp op,GrAA aa)177 GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) {
178     if (op == SkClipOp::kIntersect) {
179         return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
180     } else {
181         return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
182     }
183 }
184 
185 static uint32_t kInvalidGenID  = 0;
186 static uint32_t kEmptyGenID    = 1;
187 static uint32_t kWideOpenGenID = 2;
188 
next_gen_id()189 uint32_t next_gen_id() {
190     // 0-2 are reserved for invalid, empty & wide-open
191     static const uint32_t kFirstUnreservedGenID = 3;
192     static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
193 
194     uint32_t id;
195     do {
196         id = nextID.fetch_add(1, std::memory_order_relaxed);
197     } while (id < kFirstUnreservedGenID);
198     return id;
199 }
200 
201 // Functions for rendering / applying clip shapes in various ways
202 // The general strategy is:
203 //  - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape
204 //  - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the
205 //    size of the element indicates stenciling will be worth it, vs. making a mask.
206 //  - Try to put the individual element into a clip atlas, which is then sampled during the draw
207 //  - Render the element into a SW mask and upload it. If possible, the SW rasterization happens
208 //    in parallel.
209 static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin;
210 
analytic_clip_fp(const skgpu::v1::ClipStack::Element & e,const GrShaderCaps & caps,std::unique_ptr<GrFragmentProcessor> fp)211 GrFPResult analytic_clip_fp(const skgpu::v1::ClipStack::Element& e,
212                             const GrShaderCaps& caps,
213                             std::unique_ptr<GrFragmentProcessor> fp) {
214     // All analytic clip shape FPs need to be in device space
215     GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA);
216     if (e.fLocalToDevice.isIdentity()) {
217         if (e.fShape.isRect()) {
218             return GrFPSuccess(GrFragmentProcessor::Rect(std::move(fp), edgeType, e.fShape.rect()));
219         } else if (e.fShape.isRRect()) {
220             return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps);
221         }
222     }
223 
224     // A convex hull can be transformed into device space (this will handle rect shapes with a
225     // non-identity transform).
226     if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) {
227         SkPath devicePath;
228         e.fShape.asPath(&devicePath);
229         devicePath.transform(e.fLocalToDevice);
230         return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath);
231     }
232 
233     return GrFPFailure(std::move(fp));
234 }
235 
236 // TODO: Currently this only works with tessellation because the tessellation path renderer owns and
237 // manages the atlas. The high-level concept could be generalized to support any path renderer going
238 // into a shared atlas.
clip_atlas_fp(const skgpu::v1::SurfaceDrawContext * sdc,const GrOp * opBeingClipped,skgpu::v1::AtlasPathRenderer * atlasPathRenderer,const SkIRect & scissorBounds,const skgpu::v1::ClipStack::Element & e,std::unique_ptr<GrFragmentProcessor> inputFP)239 GrFPResult clip_atlas_fp(const skgpu::v1::SurfaceDrawContext* sdc,
240                          const GrOp* opBeingClipped,
241                          skgpu::v1::AtlasPathRenderer* atlasPathRenderer,
242                          const SkIRect& scissorBounds,
243                          const skgpu::v1::ClipStack::Element& e,
244                          std::unique_ptr<GrFragmentProcessor> inputFP) {
245     if (e.fAA != GrAA::kYes) {
246         return GrFPFailure(std::move(inputFP));
247     }
248     SkPath path;
249     e.fShape.asPath(&path);
250     SkASSERT(!path.isInverseFillType());
251     if (e.fOp == SkClipOp::kDifference) {
252         // Toggling fill type does not affect the path's "generationID" key.
253         path.toggleInverseFillType();
254     }
255     return atlasPathRenderer->makeAtlasClipEffect(sdc, opBeingClipped, std::move(inputFP),
256                                                   scissorBounds, e.fLocalToDevice, path);
257 }
258 
draw_to_sw_mask(GrSWMaskHelper * helper,const skgpu::v1::ClipStack::Element & e,bool clearMask)259 void draw_to_sw_mask(GrSWMaskHelper* helper,
260                      const skgpu::v1::ClipStack::Element& e,
261                      bool clearMask) {
262     // If the first element to draw is an intersect, we clear to 0 and will draw it directly with
263     // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside).
264     // If the first element to draw is a difference, we clear to 1, and in all cases we draw the
265     // difference element directly with coverage 0.
266     if (clearMask) {
267         helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF);
268     }
269 
270     uint8_t alpha;
271     bool invert;
272     if (e.fOp == SkClipOp::kIntersect) {
273         // Intersect modifies pixels outside of its geometry. If this isn't the first op, we
274         // draw the inverse-filled shape with 0 coverage to erase everything outside the element
275         // But if we are the first element, we can draw directly with coverage 1 since we
276         // cleared to 0.
277         if (clearMask) {
278             alpha = 0xFF;
279             invert = false;
280         } else {
281             alpha = 0x00;
282             invert = true;
283         }
284     } else {
285         // For difference ops, can always just subtract the shape directly by drawing 0 coverage
286         SkASSERT(e.fOp == SkClipOp::kDifference);
287         alpha = 0x00;
288         invert = false;
289     }
290 
291     // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert,
292     // every element is drawn with the kReplace_Op
293     if (invert) {
294         // Must invert the path
295         SkASSERT(!e.fShape.inverted());
296         // TODO: this is an extra copy effectively, just so we can toggle inversion; would be
297         // better perhaps to just call a drawPath() since we know it'll use path rendering w/
298         // the inverse fill type.
