• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2018 The Khronos Group Inc.
2 // Copyright (c) 2018 Valve Corporation
3 // Copyright (c) 2018 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 
17 #include "instrument_pass.h"
18 
19 #include "source/cfa.h"
20 #include "source/spirv_constant.h"
21 
22 namespace {
23 
24 // Common Parameter Positions
25 static const int kInstCommonParamInstIdx = 0;
26 static const int kInstCommonParamCnt = 1;
27 
28 // Indices of operands in SPIR-V instructions
29 static const int kEntryPointExecutionModelInIdx = 0;
30 static const int kEntryPointFunctionIdInIdx = 1;
31 
32 }  // anonymous namespace
33 
34 namespace spvtools {
35 namespace opt {
36 
MovePreludeCode(BasicBlock::iterator ref_inst_itr,UptrVectorIterator<BasicBlock> ref_block_itr,std::unique_ptr<BasicBlock> * new_blk_ptr)37 void InstrumentPass::MovePreludeCode(
38     BasicBlock::iterator ref_inst_itr,
39     UptrVectorIterator<BasicBlock> ref_block_itr,
40     std::unique_ptr<BasicBlock>* new_blk_ptr) {
41   same_block_pre_.clear();
42   same_block_post_.clear();
43   // Initialize new block. Reuse label from original block.
44   new_blk_ptr->reset(new BasicBlock(std::move(ref_block_itr->GetLabel())));
45   // Move contents of original ref block up to ref instruction.
46   for (auto cii = ref_block_itr->begin(); cii != ref_inst_itr;
47        cii = ref_block_itr->begin()) {
48     Instruction* inst = &*cii;
49     inst->RemoveFromList();
50     std::unique_ptr<Instruction> mv_ptr(inst);
51     // Remember same-block ops for possible regeneration.
52     if (IsSameBlockOp(&*mv_ptr)) {
53       auto* sb_inst_ptr = mv_ptr.get();
54       same_block_pre_[mv_ptr->result_id()] = sb_inst_ptr;
55     }
56     (*new_blk_ptr)->AddInstruction(std::move(mv_ptr));
57   }
58 }
59 
MovePostludeCode(UptrVectorIterator<BasicBlock> ref_block_itr,BasicBlock * new_blk_ptr)60 void InstrumentPass::MovePostludeCode(
61     UptrVectorIterator<BasicBlock> ref_block_itr, BasicBlock* new_blk_ptr) {
62   // new_blk_ptr->reset(new BasicBlock(NewLabel(ref_block_itr->id())));
63   // Move contents of original ref block.
64   for (auto cii = ref_block_itr->begin(); cii != ref_block_itr->end();
65        cii = ref_block_itr->begin()) {
66     Instruction* inst = &*cii;
67     inst->RemoveFromList();
68     std::unique_ptr<Instruction> mv_inst(inst);
69     // Regenerate any same-block instruction that has not been seen in the
70     // current block.
71     if (same_block_pre_.size() > 0) {
72       CloneSameBlockOps(&mv_inst, &same_block_post_, &same_block_pre_,
73                         new_blk_ptr);
74       // Remember same-block ops in this block.
