1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkCaps.h"
9
10 #include <memory>
11
12 #include "include/gpu/GrBackendSurface.h"
13 #include "include/gpu/vk/GrVkBackendContext.h"
14 #include "include/gpu/vk/GrVkExtensions.h"
15 #include "src/core/SkCompressedDataUtils.h"
16 #include "src/gpu/GrBackendUtils.h"
17 #include "src/gpu/GrProgramDesc.h"
18 #include "src/gpu/GrRenderTarget.h"
19 #include "src/gpu/GrRenderTargetProxy.h"
20 #include "src/gpu/GrShaderCaps.h"
21 #include "src/gpu/GrStencilSettings.h"
22 #include "src/gpu/GrUtil.h"
23 #include "src/gpu/SkGr.h"
24 #include "src/gpu/vk/GrVkGpu.h"
25 #include "src/gpu/vk/GrVkImage.h"
26 #include "src/gpu/vk/GrVkInterface.h"
27 #include "src/gpu/vk/GrVkRenderTarget.h"
28 #include "src/gpu/vk/GrVkTexture.h"
29 #include "src/gpu/vk/GrVkUniformHandler.h"
30 #include "src/gpu/vk/GrVkUtil.h"
31
32 #ifdef SK_BUILD_FOR_ANDROID
33 #include <sys/system_properties.h>
34 #endif
35
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)36 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
37 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
38 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
39 const GrVkExtensions& extensions, GrProtected isProtected)
40 : INHERITED(contextOptions) {
41 /**************************************************************************
42 * GrCaps fields
43 **************************************************************************/
44 fMipmapSupport = true; // always available in Vulkan
45 fNPOTTextureTileSupport = true; // always available in Vulkan
46 fReuseScratchTextures = true; //TODO: figure this out
47 fGpuTracingSupport = false; //TODO: figure this out
48 fOversizedStencilSupport = false; //TODO: figure this out
49 fDrawInstancedSupport = true;
50
51 fSemaphoreSupport = true; // always available in Vulkan
52 fFenceSyncSupport = true; // always available in Vulkan
53 fCrossContextTextureSupport = true;
54 fHalfFloatVertexAttributeSupport = true;
55
56 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
57 fReadPixelsRowBytesSupport = true;
58 fWritePixelsRowBytesSupport = true;
59
60 fTransferFromBufferToTextureSupport = true;
61 fTransferFromSurfaceToBufferSupport = true;
62
63 fMaxRenderTargetSize = 4096; // minimum required by spec
64 fMaxTextureSize = 4096; // minimum required by spec
65
66 fDynamicStateArrayGeometryProcessorTextureSupport = true;
67
68 fTextureBarrierSupport = true;
69
70 fShaderCaps = std::make_unique<GrShaderCaps>();
71
72 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
73 isProtected);
74 }
75
76 namespace {
77 /**
78 * This comes from section 37.1.6 of the Vulkan spec. Format is
79 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
80 */
81 enum class FormatCompatibilityClass {
82 k8_1_1,
83 k16_2_1,
84 k24_3_1,
85 k32_4_1,
86 k64_8_1,
87 kBC1_RGB_8_16_1,
88 kBC1_RGBA_8_16,
89 kETC2_RGB_8_16,
90 };
91 } // anonymous namespace
92
format_compatibility_class(VkFormat format)93 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
94 switch (format) {
95 case VK_FORMAT_B8G8R8A8_UNORM:
96 case VK_FORMAT_R8G8B8A8_UNORM:
97 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
98 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
99 case VK_FORMAT_R8G8B8A8_SRGB:
100 case VK_FORMAT_R16G16_UNORM:
101 case VK_FORMAT_R16G16_SFLOAT:
102 return FormatCompatibilityClass::k32_4_1;
103
104 case VK_FORMAT_R8_UNORM:
105 return FormatCompatibilityClass::k8_1_1;
106
107 case VK_FORMAT_R5G6B5_UNORM_PACK16:
108 case VK_FORMAT_R16_SFLOAT:
109 case VK_FORMAT_R8G8_UNORM:
110 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
111 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
112 case VK_FORMAT_R16_UNORM:
113 return FormatCompatibilityClass::k16_2_1;
114
115 case VK_FORMAT_R16G16B16A16_SFLOAT:
116 case VK_FORMAT_R16G16B16A16_UNORM:
117 return FormatCompatibilityClass::k64_8_1;
118
119 case VK_FORMAT_R8G8B8_UNORM:
120 return FormatCompatibilityClass::k24_3_1;
121
122 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
123 return FormatCompatibilityClass::kETC2_RGB_8_16;
124
125 case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
126 return FormatCompatibilityClass::kBC1_RGB_8_16_1;
127
128 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
129 return FormatCompatibilityClass::kBC1_RGBA_8_16;
130
131 default:
132 SK_ABORT("Unsupported VkFormat");
133 }
134 }
135
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const136 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
137 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
138 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
139 return false;
140 }
141
142 if (dstHasYcbcr || srcHasYcbcr) {
143 return false;
144 }
145
146 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
147 // as image usage flags.
148 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
149 }
150
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const151 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
152 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
153 bool srcIsLinear, bool srcHasYcbcr) const {
154 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
155 // as image usage flags.
156 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
157 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
158 return false;
159 }
160
161 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
162 // resolved msaa though.
163 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
164 return false;
165 }
166
167 if (dstHasYcbcr || srcHasYcbcr) {
168 return false;
169 }
170
171 return true;
172 }
173
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const174 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
175 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
176 // The src surface must be multisampled.
177 if (srcSampleCnt <= 1) {
178 return false;
179 }
180
181 // The dst must not be multisampled.
182 if (dstSampleCnt > 1) {
183 return false;
184 }
185
186 // Surfaces must have the same format.
187 if (srcFormat != dstFormat) {
188 return false;
189 }
190
191 if (dstHasYcbcr || srcHasYcbcr) {
192 return false;
193 }
194
195 return true;
196 }
197
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const198 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
199 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
200 if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
201 return false;
202 }
203
204 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
205 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
206 // tracking of external or rectangle textures in GL? For now we don't create linear textures
207 // internally, and I don't believe anyone is wrapping them.
208 bool srcIsLinear = false;
209 bool dstIsLinear = false;
210
211 int dstSampleCnt = 0;
212 int srcSampleCnt = 0;
213 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
214 // Copying to or from render targets that wrap a secondary command buffer is not allowed
215 // since they would require us to know the VkImage, which we don't have, as well as need us
216 // to stop and start the VkRenderPass which we don't have access to.
217 if (rtProxy->wrapsVkSecondaryCB()) {
218 return false;
219 }
220 if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
221 rtProxy->supportsVkInputAttachment()) {
222 dstSampleCnt = 1;
223 } else {
224 dstSampleCnt = rtProxy->numSamples();
225 }
226 }
227 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
228 // Copying to or from render targets that wrap a secondary command buffer is not allowed
229 // since they would require us to know the VkImage, which we don't have, as well as need us
230 // to stop and start the VkRenderPass which we don't have access to.