299         GrShape inverted(e.fShape);
300         inverted.setInverted(true);
301         helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
302     } else {
303         helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
304     }
305 }
306 
render_sw_mask(GrRecordingContext * context,const SkIRect & bounds,const skgpu::v1::ClipStack::Element ** elements,int count)307 GrSurfaceProxyView render_sw_mask(GrRecordingContext* context,
308                                   const SkIRect& bounds,
309                                   const skgpu::v1::ClipStack::Element** elements,
310                                   int count) {
311     SkASSERT(count > 0);
312 
313     SkTaskGroup* taskGroup = nullptr;
314     if (auto direct = context->asDirectContext()) {
315         taskGroup = direct->priv().getTaskGroup();
316     }
317 
318     if (taskGroup) {
319         const GrCaps* caps = context->priv().caps();
320         GrProxyProvider* proxyProvider = context->priv().proxyProvider();
321 
322         // Create our texture proxy
323         GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8,
324                                                                GrRenderable::kNo);
325 
326         GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8);
327         auto proxy = proxyProvider->createProxy(format, bounds.size(), GrRenderable::kNo, 1,
328                                                 GrMipMapped::kNo, SkBackingFit::kApprox,
329                                                 SkBudgeted::kYes, GrProtected::kNo);
330 
331         // Since this will be rendered on another thread, make a copy of the elements in case
332         // the clip stack is modified on the main thread
333         using Uploader = GrTDeferredProxyUploader<SkTArray<skgpu::v1::ClipStack::Element>>;
334         std::unique_ptr<Uploader> uploader = std::make_unique<Uploader>(count);
335         for (int i = 0; i < count; ++i) {
336             uploader->data().push_back(*(elements[i]));
337         }
338 
339         Uploader* uploaderRaw = uploader.get();
340         auto drawAndUploadMask = [uploaderRaw, bounds] {
341             TRACE_EVENT0("skia.gpu", "Threaded SW Clip Mask Render");
342             GrSWMaskHelper helper(uploaderRaw->getPixels());
343             if (helper.init(bounds)) {
344                 for (int i = 0; i < uploaderRaw->data().count(); ++i) {
345                     draw_to_sw_mask(&helper, uploaderRaw->data()[i], i == 0);
346                 }
347             } else {
348                 SkDEBUGFAIL("Unable to allocate SW clip mask.");
349             }
350             uploaderRaw->signalAndFreeData();
351         };
352 
353         taskGroup->add(std::move(drawAndUploadMask));
354         proxy->texPriv().setDeferredUploader(std::move(uploader));
355 
356         return {std::move(proxy), kMaskOrigin, swizzle};
357     } else {
358         GrSWMaskHelper helper;
359         if (!helper.init(bounds)) {
360             return {};
361         }
362 
363         for (int i = 0; i < count; ++i) {
364             draw_to_sw_mask(&helper,*(elements[i]), i == 0);
365         }
366 
367         return helper.toTextureView(context, SkBackingFit::kApprox);
368     }
369 }
370 
render_stencil_mask(GrRecordingContext * rContext,skgpu::v1::SurfaceDrawContext * sdc,uint32_t genID,const SkIRect & bounds,const skgpu::v1::ClipStack::Element ** elements,int count,GrAppliedClip * out)371 void render_stencil_mask(GrRecordingContext* rContext,
372                          skgpu::v1::SurfaceDrawContext* sdc,
373                          uint32_t genID,
374                          const SkIRect& bounds,
375                          const skgpu::v1::ClipStack::Element** elements,
376                          int count,
377                          GrAppliedClip* out) {
378     skgpu::v1::StencilMaskHelper helper(rContext, sdc);
379     if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) {
380         // This follows the same logic as in draw_sw_mask
381         bool startInside = elements[0]->fOp == SkClipOp::kDifference;
382         helper.clear(startInside);
383         for (int i = 0; i < count; ++i) {
384             const skgpu::v1::ClipStack::Element& e = *(elements[i]);
385             SkRegion::Op op;
386             if (e.fOp == SkClipOp::kIntersect) {
387                 op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op;
388             } else {
389                 op = SkRegion::kDifference_Op;
390             }
391             helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA);
392         }
393         helper.finish();
394     }
395     out->hardClip().addStencilClip(genID);
396 }
397 
398 } // anonymous namespace
399 
400 namespace skgpu::v1 {
401 
402 class ClipStack::Draw {
403 public:
Draw(const SkRect & drawBounds,GrAA aa)404     Draw(const SkRect& drawBounds, GrAA aa)
405             : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior))
406             , fAA(aa) {
407         // Be slightly more forgiving on whether or not a draw is inside a clip element.
408         fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance);
409         if (fOriginalBounds.isEmpty()) {
410             fOriginalBounds = drawBounds;
411         }
412     }
413 
414     // Common clip type interface
op() const415     SkClipOp op() const { return SkClipOp::kIntersect; }
outerBounds() const416     const SkIRect& outerBounds() const { return fBounds; }
417 
418     // Draw does not have inner bounds so cannot contain anything.
contains(const RawElement & e) const419     bool contains(const RawElement& e) const { return false; }
contains(const SaveRecord & s) const420     bool contains(const SaveRecord& s) const { return false; }
421 
applyDeviceBounds(const SkIRect & deviceBounds)422     bool applyDeviceBounds(const SkIRect& deviceBounds) {
423         return fBounds.intersect(deviceBounds);
424     }
425 
bounds() const426     const SkRect& bounds() const { return fOriginalBounds; }
aa() const427     GrAA aa() const { return fAA; }
428 
429 private:
430     SkRect  fOriginalBounds;
431     SkIRect fBounds;
432     GrAA    fAA;
433 };
434 
435 ///////////////////////////////////////////////////////////////////////////////
436 // ClipStack::Element
437 
RawElement(const SkMatrix & localToDevice,const GrShape & shape,GrAA aa,SkClipOp op)438 ClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape,
439                                   GrAA aa, SkClipOp op)
440         : Element{shape, localToDevice, op, aa}
441         , fInnerBounds(SkIRect::MakeEmpty())
442         , fOuterBounds(SkIRect::MakeEmpty())
443         , fInvalidatedByIndex(-1) {
444     if (!localToDevice.invert(&fDeviceToLocal)) {
445         // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or
446         // 1 dimension, making the device-space geometry effectively empty.
447         fShape.reset();
448     }
449 }
450 
markInvalid(const SaveRecord & current)451 void ClipStack::RawElement::markInvalid(const SaveRecord& current) {
452     SkASSERT(!this->isInvalid());
453     fInvalidatedByIndex = current.firstActiveElementIndex();
454 }
455 
restoreValid(const SaveRecord & current)456 void ClipStack::RawElement::restoreValid(const SaveRecord& current) {
457     if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
458         fInvalidatedByIndex = -1;
459     }
460 }
461 
contains(const Draw & d) const462 bool ClipStack::RawElement::contains(const Draw& d) const {
463     if (fInnerBounds.contains(d.outerBounds())) {
464         return true;
465     } else {
466         // If the draw is non-AA, use the already computed outer bounds so we don't need to use
467         // device-space outsetting inside shape_contains_rect.
468         SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds());
469         return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
470                                    queryBounds, SkMatrix::I(), /* mixed-aa */ false);
471     }
472 }
473 
contains(const SaveRecord & s) const474 bool ClipStack::RawElement::contains(const SaveRecord& s) const {
475     if (fInnerBounds.contains(s.outerBounds())) {
476         return true;
477     } else {
478         // This is very similar to contains(Draw) but we just have outerBounds to work with.
479         SkRect queryBounds = SkRect::Make(s.outerBounds());
480         return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
481                                    queryBounds, SkMatrix::I(), /* mixed-aa */ false);
482     }
483 }
484 
contains(const RawElement & e) const485 bool ClipStack::RawElement::contains(const RawElement& e) const {
486     // This is similar to how RawElement checks containment for a Draw, except that both the tester
487     // and testee have a transform that needs to be considered.
488     if (fInnerBounds.contains(e.fOuterBounds)) {
489         return true;
490     }
491 
492     bool mixedAA = fAA != e.fAA;
493     if (!mixedAA && fLocalToDevice == e.fLocalToDevice) {
494         // Test the shapes directly against each other, with a special check for a rrect+rrect
495         // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
496         // path for small paths means they contain each other).
497         static constexpr int kMaxPathComparePoints = 16;
498         if (fShape.isRRect() && e.fShape.isRRect()) {
499             return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect())
500                     == e.fShape.rrect();
501         } else if (fShape.isPath() && e.fShape.isPath()) {
502             return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() ||
503                    (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints &&
504                     fShape.path() == e.fShape.path());
505         } // else fall through to shape_contains_rect
506     }
507 
508     return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
509                                e.fShape.bounds(), e.fLocalToDevice, mixedAA);
510 
511 }
512 
simplify(const SkIRect & deviceBounds,bool forceAA)513 void ClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) {
514     // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
515     // with the clip op toggled.
516     if (fShape.inverted()) {
517         fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect;
518         fShape.setInverted(false);
519     }
520 
521     // Then simplify the base shape, if it becomes empty, no need to update the bounds
522     fShape.simplify();
523     SkASSERT(!fShape.inverted());
524     if (fShape.isEmpty()) {
525         return;
526     }
527 
528     // Lines and points should have been turned into empty since we assume everything is filled
529     SkASSERT(!fShape.isPoint() && !fShape.isLine());
530     // Validity check, we have no public API to create an arc at the moment
531     SkASSERT(!fShape.isArc());
532 
533     SkRect outer = fLocalToDevice.mapRect(fShape.bounds());
534     if (!outer.intersect(SkRect::Make(deviceBounds))) {
535         // A non-empty shape is offscreen, so treat it as empty
536         fShape.reset();
537         return;
538     }
539 
540     // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip
541     // rects because a non-AA axis aligned rect can always be set as just a scissor test or window
542     // rect, avoiding an expensive stencil mask generation.
543     if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) {
544         fAA = GrAA::kYes;
545     }
546 
547     // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space
548     // mapped bounds of the shape.
549     fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior);
550 
551     if (fLocalToDevice.preservesAxisAlignment()) {
552         if (fShape.isRect()) {
553             // The actual geometry can be updated to the device-intersected bounds and we can
554             // know the inner bounds
555             fShape.rect() = outer;
556             fLocalToDevice.setIdentity();
557             fDeviceToLocal.setIdentity();
558 
559             if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) {
560                 // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned
561                 // clip rects we always just round so that they can be scissor-only (avoiding the
562                 // uncertainty in how a GPU might actually round an edge on fractional coords).
563                 fOuterBounds = outer.round();
564                 fInnerBounds = fOuterBounds;
565             } else {
566                 fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior);
567                 SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty());
568             }
569         } else if (fShape.isRRect()) {
570             // Can't transform in place and must still check transform result since some very
571             // ill-formed scale+translate matrices can cause invalid rrect radii.
572             SkRRect src;
573             if (fShape.rrect().transform(fLocalToDevice, &src)) {
574                 fShape.rrect() = src;
575                 fLocalToDevice.setIdentity();
576                 fDeviceToLocal.setIdentity();
577 
578                 SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect());
579                 fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior);
580                 if (!fInnerBounds.intersect(deviceBounds)) {
581                     fInnerBounds = SkIRect::MakeEmpty();
582                 }
583             }
584         }
585     }
586 
587     if (fOuterBounds.isEmpty()) {
588         // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel
589         // center. We could round out, but rasterization would still result in an empty clip.
590         fShape.reset();
591     }
592 
593     // Post-conditions on inner and outer bounds
594     SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds)));
595     SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds));
596 }
597 
combine(const RawElement & other,const SaveRecord & current)598 bool ClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
599     // To reduce the number of possibilities, only consider intersect+intersect. Difference and
600     // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
601     // occurrence and the math is much more complicated.
602     if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
603         return false;
604     }
605 
606     // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
607     // treated as a degenerate case of rrect+rrect).
608     bool shapeUpdated = false;
609     if (fShape.isRect() && other.fShape.isRect()) {
610         bool aaMatch = fAA == other.fAA;
611         if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) {
612             if (GrClip::IsPixelAligned(fShape.rect())) {
613                 // Our AA type doesn't really matter, take other's since its edges may not be
614                 // pixel aligned, so after intersection clip behavior should respect its aa type.
615                 fAA = other.fAA;
616             } else if (!GrClip::IsPixelAligned(other.fShape.rect())) {
617                 // Neither shape is pixel aligned and AA types don't match so can't combine
618                 return false;
619             }
620             // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so
621             // this can be set to true. We just can't modify other to set it's aa to this->fAA.
622             // But since 'this' becomes the combo of the two, other will be deleted so that's fine.
623             aaMatch = true;
624         }
625 
626         if (aaMatch && fLocalToDevice == other.fLocalToDevice) {
627             if (!fShape.rect().intersect(other.fShape.rect())) {
628                 // By floating point, it turns out the combination should be empty
629                 this->fShape.reset();
630                 this->markInvalid(current);
631                 return true;
632             }
633             shapeUpdated = true;
634         }
635     } else if ((fShape.isRect() || fShape.isRRect()) &&
636                (other.fShape.isRect() || other.fShape.isRRect())) {
637         // No such pixel-aligned disregard for AA for round rects
638         if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) {
639             // Treat rrect+rect intersections as rrect+rrect
640             SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect();
641             SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect())
642                                               : other.fShape.rrect();
643 
644             SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
645             if (!joined.isEmpty()) {
646                 // Can reduce to a single element
647                 if (joined.isRect()) {
648                     // And with a simplified type
649                     fShape.setRect(joined.rect());
650                 } else {
651                     fShape.setRRect(joined);
652                 }
653                 shapeUpdated = true;
654             } else if (!a.getBounds().intersects(b.getBounds())) {
655                 // Like the rect+rect combination, the intersection is actually empty
656                 fShape.reset();
657                 this->markInvalid(current);
658                 return true;
659             }
660         }
661     }
662 
663     if (shapeUpdated) {
664         // This logic works under the assumption that both combined elements were intersect, so we
665         // don't do the full bounds computations like in simplify().
666         SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
667         SkAssertResult(fOuterBounds.intersect(other.fOuterBounds));
668         if (!fInnerBounds.intersect(other.fInnerBounds)) {
669             fInnerBounds = SkIRect::MakeEmpty();
670         }
671         return true;
672     } else {
673         return false;
674     }
675 }
676 
updateForElement(RawElement * added,const SaveRecord & current)677 void ClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
678     if (this->isInvalid()) {
679         // Already doesn't do anything, so skip this element
680         return;
681     }
682 
683     // 'A' refers to this element, 'B' refers to 'added'.
684     switch (get_clip_geometry(*this, *added)) {
685         case ClipGeometry::kEmpty:
686             // Mark both elements as invalid to signal that the clip is fully empty
687             this->markInvalid(current);
688             added->markInvalid(current);
689             break;
690 
691         case ClipGeometry::kAOnly:
692             // This element already clips more than 'added', so mark 'added' is invalid to skip it
693             added->markInvalid(current);
694             break;
695 
696         case ClipGeometry::kBOnly:
697             // 'added' clips more than this element, so mark this as invalid
698             this->markInvalid(current);
699             break;
700 
701         case ClipGeometry::kBoth:
702             // Else the bounds checks think we need to keep both, but depending on the combination
703             // of the ops and shape kinds, we may be able to do better.
704             if (added->combine(*this, current)) {
705                 // 'added' now fully represents the combination of the two elements
706                 this->markInvalid(current);
707             }
708             break;
709     }
710 }
711 
clipType() const712 ClipStack::ClipState ClipStack::RawElement::clipType() const {
713     // Map from the internal shape kind to the clip state enum
714     switch (fShape.type()) {
715         case GrShape::Type::kEmpty:
716             return ClipState::kEmpty;
717 
718         case GrShape::Type::kRect:
719             return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
720                     ? ClipState::kDeviceRect : ClipState::kComplex;
721 
722         case GrShape::Type::kRRect:
723             return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
724                     ? ClipState::kDeviceRRect : ClipState::kComplex;
725 
726         case GrShape::Type::kArc:
727         case GrShape::Type::kLine:
728         case GrShape::Type::kPoint:
729             // These types should never become RawElements
730             SkASSERT(false);
731             [[fallthrough]];
732 
733         case GrShape::Type::kPath:
734             return ClipState::kComplex;
735     }
736     SkUNREACHABLE;
737 }
738 
739 ///////////////////////////////////////////////////////////////////////////////
740 // ClipStack::Mask
741 
Mask(const SaveRecord & current,const SkIRect & drawBounds)742 ClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds)
743         : fBounds(drawBounds)
744         , fGenID(current.genID()) {
745     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
746 
747     // The gen ID should not be invalid, empty, or wide open, since those do not require masks
748     SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
749 
750     GrUniqueKey::Builder builder(&fKey, kDomain, 5, "clip_mask");
751     builder[0] = fGenID;
752     builder[1] = drawBounds.fLeft;
753     builder[2] = drawBounds.fRight;
754     builder[3] = drawBounds.fTop;
755     builder[4] = drawBounds.fBottom;
756     SkASSERT(fKey.isValid());
757 
758     SkDEBUGCODE(fOwner = &current;)
759 }
760 
appliesToDraw(const SaveRecord & current,const SkIRect & drawBounds) const761 bool ClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const {
762     // For the same save record, a larger mask will have the same or more elements
763     // baked into it, so it can be reused to clip the smaller draw.