231 if (rtProxy->wrapsVkSecondaryCB()) {
232 return false;
233 }
234 if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
235 rtProxy->supportsVkInputAttachment()) {
236 srcSampleCnt = 1;
237 } else {
238 srcSampleCnt = rtProxy->numSamples();
239 }
240 }
241 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
242 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
243
244 bool dstHasYcbcr = false;
245 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
246 if (ycbcr->isValid()) {
247 dstHasYcbcr = true;
248 }
249 }
250
251 bool srcHasYcbcr = false;
252 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
253 if (ycbcr->isValid()) {
254 srcHasYcbcr = true;
255 }
256 }
257
258 VkFormat dstFormat, srcFormat;
259 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
260 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
261
262 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
263 srcFormat, srcSampleCnt, srcHasYcbcr) ||
264 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
265 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
266 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
267 srcFormat, srcSampleCnt, srcHasYcbcr);
268 }
269
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)270 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
271 VkStructureType type) {
272 // All Vulkan structs that could be part of the features chain will start with the
273 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
274 // so we can get access to the pNext for the next struct.
275 struct CommonVulkanHeader {
276 VkStructureType sType;
277 void* pNext;
278 };
279
280 void* pNext = features.pNext;
281 while (pNext) {
282 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
283 if (header->sType == type) {
284 return static_cast<T*>(pNext);
285 }
286 pNext = header->pNext;
287 }
288 return nullptr;
289 }
290
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)291 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
292 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
293 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
294 GrProtected isProtected) {
295 VkPhysicalDeviceProperties properties;
296 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
297
298 VkPhysicalDeviceMemoryProperties memoryProperties;
299 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
300
301 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
302
303 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
304 fSupportsSwapchain = true;
305 }
306
307 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
308 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
309 fSupportsPhysicalDeviceProperties2 = true;
310 }
311
312 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
313 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
314 fSupportsMemoryRequirements2 = true;
315 }
316
317 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
318 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
319 fSupportsBindMemory2 = true;
320 }
321
322 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
323 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
324 fSupportsMaintenance1 = true;
325 }
326
327 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
328 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
329 fSupportsMaintenance2 = true;
330 }
331
332 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
333 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
334 fSupportsMaintenance3 = true;
335 }
336
337 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
338 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
339 this->supportsMemoryRequirements2())) {
340 fSupportsDedicatedAllocation = true;
341 }
342
343 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
344 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
345 this->supportsPhysicalDeviceProperties2() &&
346 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
347 this->supportsDedicatedAllocation())) {
348 fSupportsExternalMemory = true;
349 }
350
351 #ifdef SK_BUILD_FOR_ANDROID
352 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
353 // do we don't explicitly require it here even the spec says it is required.
354 if (extensions.hasExtension(
355 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
356 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
357 this->supportsExternalMemory() &&
358 this->supportsBindMemory2()) {
359 fSupportsAndroidHWBExternalMemory = true;
360 fSupportsAHardwareBufferImages = true;
361 }
362 #endif
363
364 auto ycbcrFeatures =
365 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
366 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
367 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
368 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
369 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
370 this->supportsMaintenance1() && this->supportsBindMemory2() &&
371 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
372 fSupportsYcbcrConversion = true;
373 }
374
375 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
376 // will return a key of 0.
377 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
378
379 if ((isProtected == GrProtected::kYes) &&
380 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
381 fSupportsProtectedMemory = true;
382 fAvoidUpdateBuffers = true;
383 fShouldAlwaysUseDedicatedImageMemory = true;
384 }
385
386 if (extensions.hasExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, 1)) {
387 fSupportsDRMFormatModifiers = true;
388 }
389
390 fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
391
392 // On desktop GPUs we have found that this does not provide much benefit. The perf results show
393 // a mix of regressions, some improvements, and lots of no changes. Thus it is no worth enabling
394 // this (especially with the rendering artifacts) on desktop.
395 //
396 // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
397 // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
398 // we do expect this to be a big win on tilers.
399 //
400 // On ARM devices we are seeing an average perf win of around 50%-60% across the board.
401 if (kARM_VkVendor == properties.vendorID) {
402 fPreferDiscardableMSAAAttachment = true;
403 fSupportsMemorylessAttachments = true;
404 }
405
406 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
407 this->initShaderCaps(properties, features);
408
409 if (kQualcomm_VkVendor == properties.vendorID) {
410 // A "clear" load for atlases runs faster on QC than a "discard" load followed by a
411 // scissored clear.
412 // On NVIDIA and Intel, the discard load followed by clear is faster.
413 // TODO: Evaluate on ARM, Imagination, and ATI.
414 fPreferFullscreenClears = true;
415 }
416
417 if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
418 // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
419 // mappable on the host.
420 fGpuOnlyBuffersMorePerformant = true;
421
422 // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
423 // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
424 // Some discrete GPUs do not expose this special memory, however we still disable
425 // persistently mapped buffers for all of them since most GPUs with updated drivers do
426 // expose it. If this becomes an issue we can try to be more fine grained.
427 fShouldPersistentlyMapCpuToGpuBuffers = false;
428 }
429
430 if (kQualcomm_VkVendor == properties.vendorID) {
431 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
432 // even for small sizes.
433 fAvoidUpdateBuffers = true;
434 }
435
436 if (kQualcomm_VkVendor == properties.vendorID) {
437 // Adreno devices don't support push constants well
438 fMaxPushConstantsSize = 0;
439 }
440
441 fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
442 if (properties.vendorID == kQualcomm_VkVendor) {
443 // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
444 fNativeDrawIndirectSupport = false;
445 }
446
447 if (fNativeDrawIndirectSupport) {
448 fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
449 SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
450 }
451
452 #ifdef SK_BUILD_FOR_UNIX
453 if (kNvidia_VkVendor == properties.vendorID) {
454 // On nvidia linux we see a big perf regression when not using dedicated image allocations.
455 fShouldAlwaysUseDedicatedImageMemory = true;
456 }
457 #endif
458
459 this->initFormatTable(vkInterface, physDev, properties);
460 this->initStencilFormat(vkInterface, physDev);
461
462 if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
463 fMaxPerPoolCachedSecondaryCommandBuffers =
464 contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
465 }
466
467 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
468 this->applyDriverCorrectnessWorkarounds(properties);
469 }
470
471 this->finishInitialization(contextOptions);
472 }
473
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)474 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
475 #if defined(SK_BUILD_FOR_WIN)
476 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
477 fMustSyncCommandBuffersWithQueue = true;
478 }
479 #elif defined(SK_BUILD_FOR_ANDROID)
480 if (kImagination_VkVendor == properties.vendorID) {
481 fMustSyncCommandBuffersWithQueue = true;
482 }
483 #endif
484
485 // Defaults to zero since all our workaround checks that use this consider things "fixed" once
486 // above a certain api level. So this will just default to it being less which will enable
487 // workarounds.
488 int androidAPIVersion = 0;
489 #if defined(SK_BUILD_FOR_ANDROID)
490 char androidAPIVersionStr[PROP_VALUE_MAX];
491 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
492 // Defaults to zero since most checks care if it is greater than a specific value. So this will
493 // just default to it being less.
494 androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
495 #endif
496
497 // Protected memory features have problems in Android P and earlier.