764     SkASSERT(fGenID != current.genID() || &current == fOwner);
765     return fGenID == current.genID() && fBounds.contains(drawBounds);
766 }
767 
invalidate(GrProxyProvider * proxyProvider)768 void ClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) {
769     SkASSERT(proxyProvider);
770     SkASSERT(fKey.isValid()); // Should only be invalidated once
771     proxyProvider->processInvalidUniqueKey(
772             fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes);
773     fKey.reset();
774 }
775 
776 ///////////////////////////////////////////////////////////////////////////////
777 // ClipStack::SaveRecord
778 
SaveRecord(const SkIRect & deviceBounds)779 ClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds)
780         : fInnerBounds(deviceBounds)
781         , fOuterBounds(deviceBounds)
782         , fShader(nullptr)
783         , fStartingMaskIndex(0)
784         , fStartingElementIndex(0)
785         , fOldestValidIndex(0)
786         , fDeferredSaveCount(0)
787         , fStackOp(SkClipOp::kIntersect)
788         , fState(ClipState::kWideOpen)
789         , fGenID(kInvalidGenID) {}
790 
SaveRecord(const SaveRecord & prior,int startingMaskIndex,int startingElementIndex)791 ClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
792                                   int startingMaskIndex,
793                                   int startingElementIndex)
794         : fInnerBounds(prior.fInnerBounds)
795         , fOuterBounds(prior.fOuterBounds)
796         , fShader(prior.fShader)
797         , fStartingMaskIndex(startingMaskIndex)
798         , fStartingElementIndex(startingElementIndex)
799         , fOldestValidIndex(prior.fOldestValidIndex)
800         , fDeferredSaveCount(0)
801         , fStackOp(prior.fStackOp)
802         , fState(prior.fState)
803         , fGenID(kInvalidGenID) {
804     // If the prior record never needed a mask, this one will insert into the same index
805     // (that's okay since we'll remove it when this record is popped off the stack).
806     SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex);
807     // The same goes for elements (the prior could have been wide open).
808     SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
809 }
810 
genID() const811 uint32_t ClipStack::SaveRecord::genID() const {
812     if (fState == ClipState::kEmpty) {
813         return kEmptyGenID;
814     } else if (fState == ClipState::kWideOpen) {
815         return kWideOpenGenID;
816     } else {
817         // The gen ID shouldn't be empty or wide open, since they are reserved for the above
818         // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
819         SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
820         return fGenID;
821     }
822 }
823 
state() const824 ClipStack::ClipState ClipStack::SaveRecord::state() const {
825     if (fShader && fState != ClipState::kEmpty) {
826         return ClipState::kComplex;
827     } else {
828         return fState;
829     }
830 }
831 
contains(const ClipStack::Draw & draw) const832 bool ClipStack::SaveRecord::contains(const ClipStack::Draw& draw) const {
833     return fInnerBounds.contains(draw.outerBounds());
834 }
835 
contains(const ClipStack::RawElement & element) const836 bool ClipStack::SaveRecord::contains(const ClipStack::RawElement& element) const {
837     return fInnerBounds.contains(element.outerBounds());
838 }
839 
removeElements(RawElement::Stack * elements)840 void ClipStack::SaveRecord::removeElements(RawElement::Stack* elements) {
841     while (elements->count() > fStartingElementIndex) {
842         elements->pop_back();
843     }
844 }
845 
restoreElements(RawElement::Stack * elements)846 void ClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
847     // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
848     // from its starting index to restoreCount - 1. Elements from the old save record have
849     // been destroyed already, so their indices would have been >= restoreCount, and any
850     // still-present element can be un-invalidated based on that.
851     int i = elements->count() - 1;
852     for (RawElement& e : elements->ritems()) {
853         if (i < fOldestValidIndex) {
854             break;
855         }
856         e.restoreValid(*this);
857         --i;
858     }
859 }
860 
invalidateMasks(GrProxyProvider * proxyProvider,Mask::Stack * masks)861 void ClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider,
862                                             Mask::Stack* masks) {
863     // Must explicitly invalidate the key before removing the mask object from the stack
864     while (masks->count() > fStartingMaskIndex) {
865         SkASSERT(masks->back().owner() == this && proxyProvider);
866         masks->back().invalidate(proxyProvider);
867         masks->pop_back();
868     }
869     SkASSERT(masks->empty() || masks->back().genID() != fGenID);
870 }
871 
reset(const SkIRect & bounds)872 void ClipStack::SaveRecord::reset(const SkIRect& bounds) {
873     SkASSERT(this->canBeUpdated());
874     fOldestValidIndex = fStartingElementIndex;
875     fOuterBounds = bounds;
876     fInnerBounds = bounds;
877     fStackOp = SkClipOp::kIntersect;
878     fState = ClipState::kWideOpen;
879     fShader = nullptr;
880 }
881 
addShader(sk_sp<SkShader> shader)882 void ClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
883     SkASSERT(shader);
884     SkASSERT(this->canBeUpdated());
885     if (!fShader) {
886         fShader = std::move(shader);
887     } else {
888         // The total coverage is computed by multiplying the coverage from each element (shape or
889         // shader), but since multiplication is associative, we can use kSrcIn blending to make
890         // a new shader that represents 'shader' * 'fShader'
891         fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
892     }
893 }
894 
addElement(RawElement && toAdd,RawElement::Stack * elements)895 bool ClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) {
896     // Validity check the element's state first; if the shape class isn't empty, the outer bounds
897     // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer.
898     SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) &&
899              (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds())));
900     // And we shouldn't be adding an element if we have a deferred save
901     SkASSERT(this->canBeUpdated());
902 
903     if (fState == ClipState::kEmpty) {
904         // The clip is already empty, and we only shrink, so there's no need to record this element.
905         return false;
906     } else if (toAdd.shape().isEmpty()) {
907         // An empty difference op should have been detected earlier, since it's a no-op
908         SkASSERT(toAdd.op() == SkClipOp::kIntersect);
909         fState = ClipState::kEmpty;
910         return true;
911     }
912 
913     // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
914     // element.
915     switch (get_clip_geometry(*this, toAdd)) {
916         case ClipGeometry::kEmpty:
917             // The combination results in an empty clip
918             fState = ClipState::kEmpty;
919             return true;
920 
921         case ClipGeometry::kAOnly:
922             // The combination would not be any different than the existing clip
923             return false;
924 
925         case ClipGeometry::kBOnly:
926             // The combination would invalidate the entire existing stack and can be replaced with
927             // just the new element.
928             this->replaceWithElement(std::move(toAdd), elements);
929             return true;
930 
931         case ClipGeometry::kBoth:
932             // The new element combines in a complex manner, so update the stack's bounds based on
933             // the combination of its and the new element's ops (handled below)
934             break;
935     }
936 
937     if (fState == ClipState::kWideOpen) {
938         // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
939         // simply to keep the element and update the stack bounds to be the element's intersected
940         // with the device.