498 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
499 if (androidAPIVersion <= 28) {
500 fSupportsProtectedMemory = false;
501 }
502 }
503
504 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
505 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
506 fShouldAlwaysUseDedicatedImageMemory = true;
507 }
508
509 // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
510 // using only primary command buffers. We also see issues on the P30 running android 28.
511 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
512 fPreferPrimaryOverSecondaryCommandBuffers = false;
513 // If we are using secondary command buffers our code isn't setup to insert barriers into
514 // the secondary cb so we need to disable support for them.
515 fTextureBarrierSupport = false;
516 fBlendEquationSupport = kBasic_BlendEquationSupport;
517 }
518
519 // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
520 // when trying to using discardable msaa attachments and loading from resolve. So we disable the
521 // feature for those devices.
522 if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
523 fPreferDiscardableMSAAAttachment = false;
524 fSupportsDiscardableMSAAForDMSAA = false;
525 }
526
527 // On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
528 // produces answers that are much less accurate than expected/required. This forces full floats
529 // for some intermediate values to get acceptable results.
530 if (kARM_VkVendor == properties.vendorID) {
531 fShaderCaps->fColorSpaceMathNeedsFloat = true;
532 }
533
534 // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
535 // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
536 // of bound buffers so that we will rebind them on the next draw.
537 if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
538 fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
539 }
540
541 // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
542 // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
543 // msaa image into the resolve image.
544 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
545 fMustLoadFullImageWithDiscardableMSAA = true;
546 }
547
548 #ifdef SK_BUILD_FOR_UNIX
549 if (kIntel_VkVendor == properties.vendorID) {
550 // At least on our linux Debug Intel HD405 bot we are seeing issues doing read pixels with
551 // non-conherent memory. It seems like the device is not properly honoring the
552 // vkInvalidateMappedMemoryRanges calls correctly. Other linux intel devices seem to work
553 // okay. However, since I'm not sure how to target a specific intel devices or driver
554 // version I am going to stop all intel linux from using non-coherent memory. Currently we
555 // are not shipping anything on these platforms and the only real thing that will regress is
556 // read backs. If we find later we do care about this performance we can come back to figure
557 // out how to do a more narrow workaround.
558 fMustUseCoherentHostVisibleMemory = true;
559 }
560 #endif
561
562 ////////////////////////////////////////////////////////////////////////////
563 // GrCaps workarounds
564 ////////////////////////////////////////////////////////////////////////////
565
566 #ifdef SK_BUILD_FOR_ANDROID
567 // MSAA CCPR was slow on Android. http://skbug.com/9676
568 fDriverDisableMSAAClipAtlas = true;
569 #endif
570
571 if (kARM_VkVendor == properties.vendorID) {
572 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
573 }
574
575 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
576 if (kAMD_VkVendor == properties.vendorID) {
577 fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
578 }
579
580 // Adreno devices fail when trying to read the dest using an input attachment and texture
581 // barriers.
582 if (kQualcomm_VkVendor == properties.vendorID) {
583 fTextureBarrierSupport = false;
584 }
585
586 // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
587 // Mate 20x running android 9.
588 if (properties.vendorID == kARM_VkVendor && androidAPIVersion <= 28) {
589 fNativeDrawIndirectSupport = false;
590 }
591
592 ////////////////////////////////////////////////////////////////////////////
593 // GrShaderCaps workarounds
594 ////////////////////////////////////////////////////////////////////////////
595
596 if (kImagination_VkVendor == properties.vendorID) {
597 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
598 }
599 }
600
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)601 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
602 VkPhysicalDevice physDev,
603 const VkPhysicalDeviceProperties& properties,
604 const VkPhysicalDeviceMemoryProperties& memoryProperties,
605 const VkPhysicalDeviceFeatures2& features,
606 const GrVkExtensions& extensions) {
607 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
608 // need for us ever to support that amount, and it makes tests which tests all the vertex
609 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
610 // we ever find that need.
611 static const uint32_t kMaxVertexAttributes = 64;
612 fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
613
614 // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
615 // program them). For now we just set this to true if the device uses standard locations, and
616 // return the standard locations back when queried.
617 if (properties.limits.standardSampleLocations) {
618 fSampleLocationsSupport = true;
619 }
620
621 if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
622 fConservativeRasterSupport = true;
623 }
624
625 fWireframeSupport = true;
626
627 // We could actually query and get a max size for each config, however maxImageDimension2D will
628 // give the minimum max size across all configs. So for simplicity we will use that for now.
629 fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
630 fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
631 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
632 fMaxTextureSize = std::min(fMaxTextureSize, 4096);
633 }
634
635 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
636 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
637
638 fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
639
640 // Assuming since we will always map in the end to upload the data we might as well just map
641 // from the get go. There is no hard data to suggest this is faster or slower.
642 fBufferMapThreshold = 0;
643
644 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
645
646 fOversizedStencilSupport = true;
647
648 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
649 this->supportsPhysicalDeviceProperties2()) {
650
651 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
652 blendProps.sType =
653 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
654 blendProps.pNext = nullptr;
655
656 VkPhysicalDeviceProperties2 props;
657 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
658 props.pNext = &blendProps;
659
660 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
661
662 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
663 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
664
665 auto blendFeatures =
666 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
667 features,
668 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
669 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
670 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
671 } else {
672 fBlendEquationSupport = kAdvanced_BlendEquationSupport;
673 }
674 }
675 }
676
677 if (kARM_VkVendor == properties.vendorID) {
678 fShouldCollapseSrcOverToSrcWhenAble = true;
679 }
680
681 // We're seeing vkCmdClearAttachments take a lot of cpu time when clearing the color attachment.
682 // We really should only be getting in there for partial clears. So instead we will do all
683 // partial clears as draws.
684 if (kQualcomm_VkVendor == properties.vendorID) {
685 fPerformPartialClearsAsDraws = true;
686 }
687 }
688
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)689 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
690 const VkPhysicalDeviceFeatures2& features) {
691 GrShaderCaps* shaderCaps = fShaderCaps.get();
692 shaderCaps->fVersionDeclString = "#version 330\n";
693
694 // Vulkan is based off ES 3.0 so the following should all be supported
695 shaderCaps->fUsesPrecisionModifiers = true;
696 shaderCaps->fFlatInterpolationSupport = true;
697 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
698 // to be true with Vulkan as well.
699 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
700
701 shaderCaps->fSampleMaskSupport = true;
702
703 shaderCaps->fShaderDerivativeSupport = true;
704
705 // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
706 // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
707 shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID);
708
709 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
710
711 shaderCaps->fIntegerSupport = true;
712 shaderCaps->fNonsquareMatrixSupport = true;
713 shaderCaps->fInverseHyperbolicSupport = true;
714 shaderCaps->fVertexIDSupport = true;
715 shaderCaps->fInfinitySupport = true;
716 shaderCaps->fNonconstantArrayIndexSupport = true;
717 shaderCaps->fBitManipulationSupport = true;
718
719 // Assume the minimum precisions mandated by the SPIR-V spec.
720 shaderCaps->fFloatIs32Bits = true;
721 shaderCaps->fHalfIs32Bits = false;
722
723 shaderCaps->fMaxFragmentSamplers = std::min(
724 std::min(properties.limits.maxPerStageDescriptorSampledImages,
725 properties.limits.maxPerStageDescriptorSamplers),
726 (uint32_t)INT_MAX);
727 }
728
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)729 bool stencil_format_supported(const GrVkInterface* interface,
730 VkPhysicalDevice physDev,
731 VkFormat format) {
732 VkFormatProperties props;
733 memset(&props, 0, sizeof(VkFormatProperties));
734 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
735 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
736 }
737
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)738 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
739 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
740 fPreferredStencilFormat = VK_FORMAT_S8_UINT;
741 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
742 fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
743 } else {
744 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
745 fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
746 }
747 }
748
format_is_srgb(VkFormat format)749 static bool format_is_srgb(VkFormat format) {
750 SkASSERT(GrVkFormatIsSupported(format));
751
752 switch (format) {
753 case VK_FORMAT_R8G8B8A8_SRGB:
754 return true;
755 default:
756 return false;
757 }
758 }
759
760 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
761 // frequently used to least to improve look up times in arrays.
762 static constexpr VkFormat kVkFormats[] = {
763 VK_FORMAT_R8G8B8A8_UNORM,
764 VK_FORMAT_R8_UNORM,
765 VK_FORMAT_B8G8R8A8_UNORM,
766 VK_FORMAT_R5G6B5_UNORM_PACK16,
767 VK_FORMAT_R16G16B16A16_SFLOAT,
768 VK_FORMAT_R16_SFLOAT,
769 VK_FORMAT_R8G8B8_UNORM,
770 VK_FORMAT_R8G8_UNORM,
771 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
772 VK_FORMAT_A2R10G10B10_UNORM_PACK32,
773 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
774 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
775 VK_FORMAT_R8G8B8A8_SRGB,
776 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
777 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
778 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
779 VK_FORMAT_R16_UNORM,
780 VK_FORMAT_R16G16_UNORM,
781 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
782 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
783 VK_FORMAT_R16G16B16A16_UNORM,
784 VK_FORMAT_R16G16_SFLOAT,
785 };
786
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)787 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
788 #ifdef SK_DEBUG
789 for (size_t i = 0; i < kNumVkFormats; ++i) {
790 const auto& formatInfo = fFormatTable[i];
791 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
792 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
793 if (ctInfo.fColorType == colorType &&
794 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
795 bool found = false;
796 for (auto it = formats.begin(); it != formats.end(); ++it) {
797 if (kVkFormats[i] == *it) {
798 found = true;
799 }
800 }
801 SkASSERT(found);
802 }
803 }
804 }
805 #endif
806 int idx = static_cast<int>(colorType);
807 for (auto it = formats.begin(); it != formats.end(); ++it) {
808 const auto& info = this->getFormatInfo(*it);
809 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
810 if (info.fColorTypeInfos[i].fColorType == colorType) {
811 fColorTypeToFormatTable[idx] = *it;
812 return;
813 }
814 }
815 }
816 }
817
getFormatInfo(VkFormat format) const818 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
819 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
820 return nonConstThis->getFormatInfo(format);
821 }
822
getFormatInfo(VkFormat format)823 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
824 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
825 "Size of VkFormats array must match static value in header");
826 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
827 if (kVkFormats[i] == format) {
828 return fFormatTable[i];
829 }
830 }
831 static FormatInfo kInvalidFormat;
832 return kInvalidFormat;
833 }
834
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)835 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
836 const VkPhysicalDeviceProperties& properties) {
837 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
838 "Size of VkFormats array must match static value in header");
839
840 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
841
842 // Go through all the formats and init their support surface and data GrColorTypes.
843 // Format: VK_FORMAT_R8G8B8A8_UNORM
844 {
845 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
846 auto& info = this->getFormatInfo(format);
847 info.init(interface, physDev, properties, format);
848 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
849 info.fColorTypeInfoCount = 2;
850 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
851 int ctIdx = 0;
852 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
853 {
854 constexpr GrColorType ct = GrColorType::kRGBA_8888;
855 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
856 ctInfo.fColorType = ct;
857 ctInfo.fTransferColorType = ct;
858 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
859 }
860 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
861 {
862 constexpr GrColorType ct = GrColorType::kRGB_888x;
863 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
864 ctInfo.fColorType = ct;
865 ctInfo.fTransferColorType = ct;
866 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
867 ctInfo.fReadSwizzle = GrSwizzle::RGB1();
868 }
869 }
870 }
871
872 // Format: VK_FORMAT_R8_UNORM
873 {
874 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
875 auto& info = this->getFormatInfo(format);
876 info.init(interface, physDev, properties, format);
877 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
878 info.fColorTypeInfoCount = 2;
879 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
880 int ctIdx = 0;
881 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
882 {
883 constexpr GrColorType ct = GrColorType::kAlpha_8;
884 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
885 ctInfo.fColorType = ct;
886 ctInfo.fTransferColorType = ct;
887 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
888 ctInfo.fReadSwizzle = GrSwizzle("000r");
889 ctInfo.fWriteSwizzle = GrSwizzle("a000");
890 }
891 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
892 {
893 constexpr GrColorType ct = GrColorType::kGray_8;
894 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
895 ctInfo.fColorType = ct;
896 ctInfo.fTransferColorType = ct;
897 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
898 ctInfo.fReadSwizzle = GrSwizzle("rrr1");
899 }
900 }
901 }
902 // Format: VK_FORMAT_B8G8R8A8_UNORM
903 {
904 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
905 auto& info = this->getFormatInfo(format);
906 info.init(interface, physDev, properties, format);
907 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
908 info.fColorTypeInfoCount = 1;
909 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
910 int ctIdx = 0;
911 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
912 {
913 constexpr GrColorType ct = GrColorType::kBGRA_8888;
914 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
915 ctInfo.fColorType = ct;
916 ctInfo.fTransferColorType = ct;
917 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
918 }
919 }
920 }
921 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
922 {
923 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
924 auto& info = this->getFormatInfo(format);
925 info.init(interface, physDev, properties, format);
926 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
927 info.fColorTypeInfoCount = 1;
928 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
929 int ctIdx = 0;
930 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
931 {
932 constexpr GrColorType ct = GrColorType::kBGR_565;
933 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
934 ctInfo.fColorType = ct;
935 ctInfo.fTransferColorType = ct;
936 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
937 }
938 }
939 }
940 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
941 {
942 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
943 auto& info = this->getFormatInfo(format);
944 info.init(interface, physDev, properties, format);
945 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
946 info.fColorTypeInfoCount = 2;
947 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
948 int ctIdx = 0;
949 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
950 {
951 constexpr GrColorType ct = GrColorType::kRGBA_F16;
952 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
953 ctInfo.fColorType = ct;
954 ctInfo.fTransferColorType = ct;
955 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
956 }
957 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
958 {
959 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
960 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
961 ctInfo.fColorType = ct;
962 ctInfo.fTransferColorType = ct;
963 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
964 }
965 }
966 }
967 // Format: VK_FORMAT_R16_SFLOAT
968 {
969 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
970 auto& info = this->getFormatInfo(format);
971 info.init(interface, physDev, properties, format);
972 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
973 info.fColorTypeInfoCount = 1;
974 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
975 int ctIdx = 0;
976 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
977 {
978 constexpr GrColorType ct = GrColorType::kAlpha_F16;
979 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
980 ctInfo.fColorType = ct;
981 ctInfo.fTransferColorType = ct;
982 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
983 ctInfo.fReadSwizzle = GrSwizzle("000r");
984 ctInfo.fWriteSwizzle = GrSwizzle("a000");
985 }
986 }
987 }
988 // Format: VK_FORMAT_R8G8B8_UNORM
989 {
990 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
991 auto& info = this->getFormatInfo(format);
992 info.init(interface, physDev, properties, format);
993 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
994 info.fColorTypeInfoCount = 1;
995 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
996 int ctIdx = 0;
997 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
998 {
999 constexpr GrColorType ct = GrColorType::kRGB_888x;
1000 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1001 ctInfo.fColorType = ct;
1002 // The Vulkan format is 3 bpp so we must convert to/from that when transferring.