941         this->replaceWithElement(std::move(toAdd), elements);
942         return true;
943     }
944 
945     // Some form of actual clip element(s) to combine with.
946     if (fStackOp == SkClipOp::kIntersect) {
947         if (toAdd.op() == SkClipOp::kIntersect) {
948             // Intersect (stack) + Intersect (toAdd)
949             //  - Bounds updates is simply the paired intersections of outer and inner.
950             SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds()));
951             if (!fInnerBounds.intersect(toAdd.innerBounds())) {
952                 // NOTE: this does the right thing if either rect is empty, since we set the
953                 // inner bounds to empty here
954                 fInnerBounds = SkIRect::MakeEmpty();
955             }
956         } else {
957             // Intersect (stack) + Difference (toAdd)
958             //  - Shrink the stack's outer bounds if the difference op's inner bounds completely
959             //    cuts off an edge.
960             //  - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
961             fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
962             fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
963         }
964     } else {
965         if (toAdd.op() == SkClipOp::kIntersect) {
966             // Difference (stack) + Intersect (toAdd)
967             //  - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
968             SkIRect oldOuter = fOuterBounds;
969             fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
970             fInnerBounds = subtract(toAdd.innerBounds(), oldOuter,     /* exact */ false);
971         } else {
972             // Difference (stack) + Difference (toAdd)
973             //  - The updated outer bounds is the union of outer bounds and the inner becomes the
974             //    largest of the two possible inner bounds
975             fOuterBounds.join(toAdd.outerBounds());
976             if (toAdd.innerBounds().width() * toAdd.innerBounds().height() >
977                 fInnerBounds.width() * fInnerBounds.height()) {
978                 fInnerBounds = toAdd.innerBounds();
979             }
980         }
981     }
982 
983     // If we get here, we're keeping the new element and the stack's bounds have been updated.
984     // We ought to have caught the cases where the stack bounds resemble an empty or wide open
985     // clip, so assert that's the case.
986     SkASSERT(!fOuterBounds.isEmpty() &&
987              (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)));
988 
989     return this->appendElement(std::move(toAdd), elements);
990 }
991 
appendElement(RawElement && toAdd,RawElement::Stack * elements)992 bool ClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) {
993     // Update past elements to account for the new element
994     int i = elements->count() - 1;
995 
996     // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
997     // removed from the stack (these are the active elements that have been invalidated by the
998     // newest element; since it's the active part of the stack, no restore() can bring them back).
999     int youngestValid = fStartingElementIndex - 1;
1000     // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
1001     // becomes the save record's new fLastValidIndex value.
1002     int oldestValid = elements->count();
1003     // After the loop, this is the earliest active element that was invalidated. It may be
1004     // older in the stack than earliestValid, so cannot be popped off, but can be used to store
1005     // the new element instead of allocating more.
1006     RawElement* oldestActiveInvalid = nullptr;
1007     int oldestActiveInvalidIndex = elements->count();
1008 
1009     for (RawElement& existing : elements->ritems()) {
1010         if (i < fOldestValidIndex) {
1011             break;
1012         }
1013         // We don't need to pass the actual index that toAdd will be saved to; just the minimum
1014         // index of this save record, since that will result in the same restoration behavior later.
1015         existing.updateForElement(&toAdd, *this);
1016 
1017         if (toAdd.isInvalid()) {
1018             if (existing.isInvalid()) {
1019                 // Both new and old invalid implies the entire clip becomes empty
1020                 fState = ClipState::kEmpty;
1021                 return true;
1022             } else {
1023                 // The new element doesn't change the clip beyond what the old element already does
1024                 return false;
1025             }
1026         } else if (existing.isInvalid()) {
1027             // The new element cancels out the old element. The new element may have been modified
1028             // to account for the old element's geometry.
1029             if (i >= fStartingElementIndex) {
1030                 // Still active, so the invalidated index could be used to store the new element
1031                 oldestActiveInvalid = &existing;
1032                 oldestActiveInvalidIndex = i;
1033             }
1034         } else {
1035             // Keep both new and old elements
1036             oldestValid = i;
1037             if (i > youngestValid) {
1038                 youngestValid = i;
1039             }
1040         }
1041 
1042         --i;
1043     }
1044 
1045     // Post-iteration validity check
1046     SkASSERT(oldestValid == elements->count() ||
1047              (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
1048     SkASSERT(youngestValid == fStartingElementIndex - 1 ||
1049              (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
1050     SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
1051               oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
1052 
1053     // Update final state
1054     SkASSERT(oldestValid >= fOldestValidIndex);
1055     fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
1056     fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
1057     if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
1058         // The stack remains in difference mode only as long as all elements are difference
1059         fStackOp = SkClipOp::kIntersect;
1060     }
1061 
1062     int targetCount = youngestValid + 1;
1063     if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
1064         // toAdd will be stored right after youngestValid
1065         targetCount++;
1066         oldestActiveInvalid = nullptr;
1067     }
1068     while (elements->count() > targetCount) {
1069         SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
1070         elements->pop_back();
1071     }
1072     if (oldestActiveInvalid) {
1073         *oldestActiveInvalid = std::move(toAdd);
1074     } else if (elements->count() < targetCount) {
1075         elements->push_back(std::move(toAdd));
1076     } else {
1077         elements->back() = std::move(toAdd);
1078     }
1079 
1080     // Changing this will prompt ClipStack to invalidate any masks associated with this record.
1081     fGenID = next_gen_id();
1082     return true;
1083 }
1084 
replaceWithElement(RawElement && toAdd,RawElement::Stack * elements)1085 void ClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) {
1086     // The aggregate state of the save record mirrors the element
1087     fInnerBounds = toAdd.innerBounds();
1088     fOuterBounds = toAdd.outerBounds();
1089     fStackOp = toAdd.op();
1090     fState = toAdd.clipType();
1091 
1092     // All prior active element can be removed from the stack: [startingIndex, count - 1]
1093     int targetCount = fStartingElementIndex + 1;
1094     while (elements->count() > targetCount) {
1095         elements->pop_back();
1096     }
1097     if (elements->count() < targetCount) {
1098         elements->push_back(std::move(toAdd));
1099     } else {
1100         elements->back() = std::move(toAdd);
1101     }
1102 
1103     SkASSERT(elements->count() == fStartingElementIndex + 1);
1104 
1105     // This invalidates all older elements that are owned by save records lower in the clip stack.
1106     fOldestValidIndex = fStartingElementIndex;
1107     fGenID = next_gen_id();
1108 }
1109 
1110 ///////////////////////////////////////////////////////////////////////////////
1111 // ClipStack
1112 
1113 // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
1114 // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
1115 // SaveRecord::Stack (this conveniently keeps the size of ClipStack manageable). The max
1116 // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
1117 // these stacks means that clip management will incur a single allocation for the remaining 2%
1118 // of the draws, with extra head room for more complex clips encountered in the wild.
1119 //
1120 // The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call
1121 // set ever used a mask (which includes stencil masks), or up to 0.3% when the atlas is disabled.
1122 static constexpr int kElementStackIncrement = 8;
1123 static constexpr int kSaveStackIncrement = 8;
1124 static constexpr int kMaskStackIncrement = 4;
1125 
1126 // And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs.
1127 // Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since
1128 // it's so close to the empirically encountered max.
1129 static constexpr int kMaxAnalyticFPs = 4;
1130 // The number of stack-allocated mask pointers to store before extending the arrays.