1003 ctInfo.fTransferColorType = GrColorType::kRGB_888;
1004 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1005 }
1006 }
1007 }
1008 // Format: VK_FORMAT_R8G8_UNORM
1009 {
1010 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
1011 auto& info = this->getFormatInfo(format);
1012 info.init(interface, physDev, properties, format);
1013 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1014 info.fColorTypeInfoCount = 1;
1015 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1016 int ctIdx = 0;
1017 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
1018 {
1019 constexpr GrColorType ct = GrColorType::kRG_88;
1020 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1021 ctInfo.fColorType = ct;
1022 ctInfo.fTransferColorType = ct;
1023 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1024 }
1025 }
1026 }
1027 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
1028 {
1029 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
1030 auto& info = this->getFormatInfo(format);
1031 info.init(interface, physDev, properties, format);
1032 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1033 info.fColorTypeInfoCount = 1;
1034 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1035 int ctIdx = 0;
1036 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
1037 {
1038 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1039 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1040 ctInfo.fColorType = ct;
1041 ctInfo.fTransferColorType = ct;
1042 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1043 }
1044 }
1045 }
1046 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
1047 {
1048 constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
1049 auto& info = this->getFormatInfo(format);
1050 info.init(interface, physDev, properties, format);
1051 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1052 info.fColorTypeInfoCount = 1;
1053 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1054 int ctIdx = 0;
1055 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
1056 {
1057 constexpr GrColorType ct = GrColorType::kBGRA_1010102;
1058 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1059 ctInfo.fColorType = ct;
1060 ctInfo.fTransferColorType = ct;
1061 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1062 }
1063 }
1064 }
1065 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
1066 {
1067 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
1068 auto& info = this->getFormatInfo(format);
1069 info.init(interface, physDev, properties, format);
1070 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1071 info.fColorTypeInfoCount = 1;
1072 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1073 int ctIdx = 0;
1074 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
1075 {
1076 constexpr GrColorType ct = GrColorType::kABGR_4444;
1077 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1078 ctInfo.fColorType = ct;
1079 ctInfo.fTransferColorType = ct;
1080 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1081 ctInfo.fReadSwizzle = GrSwizzle::BGRA();
1082 ctInfo.fWriteSwizzle = GrSwizzle::BGRA();
1083 }
1084 }
1085 }
1086
1087 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
1088 {
1089 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
1090 auto& info = this->getFormatInfo(format);
1091 info.init(interface, physDev, properties, format);
1092 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1093 info.fColorTypeInfoCount = 1;
1094 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1095 int ctIdx = 0;
1096 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
1097 {
1098 constexpr GrColorType ct = GrColorType::kABGR_4444;
1099 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1100 ctInfo.fColorType = ct;
1101 ctInfo.fTransferColorType = ct;
1102 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1103 }
1104 }
1105 }
1106 // Format: VK_FORMAT_R8G8B8A8_SRGB
1107 {
1108 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
1109 auto& info = this->getFormatInfo(format);
1110 info.init(interface, physDev, properties, format);
1111 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1112 info.fColorTypeInfoCount = 1;
1113 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1114 int ctIdx = 0;
1115 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
1116 {
1117 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
1118 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1119 ctInfo.fColorType = ct;
1120 ctInfo.fTransferColorType = ct;
1121 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1122 }
1123 }
1124 }
1125 // Format: VK_FORMAT_R16_UNORM
1126 {
1127 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1128 auto& info = this->getFormatInfo(format);
1129 info.init(interface, physDev, properties, format);
1130 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1131 info.fColorTypeInfoCount = 1;
1132 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1133 int ctIdx = 0;
1134 // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1135 {
1136 constexpr GrColorType ct = GrColorType::kAlpha_16;
1137 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1138 ctInfo.fColorType = ct;
1139 ctInfo.fTransferColorType = ct;
1140 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1141 ctInfo.fReadSwizzle = GrSwizzle("000r");
1142 ctInfo.fWriteSwizzle = GrSwizzle("a000");
1143 }
1144 }
1145 }
1146 // Format: VK_FORMAT_R16G16_UNORM
1147 {
1148 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1149 auto& info = this->getFormatInfo(format);
1150 info.init(interface, physDev, properties, format);
1151 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1152 info.fColorTypeInfoCount = 1;
1153 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1154 int ctIdx = 0;
1155 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1156 {
1157 constexpr GrColorType ct = GrColorType::kRG_1616;
1158 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1159 ctInfo.fColorType = ct;
1160 ctInfo.fTransferColorType = ct;
1161 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1162 }
1163 }
1164 }
1165 // Format: VK_FORMAT_R16G16B16A16_UNORM
1166 {
1167 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1168 auto& info = this->getFormatInfo(format);
1169 info.init(interface, physDev, properties, format);
1170 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1171 info.fColorTypeInfoCount = 1;
1172 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1173 int ctIdx = 0;
1174 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1175 {
1176 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1177 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1178 ctInfo.fColorType = ct;
1179 ctInfo.fTransferColorType = ct;
1180 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1181 }
1182 }
1183 }
1184 // Format: VK_FORMAT_R16G16_SFLOAT
1185 {
1186 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1187 auto& info = this->getFormatInfo(format);
1188 info.init(interface, physDev, properties, format);
1189 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1190 info.fColorTypeInfoCount = 1;
1191 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1192 int ctIdx = 0;
1193 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1194 {
1195 constexpr GrColorType ct = GrColorType::kRG_F16;
1196 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1197 ctInfo.fColorType = ct;
1198 ctInfo.fTransferColorType = ct;
1199 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1200 }
1201 }
1202 }
1203 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1204 {
1205 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1206 auto& info = this->getFormatInfo(format);
1207 if (fSupportsYcbcrConversion) {
1208 info.init(interface, physDev, properties, format);
1209 }
1210 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1211 info.fColorTypeInfoCount = 1;
1212 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1213 int ctIdx = 0;
1214 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1215 {
1216 constexpr GrColorType ct = GrColorType::kRGB_888x;
1217 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1218 ctInfo.fColorType = ct;
1219 ctInfo.fTransferColorType = ct;
1220 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1221 }
1222 }
1223 }
1224 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1225 {
1226 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1227 auto& info = this->getFormatInfo(format);
1228 if (fSupportsYcbcrConversion) {
1229 info.init(interface, physDev, properties, format);
1230 }
1231 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1232 info.fColorTypeInfoCount = 1;
1233 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1234 int ctIdx = 0;
1235 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1236 {
1237 constexpr GrColorType ct = GrColorType::kRGB_888x;
1238 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1239 ctInfo.fColorType = ct;
1240 ctInfo.fTransferColorType = ct;
1241 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1242 }
1243 }
1244 }
1245 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1246 {
1247 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1248 auto& info = this->getFormatInfo(format);
1249 info.init(interface, physDev, properties, format);
1250 // Setting this to texel block size
1251 // No supported GrColorTypes.