1131 // Stack size determined empirically, the maximum number of elements put in a SW mask was 4
1132 // across our set of GMs, SKPs, and SVGs used for testing.
1133 static constexpr int kNumStackMasks = 4;
1134 
ClipStack(const SkIRect & deviceBounds,const SkMatrixProvider * matrixProvider,bool forceAA)1135 ClipStack::ClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider,
1136                      bool forceAA)
1137         : fElements(kElementStackIncrement)
1138         , fSaves(kSaveStackIncrement)
1139         , fMasks(kMaskStackIncrement)
1140         , fProxyProvider(nullptr)
1141         , fDeviceBounds(deviceBounds)
1142         , fMatrixProvider(matrixProvider)
1143         , fForceAA(forceAA) {
1144     // Start with a save record that is wide open
1145     fSaves.emplace_back(deviceBounds);
1146 }
1147 
~ClipStack()1148 ClipStack::~ClipStack() {
1149     // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need
1150     // to go through SaveRecord.
1151     SkASSERT(fProxyProvider || fMasks.empty());
1152     if (fProxyProvider) {
1153         for (Mask& m : fMasks.ritems()) {
1154             m.invalidate(fProxyProvider);
1155         }
1156     }
1157 }
1158 
save()1159 void ClipStack::save() {
1160     SkASSERT(!fSaves.empty());
1161     fSaves.back().pushSave();
1162 }
1163 
restore()1164 void ClipStack::restore() {
1165     SkASSERT(!fSaves.empty());
1166     SaveRecord& current = fSaves.back();
1167     if (current.popSave()) {
1168         // This was just a deferred save being undone, so the record doesn't need to be removed yet
1169         return;
1170     }
1171 
1172     // When we remove a save record, we delete all elements >= its starting index and any masks
1173     // that were rasterized for it.
1174     current.removeElements(&fElements);
1175     SkASSERT(fProxyProvider || fMasks.empty());
1176     if (fProxyProvider) {
1177         current.invalidateMasks(fProxyProvider, &fMasks);
1178     }
1179     fSaves.pop_back();
1180     // Restore any remaining elements that were only invalidated by the now-removed save record.
1181     fSaves.back().restoreElements(&fElements);
1182 }
1183 
getConservativeBounds() const1184 SkIRect ClipStack::getConservativeBounds() const {
1185     const SaveRecord& current = this->currentSaveRecord();
1186     if (current.state() == ClipState::kEmpty) {
1187         return SkIRect::MakeEmpty();
1188     } else if (current.state() == ClipState::kWideOpen) {
1189         return fDeviceBounds;
1190     } else {
1191         if (current.op() == SkClipOp::kDifference) {
1192             // The outer/inner bounds represent what's cut out, so full bounds remains the device
1193             // bounds, minus any fully clipped content that spans the device edge.
1194             return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true);
1195         } else {
1196             SkASSERT(fDeviceBounds.contains(current.outerBounds()));
1197             return current.outerBounds();
1198         }
1199     }
1200 }
1201 
preApply(const SkRect & bounds,GrAA aa) const1202 GrClip::PreClipResult ClipStack::preApply(const SkRect& bounds, GrAA aa) const {
1203     Draw draw(bounds, fForceAA ? GrAA::kYes : aa);
1204     if (!draw.applyDeviceBounds(fDeviceBounds)) {
1205         return GrClip::Effect::kClippedOut;
1206     }
1207 
1208     const SaveRecord& cs = this->currentSaveRecord();
1209     // Early out if we know a priori that the clip is full 0s or full 1s.
1210     if (cs.state() == ClipState::kEmpty) {
1211         return GrClip::Effect::kClippedOut;
1212     } else if (cs.state() == ClipState::kWideOpen) {
1213         SkASSERT(!cs.shader());
1214         return GrClip::Effect::kUnclipped;
1215     }
1216 
1217     // Given argument order, 'A' == current clip, 'B' == draw
1218     switch (get_clip_geometry(cs, draw)) {
1219         case ClipGeometry::kEmpty:
1220             // Can ignore the shader since the geometry removed everything already
1221             return GrClip::Effect::kClippedOut;
1222 
1223         case ClipGeometry::kBOnly:
1224             // Geometrically, the draw is unclipped, but can't ignore a shader
1225             return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped;
1226 
1227         case ClipGeometry::kAOnly:
1228             // Shouldn't happen since the inner bounds of a draw are unknown
1229             SkASSERT(false);
1230             // But if it did, it technically means the draw covered the clip and should be
1231             // considered kClipped or similar, which is what the next case handles.
1232             [[fallthrough]];
1233 
1234         case ClipGeometry::kBoth: {
1235             SkASSERT(fElements.count() > 0);
1236             const RawElement& back = fElements.back();
1237             if (cs.state() == ClipState::kDeviceRect) {
1238                 SkASSERT(back.clipType() == ClipState::kDeviceRect);
1239                 return {back.shape().rect(), back.aa()};
1240             } else if (cs.state() == ClipState::kDeviceRRect) {
1241                 SkASSERT(back.clipType() == ClipState::kDeviceRRect);
1242                 return {back.shape().rrect(), back.aa()};
1243             } else {
1244                 // The clip stack has complex shapes, multiple elements, or a shader; we could
1245                 // iterate per element like we would in apply(), but preApply() is meant to be
1246                 // conservative and efficient.
1247                 SkASSERT(cs.state() == ClipState::kComplex);
1248                 return GrClip::Effect::kClipped;
1249             }
1250         }
1251     }
1252 
1253     SkUNREACHABLE;
1254 }
1255 
apply(GrRecordingContext * rContext,SurfaceDrawContext * sdc,GrDrawOp * op,GrAAType aa,GrAppliedClip * out,SkRect * bounds) const1256 GrClip::Effect ClipStack::apply(GrRecordingContext* rContext,
1257                                 SurfaceDrawContext* sdc,
1258                                 GrDrawOp* op,
1259                                 GrAAType aa,
1260                                 GrAppliedClip* out,
1261                                 SkRect* bounds) const {
1262     // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this
1263     if (!fProxyProvider) {
1264         fProxyProvider = rContext->priv().proxyProvider();
1265     }
1266     SkASSERT(fProxyProvider == rContext->priv().proxyProvider());
1267     const GrCaps* caps = rContext->priv().caps();
1268 
1269     // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight
1270     // as possible.
1271     Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone));
1272     if (!draw.applyDeviceBounds(fDeviceBounds)) {
1273         return Effect::kClippedOut;
1274     }
1275     SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds)));
1276 
1277     const SaveRecord& cs = this->currentSaveRecord();
1278     // Early out if we know a priori that the clip is full 0s or full 1s.
1279     if (cs.state() == ClipState::kEmpty) {
1280         return Effect::kClippedOut;
1281     } else if (cs.state() == ClipState::kWideOpen) {
1282         SkASSERT(!cs.shader());
1283         return Effect::kUnclipped;
1284     }
1285 
1286     // Convert any clip shader first, since it's not geometrically related to the draw bounds
1287     std::unique_ptr<GrFragmentProcessor> clipFP = nullptr;
1288     if (cs.shader()) {
1289         static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType,
1290                                                     nullptr};
1291         GrFPArgs args(rContext, *fMatrixProvider, &kCoverageColorInfo);
1292         clipFP = as_SB(cs.shader())->asFragmentProcessor(args);
1293         if (clipFP) {
1294             // The initial input is the coverage from the geometry processor, so this ensures it
1295             // is multiplied properly with the alpha of the clip shader.