1252 }
1253
1254 // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1255 {
1256 constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1257 auto& info = this->getFormatInfo(format);
1258 info.init(interface, physDev, properties, format);
1259 // Setting this to texel block size
1260 // No supported GrColorTypes.
1261 }
1262
1263 // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1264 {
1265 constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1266 auto& info = this->getFormatInfo(format);
1267 info.init(interface, physDev, properties, format);
1268 // Setting this to texel block size
1269 // No supported GrColorTypes.
1270 }
1271
1272 ////////////////////////////////////////////////////////////////////////////
1273 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1274 // are passed into the setColorType function indicates the priority in selecting which format
1275 // we use for a given GrcolorType.
1276
1277 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1278 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1279 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1280 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1281 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1282 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1283 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1284 VK_FORMAT_R8G8B8A8_UNORM });
1285 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1286 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1287 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1288 this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
1289 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1290 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1291 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1292 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1293 this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
1294 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1295 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1296 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1297 }
1298
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1299 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1300 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1301 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1302 *flags = *flags | kTexturable_Flag;
1303
1304 // Ganesh assumes that all renderable surfaces are also texturable
1305 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1306 *flags = *flags | kRenderable_Flag;
1307 }
1308 }
1309 // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
1310 // VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
1311 // Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
1312
1313 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1314 *flags = *flags | kBlitSrc_Flag;
1315 }
1316
1317 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1318 *flags = *flags | kBlitDst_Flag;
1319 }
1320 }
1321
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1322 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1323 VkPhysicalDevice physDev,
1324 const VkPhysicalDeviceProperties& physProps,
1325 VkFormat format) {
1326 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1327 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1328 VK_IMAGE_USAGE_SAMPLED_BIT |
1329 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1330 VkImageFormatProperties properties;
1331 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1332 format,
1333 VK_IMAGE_TYPE_2D,
1334 VK_IMAGE_TILING_OPTIMAL,
1335 usage,
1336 0, // createFlags
1337 &properties));
1338 VkSampleCountFlags flags = properties.sampleCounts;
1339 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1340 fColorSampleCounts.push_back(1);
1341 }
1342 if (kImagination_VkVendor == physProps.vendorID) {
1343 // MSAA does not work on imagination
1344 return;
1345 }
1346 if (kIntel_VkVendor == physProps.vendorID) {
1347 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1348 return;
1349 }
1350 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1351 fColorSampleCounts.push_back(2);
1352 }
1353 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1354 fColorSampleCounts.push_back(4);
1355 }
1356 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1357 fColorSampleCounts.push_back(8);
1358 }
1359 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1360 fColorSampleCounts.push_back(16);
1361 }
1362 // Standard sample locations are not defined for more than 16 samples, and we don't need more
1363 // than 16. Omit 32 and 64.
1364 }
1365
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1366 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1367 VkPhysicalDevice physDev,
1368 const VkPhysicalDeviceProperties& properties,
1369 VkFormat format) {
1370 VkFormatProperties props;
1371 memset(&props, 0, sizeof(VkFormatProperties));
1372 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1373 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1374 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1375 if (fOptimalFlags & kRenderable_Flag) {
1376 this->initSampleCounts(interface, physDev, properties, format);
1377 }
1378 }
1379
1380 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1381 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1382 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1383 static bool backend_format_is_external(const GrBackendFormat& format) {
1384 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1385 SkASSERT(ycbcrInfo);
1386
1387 // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1388 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1389 #ifdef SK_DEBUG
1390 VkFormat vkFormat;
1391 SkAssertResult(format.asVkFormat(&vkFormat));
1392 SkASSERT(vkFormat == VK_FORMAT_UNDEFINED);
1393 #endif
1394 return true;
1395 }
1396 return false;
1397 }
1398
isFormatSRGB(const GrBackendFormat & format) const1399 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1400 VkFormat vkFormat;
1401 if (!format.asVkFormat(&vkFormat)) {
1402 return false;
1403 }
1404 if (backend_format_is_external(format)) {
1405 return false;
1406 }
1407
1408 return format_is_srgb(vkFormat);
1409 }
1410
isFormatTexturable(const GrBackendFormat & format,GrTextureType) const1411 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType) const {
1412 VkFormat vkFormat;
1413 if (!format.asVkFormat(&vkFormat)) {
1414 return false;
1415 }
1416 if (backend_format_is_external(format)) {
1417 // We can always texture from an external format (assuming we have the ycbcr conversion
1418 // info which we require to be passed in).
1419 return true;
1420 }
1421 return this->isVkFormatTexturable(vkFormat);
1422 }
1423
isVkFormatTexturable(VkFormat format) const1424 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1425 const FormatInfo& info = this->getFormatInfo(format);
1426 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1427 }
1428
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1429 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1430 int sampleCount) const {
1431 if (!this->isFormatRenderable(format, sampleCount)) {
1432 return false;
1433 }
1434 VkFormat vkFormat;
1435 if (!format.asVkFormat(&vkFormat)) {
1436 return false;
1437 }
1438 const auto& info = this->getFormatInfo(vkFormat);
1439 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1440 return false;
1441 }
1442 return true;
1443 }
1444
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1445 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1446 VkFormat vkFormat;
1447 if (!format.asVkFormat(&vkFormat)) {
1448 return false;
1449 }
1450 return this->isFormatRenderable(vkFormat, sampleCount);
1451 }
1452
isFormatRenderable(VkFormat format,int sampleCount) const1453 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1454 return sampleCount <= this->maxRenderTargetSampleCount(format);
1455 }
1456
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1457 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1458 const GrBackendFormat& format) const {
1459 VkFormat vkFormat;
1460 if (!format.asVkFormat(&vkFormat)) {
1461 return 0;
1462 }
1463
1464 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1465 }
1466
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1467 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1468 requestedCount = std::max(1, requestedCount);
1469
1470 const FormatInfo& info = this->getFormatInfo(format);
1471
1472 int count = info.fColorSampleCounts.count();
1473
1474 if (!count) {
1475 return 0;
1476 }
1477
1478 if (1 == requestedCount) {
1479 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1480 return 1;
1481 }
1482
1483 for (int i = 0; i < count; ++i) {
1484 if (info.fColorSampleCounts[i] >= requestedCount) {
1485 return info.fColorSampleCounts[i];
1486 }
1487 }
1488 return 0;
1489 }
1490
maxRenderTargetSampleCount(const GrBackendFormat & format) const1491 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1492 VkFormat vkFormat;
1493 if (!format.asVkFormat(&vkFormat)) {
1494 return 0;
1495 }
1496 return this->maxRenderTargetSampleCount(vkFormat);
1497 }
1498
maxRenderTargetSampleCount(VkFormat format) const1499 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1500 const FormatInfo& info = this->getFormatInfo(format);
1501
1502 const auto& table = info.fColorSampleCounts;
1503 if (!table.count()) {
1504 return 0;
1505 }
1506 return table[table.count() - 1];
1507 }
1508
align_to_4(size_t v)1509 static inline size_t align_to_4(size_t v) {
1510 switch (v & 0b11) {
1511 // v is already a multiple of 4.