1296             clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP));
1297         }
1298     }
1299 
1300     // A refers to the entire clip stack, B refers to the draw
1301     switch (get_clip_geometry(cs, draw)) {
1302         case ClipGeometry::kEmpty:
1303             return Effect::kClippedOut;
1304 
1305         case ClipGeometry::kBOnly:
1306             // Geometrically unclipped, but may need to add the shader as a coverage FP
1307             if (clipFP) {
1308                 out->addCoverageFP(std::move(clipFP));
1309                 return Effect::kClipped;
1310             } else {
1311                 return Effect::kUnclipped;
1312             }
1313 
1314         case ClipGeometry::kAOnly:
1315             // Shouldn't happen since draws don't report inner bounds
1316             SkASSERT(false);
1317             [[fallthrough]];
1318 
1319         case ClipGeometry::kBoth:
1320             // The draw is combined with the saved clip elements; the below logic tries to skip
1321             // as many elements as possible.
1322             SkASSERT(cs.state() == ClipState::kDeviceRect ||
1323                      cs.state() == ClipState::kDeviceRRect ||
1324                      cs.state() == ClipState::kComplex);
1325             break;
1326     }
1327 
1328     // We can determine a scissor based on the draw and the overall stack bounds.
1329     SkIRect scissorBounds;
1330     if (cs.op() == SkClipOp::kIntersect) {
1331         // Initially we keep this as large as possible; if the clip is applied solely with coverage
1332         // FPs then using a loose scissor increases the chance we can batch the draws.
1333         // We tighten it later if any form of mask or atlas element is needed.
1334         scissorBounds = cs.outerBounds();
1335     } else {
1336         scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true);
1337     }
1338 
1339     // We mark this true once we have a coverage FP (since complex clipping is occurring), or we
1340     // have an element that wouldn't affect the scissored draw bounds, but does affect the regular
1341     // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the
1342     // element but definitely cannot then drop the scissor.
1343     bool scissorIsNeeded = SkToBool(cs.shader());
1344     SkDEBUGCODE(bool opClippedInternally = false;)
1345 
1346     int remainingAnalyticFPs = kMaxAnalyticFPs;
1347 
1348     // If window rectangles are supported, we can use them to exclude inner bounds of difference ops
1349     int maxWindowRectangles = sdc->maxWindowRectangles();
1350     GrWindowRectangles windowRects;
1351 
1352     // Elements not represented as an analytic FP or skipped will be collected here and later
1353     // applied by using the stencil buffer or a cached SW mask.
1354     SkSTArray<kNumStackMasks, const Element*> elementsForMask;
1355 
1356     bool maskRequiresAA = false;
1357     auto atlasPathRenderer = rContext->priv().drawingManager()->getAtlasPathRenderer();
1358 
1359     int i = fElements.count();
1360     for (const RawElement& e : fElements.ritems()) {
1361         --i;
1362         if (i < cs.oldestElementIndex()) {
1363             // All earlier elements have been invalidated by elements already processed
1364             break;
1365         } else if (e.isInvalid()) {
1366             continue;
1367         }
1368 
1369         switch (get_clip_geometry(e, draw)) {
1370             case ClipGeometry::kEmpty:
1371                 // This can happen for difference op elements that have a larger fInnerBounds than
1372                 // can be preserved at the next level.
1373                 return Effect::kClippedOut;
1374 
1375             case ClipGeometry::kBOnly:
1376                 // We don't need to produce a coverage FP or mask for the element
1377                 break;
1378 
1379             case ClipGeometry::kAOnly:
1380                 // Shouldn't happen for draws, fall through to regular element processing
1381                 SkASSERT(false);
1382                 [[fallthrough]];
1383 
1384             case ClipGeometry::kBoth: {
1385                 // The element must apply coverage to the draw, enable the scissor to limit overdraw
1386                 scissorIsNeeded = true;
1387 
1388                 // First apply using HW methods (scissor and window rects). When the inner and outer
1389                 // bounds match, nothing else needs to be done.
1390                 bool fullyApplied = false;
1391 
1392                 // First check if the op knows how to apply this clip internally.
1393                 SkASSERT(!e.shape().inverted());
1394                 auto result = op->clipToShape(sdc, e.op(), e.localToDevice(), e.shape(),
1395                                               GrAA(e.aa() == GrAA::kYes || fForceAA));
1396                 if (result != GrDrawOp::ClipResult::kFail) {
1397                     if (result == GrDrawOp::ClipResult::kClippedOut) {
1398                         return Effect::kClippedOut;
1399                     }
1400                     if (result == GrDrawOp::ClipResult::kClippedGeometrically) {
1401                         // The op clipped its own geometry. Tighten the draw bounds.
1402                         bounds->intersect(SkRect::Make(e.outerBounds()));
1403                     }
1404                     fullyApplied = true;
1405                     SkDEBUGCODE(opClippedInternally = true;)
1406                 }
1407 
1408                 if (!fullyApplied) {
1409                     if (e.op() == SkClipOp::kIntersect) {
1410                         // The second test allows clipped draws that are scissored by multiple
1411                         // elements to remain scissor-only.
1412                         fullyApplied = e.innerBounds() == e.outerBounds() ||
1413                                        e.innerBounds().contains(scissorBounds);
1414                     } else {
1415                         if (!e.innerBounds().isEmpty() &&
1416                             windowRects.count() < maxWindowRectangles) {
1417                             // TODO: If we have more difference ops than available window rects, we
1418                             // should prioritize those with the largest inner bounds.
1419                             windowRects.addWindow(e.innerBounds());
1420                             fullyApplied = e.innerBounds() == e.outerBounds();
1421                         }
1422                     }
1423                 }
1424 
1425                 if (!fullyApplied && remainingAnalyticFPs > 0) {
1426                     std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(),
1427                                                                       *caps->shaderCaps(),
1428                                                                       std::move(clipFP));
1429                     if (!fullyApplied && atlasPathRenderer) {
1430                         std::tie(fullyApplied, clipFP) = clip_atlas_fp(sdc, op,
1431                                                                        atlasPathRenderer,
1432                                                                        scissorBounds, e.asElement(),
1433                                                                        std::move(clipFP));
1434                     }
1435                     if (fullyApplied) {
1436                         remainingAnalyticFPs--;
1437                     }
1438                 }
1439 
1440                 if (!fullyApplied) {
1441                     elementsForMask.push_back(&e.asElement());
1442                     maskRequiresAA |= (e.aa() == GrAA::kYes);
1443                 }
1444 
1445                 break;
1446             }
1447         }
1448     }
1449 
1450     if (!scissorIsNeeded) {
1451         // More detailed analysis of the element shapes determined no clip is needed
1452         SkASSERT(elementsForMask.empty() && !clipFP);
1453         return Effect::kUnclipped;
1454     }
1455 
1456     // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor
1457     if (cs.op() == SkClipOp::kIntersect && !elementsForMask.empty()) {
1458         SkAssertResult(scissorBounds.intersect(draw.outerBounds()));
1459     }
1460     if (!GrClip::IsInsideClip(scissorBounds, *bounds, draw.aa())) {
1461         out->hardClip().addScissor(scissorBounds, bounds);
1462     }
1463     if (!windowRects.empty()) {
1464         out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive);
1465     }
1466 
1467     // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are
1468     // flattened into a single mask.