1512 case 0: return v;
1513 // v is a multiple of 2 but not 4.
1514 case 2: return 2 * v;
1515 // v is not a multiple of 2.
1516 default: return 4 * v;
1517 }
1518 }
1519
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1520 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1521 const GrBackendFormat& surfaceFormat,
1522 GrColorType srcColorType) const {
1523 VkFormat vkFormat;
1524 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1525 return {GrColorType::kUnknown, 0};
1526 }
1527
1528 // We don't support the ability to upload to external formats or formats that require a ycbcr
1529 // sampler. In general these types of formats are only used for sampling in a shader.
1530 if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1531 return {GrColorType::kUnknown, 0};
1532 }
1533
1534 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1535 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1536
1537 const auto& info = this->getFormatInfo(vkFormat);
1538 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1539 const auto& ctInfo = info.fColorTypeInfos[i];
1540 if (ctInfo.fColorType == surfaceColorType) {
1541 return {ctInfo.fTransferColorType, offsetAlignment};
1542 }
1543 }
1544 return {GrColorType::kUnknown, 0};
1545 }
1546
surfaceSupportsReadPixels(const GrSurface * surface) const1547 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1548 const GrSurface* surface) const {
1549 if (surface->isProtected()) {
1550 return SurfaceReadPixelsSupport::kUnsupported;
1551 }
1552 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1553 auto texImage = tex->textureImage();
1554 if (!texImage) {
1555 return SurfaceReadPixelsSupport::kUnsupported;
1556 }
1557 // We can't directly read from a VkImage that has a ycbcr sampler.
1558 if (texImage->ycbcrConversionInfo().isValid()) {
1559 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1560 }
1561 // We can't directly read from a compressed format
1562 if (GrVkFormatIsCompressed(texImage->imageFormat())) {
1563 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1564 }
1565 return SurfaceReadPixelsSupport::kSupported;
1566 } else if (auto rt = surface->asRenderTarget()) {
1567 if (rt->numSamples() > 1) {
1568 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1569 }
1570 return SurfaceReadPixelsSupport::kSupported;
1571 }
1572 return SurfaceReadPixelsSupport::kUnsupported;
1573 }
1574
transferColorType(VkFormat vkFormat,GrColorType surfaceColorType) const1575 GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
1576 const auto& info = this->getFormatInfo(vkFormat);
1577 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1578 if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
1579 return info.fColorTypeInfos[i].fTransferColorType;
1580 }
1581 }
1582 return GrColorType::kUnknown;
1583 }
1584
onSurfaceSupportsWritePixels(const GrSurface * surface) const1585 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1586 if (auto rt = surface->asRenderTarget()) {
1587 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1588 }
1589 // We can't write to a texture that has a ycbcr sampler.
1590 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1591 auto texImage = tex->textureImage();
1592 if (!texImage) {
1593 return false;
1594 }
1595 // We can't directly read from a VkImage that has a ycbcr sampler.
1596 if (texImage->ycbcrConversionInfo().isValid()) {
1597 return false;
1598 }
1599 }
1600 return true;
1601 }
1602
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1603 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1604 const GrBackendFormat& format) const {
1605 VkFormat vkFormat;
1606 if (!format.asVkFormat(&vkFormat)) {
1607 return false;
1608 }
1609 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1610 SkASSERT(ycbcrInfo);
1611
1612 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1613 // Format may be undefined for external images, which are required to have YCbCr conversion.
1614 if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1615 return true;
1616 }
1617 return false;
1618 }
1619
1620 const auto& info = this->getFormatInfo(vkFormat);
1621 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1622 if (info.fColorTypeInfos[i].fColorType == ct) {
1623 return true;
1624 }
1625 }
1626 return false;
1627 }
1628
onGetDefaultBackendFormat(GrColorType ct) const1629 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
1630 VkFormat format = this->getFormatFromColorType(ct);
1631 if (format == VK_FORMAT_UNDEFINED) {
1632 return {};
1633 }
1634 return GrBackendFormat::MakeVk(format);
1635 }
1636
onSupportsDynamicMSAA(const GrRenderTargetProxy * rtProxy) const1637 bool GrVkCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const {
1638 // We must be able to use the rtProxy as an input attachment to load into the discardable msaa
1639 // attachment. Also the rtProxy should have a sample count of 1 so that it can be used as a
1640 // resolve attachment.
1641 return this->supportsDiscardableMSAAForDMSAA() &&
1642 rtProxy->supportsVkInputAttachment() &&
1643 rtProxy->numSamples() == 1;
1644 }
1645
renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget * rt) const1646 bool GrVkCaps::renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget* rt) const {
1647 return rt->resolveAttachment() &&
1648 rt->resolveAttachment()->supportsInputAttachmentUsage() &&
1649 ((rt->numSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1650 (rt->numSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1651 }
1652
programInfoWillUseDiscardableMSAA(const GrProgramInfo & programInfo) const1653 bool GrVkCaps::programInfoWillUseDiscardableMSAA(const GrProgramInfo& programInfo) const {
1654 return programInfo.targetHasVkResolveAttachmentWithInput() &&
1655 programInfo.numSamples() > 1 &&
1656 ((programInfo.targetsNumSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1657 (programInfo.targetsNumSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1658 }
1659
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1660 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1661 SkImage::CompressionType compressionType) const {
1662 switch (compressionType) {
1663 case SkImage::CompressionType::kNone:
1664 return {};
1665 case SkImage::CompressionType::kETC2_RGB8_UNORM:
1666 if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1667 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1668 }
1669 return {};
1670 case SkImage::CompressionType::kBC1_RGB8_UNORM:
1671 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1672 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1673 }
1674 return {};
1675 case SkImage::CompressionType::kBC1_RGBA8_UNORM:
1676 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1677 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1678 }
1679 return {};
1680 }
1681
1682 SkUNREACHABLE;
1683 }
1684
onGetReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1685 GrSwizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1686 VkFormat vkFormat;
1687 SkAssertResult(format.asVkFormat(&vkFormat));
1688 const auto* ycbcrInfo = format.getVkYcbcrConversionInfo();
1689 SkASSERT(ycbcrInfo);
1690 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1691 // We allow these to work with any color type and never swizzle. See
1692 // onAreColorTypeAndFormatCompatible.