1469     if (!elementsForMask.empty()) {
1470         bool stencilUnavailable =
1471                 !sdc->asRenderTargetProxy()->canUseStencil(*rContext->priv().caps());
1472 
1473         bool hasSWMask = false;
1474         if ((sdc->numSamples() <= 1 && !sdc->canUseDynamicMSAA() && maskRequiresAA) ||
1475             stencilUnavailable) {
1476             // Must use a texture mask to represent the combined clip elements since the stencil
1477             // cannot be used, or cannot handle smooth clips.
1478             std::tie(hasSWMask, clipFP) = GetSWMaskFP(
1479                      rContext, &fMasks, cs, scissorBounds, elementsForMask.begin(),
1480                      elementsForMask.count(), std::move(clipFP));
1481         }
1482 
1483         if (!hasSWMask) {
1484             if (stencilUnavailable) {
1485                 SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. "
1486                             "Draw will be ignored.\n");
1487                 return Effect::kClippedOut;
1488             } else {
1489                 // Rasterize the remaining elements to the stencil buffer
1490                 render_stencil_mask(rContext, sdc, cs.genID(), scissorBounds,
1491                                     elementsForMask.begin(), elementsForMask.count(), out);
1492             }
1493         }
1494     }
1495 
1496     if (clipFP) {
1497         // This will include all analytic FPs, all atlas FPs, and a SW mask FP.
1498         out->addCoverageFP(std::move(clipFP));
1499     }
1500 
1501     SkASSERT(out->doesClip() || opClippedInternally);
1502     return Effect::kClipped;
1503 }
1504 
writableSaveRecord(bool * wasDeferred)1505 ClipStack::SaveRecord& ClipStack::writableSaveRecord(bool* wasDeferred) {
1506     SaveRecord& current = fSaves.back();
1507     if (current.canBeUpdated()) {
1508         // Current record is still open, so it can be modified directly
1509         *wasDeferred = false;
1510         return current;
1511     } else {
1512         // Must undefer the save to get a new record.
1513         SkAssertResult(current.popSave());
1514         *wasDeferred = true;
1515         return fSaves.emplace_back(current, fMasks.count(), fElements.count());
1516     }
1517 }
1518 
clipShader(sk_sp<SkShader> shader)1519 void ClipStack::clipShader(sk_sp<SkShader> shader) {
1520     // Shaders can't bring additional coverage
1521     if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1522         return;
1523     }
1524 
1525     bool wasDeferred;
1526     this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1527     // Masks and geometry elements are not invalidated by updating the clip shader
1528 }
1529 
replaceClip(const SkIRect & rect)1530 void ClipStack::replaceClip(const SkIRect& rect) {
1531     bool wasDeferred;
1532     SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1533 
1534     if (!wasDeferred) {
1535         save.removeElements(&fElements);
1536         save.invalidateMasks(fProxyProvider, &fMasks);
1537     }
1538 
1539     save.reset(fDeviceBounds);
1540     if (rect != fDeviceBounds) {
1541         this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect);
1542     }
1543 }
1544 
clip(RawElement && element)1545 void ClipStack::clip(RawElement&& element) {
1546     if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1547         return;
1548     }
1549 
1550     // Reduce the path to anything simpler, will apply the transform if it's a scale+translate
1551     // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds,
1552     // since those are based on the net effect of all elements while device bounds clipping happens
1553     // implicitly. During addElement, we may still be able to invalidate some older elements).
1554     element.simplify(fDeviceBounds, fForceAA);
1555     SkASSERT(!element.shape().inverted());
1556 
1557     // An empty op means do nothing (for difference), or close the save record, so we try and detect
1558     // that early before doing additional unnecessary save record allocation.
1559     if (element.shape().isEmpty()) {
1560         if (element.op() == SkClipOp::kDifference) {
1561             // If the shape is empty and we're subtracting, this has no effect on the clip
1562             return;
1563         }
1564         // else we will make the clip empty, but we need a new save record to record that change
1565         // in the clip state; fall through to below and updateForElement() will handle it.
1566     }
1567 
1568     bool wasDeferred;
1569     SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1570     SkDEBUGCODE(uint32_t oldGenID = save.genID();)
1571     SkDEBUGCODE(int elementCount = fElements.count();)
1572     if (!save.addElement(std::move(element), &fElements)) {
1573         if (wasDeferred) {
1574             // We made a new save record, but ended up not adding an element to the stack.
1575             // So instead of keeping an empty save record around, pop it off and restore the counter
1576             SkASSERT(elementCount == fElements.count());
1577             fSaves.pop_back();
1578             fSaves.back().pushSave();
1579         } else {
1580             // Should not have changed gen ID if the element and save were not modified
1581             SkASSERT(oldGenID == save.genID());
1582         }
1583     } else {
1584         // The gen ID should be new, and should not be invalid
1585         SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID);
1586         if (fProxyProvider && !wasDeferred) {
1587             // We modified an active save record so any old masks it had can be invalidated
1588             save.invalidateMasks(fProxyProvider, &fMasks);
1589         }
1590     }
1591 }
1592 
GetSWMaskFP(GrRecordingContext * context,Mask::Stack * masks,const SaveRecord & current,const SkIRect & bounds,const Element ** elements,int count,std::unique_ptr<GrFragmentProcessor> clipFP)1593 GrFPResult ClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks,
1594                                   const SaveRecord& current, const SkIRect& bounds,
1595                                   const Element** elements, int count,
1596                                   std::unique_ptr<GrFragmentProcessor> clipFP) {
1597     GrProxyProvider* proxyProvider = context->priv().proxyProvider();
1598     GrSurfaceProxyView maskProxy;
1599 
1600     SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask
1601     // Check the existing masks from this save record for compatibility
1602     for (const Mask& m : masks->ritems()) {
1603         if (m.genID() != current.genID()) {
1604             break;
1605         }
1606         if (m.appliesToDraw(current, bounds)) {
1607             maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback(
1608                     m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1);
1609             if (maskProxy) {
1610                 maskBounds = m.bounds();
1611                 break;
1612             }
1613         }
1614     }
1615 
1616     if (!maskProxy) {
1617         // No existing mask was found, so need to render a new one
1618         maskProxy = render_sw_mask(context, bounds, elements, count);
1619         if (!maskProxy) {
1620             // If we still don't have one, there's nothing we can do
1621             return GrFPFailure(std::move(clipFP));
1622         }
1623 
1624         // Register the mask for later invalidation
1625         Mask& mask = masks->emplace_back(current, bounds);
1626         proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy());
1627         maskBounds = bounds;
1628     }
1629 
1630     // Wrap the mask in an FP that samples it for coverage
1631     SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin);
1632 
1633     GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder,
1634                                 GrSamplerState::Filter::kNearest);
1635     // Maps the device coords passed to the texture effect to the top-left corner of the mask, and
1636     // make sure that the draw bounds are pre-mapped into the mask's space as well.
1637     auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop);
1638     auto subset = SkRect::Make(bounds);
1639     subset.offset(-maskBounds.fLeft, -maskBounds.fTop);
1640     // We scissor to bounds. The mask's texel centers are aligned to device space
1641     // pixel centers. Hence this domain of texture coordinates.
1642     auto domain = subset.makeInset(0.5, 0.5);
1643     auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m,
1644                                           samplerState, subset, domain, *context->priv().caps());
1645     fp = GrFragmentProcessor::DeviceSpace(std::move(fp));
1646 
1647     // Must combine the coverage sampled from the texture effect with the previous coverage
1648     fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(clipFP), SkBlendMode::kDstIn);
1649     return GrFPSuccess(std::move(fp));
1650 }
1651 
1652 } // namespace skgpu::v1
1653