1693 return GrSwizzle{"rgba"};
1694 }
1695
1696 const auto& info = this->getFormatInfo(vkFormat);
1697 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1698 const auto& ctInfo = info.fColorTypeInfos[i];
1699 if (ctInfo.fColorType == colorType) {
1700 return ctInfo.fReadSwizzle;
1701 }
1702 }
1703 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1704 (int)colorType, (int)vkFormat);
1705 return {};
1706 }
1707
getWriteSwizzle(const GrBackendFormat & format,GrColorType colorType) const1708 GrSwizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1709 VkFormat vkFormat;
1710 SkAssertResult(format.asVkFormat(&vkFormat));
1711 const auto& info = this->getFormatInfo(vkFormat);
1712 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1713 const auto& ctInfo = info.fColorTypeInfos[i];
1714 if (ctInfo.fColorType == colorType) {
1715 return ctInfo.fWriteSwizzle;
1716 }
1717 }
1718 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1719 (int)colorType, (int)vkFormat);
1720 return {};
1721 }
1722
onGetDstSampleFlagsForProxy(const GrRenderTargetProxy * rt) const1723 GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
1724 bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
1725 // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
1726 // references whether the resolve is supported as an input attachment. We need to add a check to
1727 // allow checking the color attachment (msaa or not) supports input attachment specifically.
1728 if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
1729 return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment;
1730 }
1731 return GrDstSampleFlags::kNone;
1732 }
1733
computeFormatKey(const GrBackendFormat & format) const1734 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1735 VkFormat vkFormat;
1736 SkAssertResult(format.asVkFormat(&vkFormat));
1737
1738 #ifdef SK_DEBUG
1739 // We should never be trying to compute a key for an external format
1740 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1741 SkASSERT(ycbcrInfo);
1742 SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1743 #endif
1744
1745 // A VkFormat has a size of 64 bits.
1746 return (uint64_t)vkFormat;
1747 }
1748
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1749 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1750 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1751 GrColorType dstColorType) const {
1752 VkFormat vkFormat;
1753 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1754 return {GrColorType::kUnknown, 0};
1755 }
1756
1757 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1758 return {GrColorType::kUnknown, 0};
1759 }
1760
1761 SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
1762 if (compression != SkImage::CompressionType::kNone) {
1763 return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1764 : GrColorType::kRGBA_8888, 0 };
1765 }
1766
1767 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1768 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1769
1770 const auto& info = this->getFormatInfo(vkFormat);
1771 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1772 const auto& ctInfo = info.fColorTypeInfos[i];
1773 if (ctInfo.fColorType == srcColorType) {
1774 return {ctInfo.fTransferColorType, offsetAlignment};
1775 }
1776 }
1777 return {GrColorType::kUnknown, 0};
1778 }
1779
getFragmentUniformBinding() const1780 int GrVkCaps::getFragmentUniformBinding() const {
1781 return GrVkUniformHandler::kUniformBinding;
1782 }
1783
getFragmentUniformSet() const1784 int GrVkCaps::getFragmentUniformSet() const {
1785 return GrVkUniformHandler::kUniformBufferDescSet;
1786 }
1787
addExtraSamplerKey(GrProcessorKeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const1788 void GrVkCaps::addExtraSamplerKey(GrProcessorKeyBuilder* b,
1789 GrSamplerState samplerState,
1790 const GrBackendFormat& format) const {
1791 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1792 if (!ycbcrInfo) {
1793 return;
1794 }
1795
1796 GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
1797
1798 constexpr size_t numInts = (sizeof(key) + 3) / 4;
1799 uint32_t tmp[numInts];
1800 memcpy(tmp, &key, sizeof(key));
1801
1802 for (size_t i = 0; i < numInts; ++i) {
1803 b->add32(tmp[i]);
1804 }
1805 }
1806
1807 /**
1808 * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
1809 * the information needed to differentiate one pipeline from another.
1810 *
1811 * The GrProgramDesc contains all the information need to create the actual shaders for the
1812 * pipeline.
1813 *
1814 * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
1815 * pipline. This includes stencil settings, blending information, render pass format, draw face
1816 * information, and primitive type. Note that some state is set dynamically on the pipeline for
1817 * each draw and thus is not included in this descriptor. This includes the viewport, scissor,
1818 * and blend constant.
1819 */
makeDesc(GrRenderTarget * rt,const GrProgramInfo & programInfo,ProgramDescOverrideFlags overrideFlags) const1820 GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
1821 const GrProgramInfo& programInfo,
1822 ProgramDescOverrideFlags overrideFlags) const {
1823 GrProgramDesc desc;
1824 GrProgramDesc::Build(&desc, programInfo, *this);
1825
1826 GrProcessorKeyBuilder b(desc.key());
1827
1828 // This will become part of the sheared off key used to persistently cache
1829 // the SPIRV code. It needs to be added right after the base key so that,
1830 // when the base-key is sheared off, the shearing code can include it in the
1831 // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
1832 // GrVkPipelineStateBuilder.cpp).
1833 b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
1834
1835 GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
1836 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
1837 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
1838 }
1839 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
1840 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
1841 }
1842
1843 bool needsResolve = this->programInfoWillUseDiscardableMSAA(programInfo);
1844
1845 bool forceLoadFromResolve =
1846 overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
1847 SkASSERT(!forceLoadFromResolve || needsResolve);
1848
1849 GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
1850 if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
1851 loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
1852 }
1853
1854 if (rt) {
1855 GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
1856
1857 SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
1858 vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
1859
1860 bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
1861 // TODO: support failure in getSimpleRenderPass
1862 auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
1863 loadFromResolve);
1864 SkASSERT(rp);
1865 rp->genKey(&b);
1866
1867 #ifdef SK_DEBUG
1868 if (!rp->isExternal()) {
1869 // This is to ensure ReconstructAttachmentsDescriptor keeps matching
1870 // getSimpleRenderPass' result
1871 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1872 GrVkRenderPass::AttachmentFlags attachmentFlags;
1873 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1874 &attachmentsDescriptor,
1875 &attachmentFlags);
1876 SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
1877 loadFromResolve));
1878 }
1879 #endif
1880 } else {
1881 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1882 GrVkRenderPass::AttachmentFlags attachmentFlags;
1883 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1884 &attachmentsDescriptor,
1885 &attachmentFlags);
1886
1887 // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
1888 // will always go through the above 'rt' path (i.e., we can always pass 0 as the final
1889 // parameter to GenKey).
1890 GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
1891 loadFromResolve, 0);
1892 }
1893
1894 GrStencilSettings stencil = programInfo.nonGLStencilSettings();
1895 stencil.genKey(&b, true);
1896
1897 programInfo.pipeline().genKey(&b, *this);
1898 b.add32(programInfo.numSamples());
1899
1900 // Vulkan requires the full primitive type as part of its key
1901 b.add32(programInfo.primitiveTypeKey());
1902
1903 b.flush();
1904 return desc;
1905 }
1906
getExtraSurfaceFlagsForDeferredRT() const1907 GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
1908 // We always create vulkan RT with the input attachment flag;
1909 return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
1910 }
1911
getPushConstantStageFlags() const1912 VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
1913 VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
1914 return stageFlags;
1915 }
1916
1917 #if GR_TEST_UTILS
getTestingCombinations() const1918 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1919 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1920 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1921 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1922 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1923 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
1924 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1925 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
1926 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1927 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
1928 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
1929 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
1930 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
1931 { GrColorType::kBGRA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
1932 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1933 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
1934 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1935 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1936 { GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
1937 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
1938 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
1939 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
1940 // These two compressed formats both have an effective colorType of kRGB_888x
1941 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
1942 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
1943 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
1944 };
1945
1946 return combos;
1947 }
1948 #endif
1949