75       if (IsSameBlockOp(&*mv_inst)) {
76         const uint32_t rid = mv_inst->result_id();
77         same_block_post_[rid] = rid;
78       }
79     }
80     new_blk_ptr->AddInstruction(std::move(mv_inst));
81   }
82 }
83 
NewLabel(uint32_t label_id)84 std::unique_ptr<Instruction> InstrumentPass::NewLabel(uint32_t label_id) {
85   std::unique_ptr<Instruction> newLabel(
86       new Instruction(context(), SpvOpLabel, 0, label_id, {}));
87   get_def_use_mgr()->AnalyzeInstDefUse(&*newLabel);
88   return newLabel;
89 }
90 
Gen32BitCvtCode(uint32_t val_id,InstructionBuilder * builder)91 uint32_t InstrumentPass::Gen32BitCvtCode(uint32_t val_id,
92                                          InstructionBuilder* builder) {
93   // Convert integer value to 32-bit if necessary
94   analysis::TypeManager* type_mgr = context()->get_type_mgr();
95   uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_id)->type_id();
96   analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
97   if (val_ty->width() == 32) return val_id;
98   bool is_signed = val_ty->IsSigned();
99   analysis::Integer val_32b_ty(32, is_signed);
100   analysis::Type* val_32b_reg_ty = type_mgr->GetRegisteredType(&val_32b_ty);
101   uint32_t val_32b_reg_ty_id = type_mgr->GetId(val_32b_reg_ty);
102   if (is_signed)
103     return builder->AddUnaryOp(val_32b_reg_ty_id, SpvOpSConvert, val_id)
104         ->result_id();
105   else
106     return builder->AddUnaryOp(val_32b_reg_ty_id, SpvOpUConvert, val_id)
107         ->result_id();
108 }
109 
GenUintCastCode(uint32_t val_id,InstructionBuilder * builder)110 uint32_t InstrumentPass::GenUintCastCode(uint32_t val_id,
111                                          InstructionBuilder* builder) {
112   // Convert value to 32-bit if necessary
113   uint32_t val_32b_id = Gen32BitCvtCode(val_id, builder);
114   // Cast value to unsigned if necessary
115   analysis::TypeManager* type_mgr = context()->get_type_mgr();
116   uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_32b_id)->type_id();
117   analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
118   if (!val_ty->IsSigned()) return val_32b_id;
119   return builder->AddUnaryOp(GetUintId(), SpvOpBitcast, val_32b_id)
120       ->result_id();
121 }
122 
GenDebugOutputFieldCode(uint32_t base_offset_id,uint32_t field_offset,uint32_t field_value_id,InstructionBuilder * builder)123 void InstrumentPass::GenDebugOutputFieldCode(uint32_t base_offset_id,
124                                              uint32_t field_offset,
125                                              uint32_t field_value_id,
126                                              InstructionBuilder* builder) {
127   // Cast value to 32-bit unsigned if necessary
128   uint32_t val_id = GenUintCastCode(field_value_id, builder);
129   // Store value
130   Instruction* data_idx_inst =
131       builder->AddBinaryOp(GetUintId(), SpvOpIAdd, base_offset_id,
132                            builder->GetUintConstantId(field_offset));
133   uint32_t buf_id = GetOutputBufferId();
134   uint32_t buf_uint_ptr_id = GetOutputBufferPtrId();
135   Instruction* achain_inst =
136       builder->AddTernaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id,
137                             builder->GetUintConstantId(kDebugOutputDataOffset),
138                             data_idx_inst->result_id());
139   (void)builder->AddBinaryOp(0, SpvOpStore, achain_inst->result_id(), val_id);
140 }
141 
GenCommonStreamWriteCode(uint32_t record_sz,uint32_t inst_id,uint32_t stage_idx,uint32_t base_offset_id,InstructionBuilder * builder)142 void InstrumentPass::GenCommonStreamWriteCode(uint32_t record_sz,
143                                               uint32_t inst_id,
144                                               uint32_t stage_idx,
145                                               uint32_t base_offset_id,
146                                               InstructionBuilder* builder) {
147   // Store record size
148   GenDebugOutputFieldCode(base_offset_id, kInstCommonOutSize,
149                           builder->GetUintConstantId(record_sz), builder);
150   // Store Shader Id
151   GenDebugOutputFieldCode(base_offset_id, kInstCommonOutShaderId,
152                           builder->GetUintConstantId(shader_id_), builder);
153   // Store Instruction Idx
154   GenDebugOutputFieldCode(base_offset_id, kInstCommonOutInstructionIdx, inst_id,
155                           builder);
156   // Store Stage Idx
157   GenDebugOutputFieldCode(base_offset_id, kInstCommonOutStageIdx,
158                           builder->GetUintConstantId(stage_idx), builder);
159 }
160 
GenFragCoordEltDebugOutputCode(uint32_t base_offset_id,uint32_t uint_frag_coord_id,uint32_t element,InstructionBuilder * builder)161 void InstrumentPass::GenFragCoordEltDebugOutputCode(
162     uint32_t base_offset_id, uint32_t uint_frag_coord_id, uint32_t element,
163     InstructionBuilder* builder) {
164   Instruction* element_val_inst = builder->AddIdLiteralOp(
165       GetUintId(), SpvOpCompositeExtract, uint_frag_coord_id, element);
166   GenDebugOutputFieldCode(base_offset_id, kInstFragOutFragCoordX + element,
167                           element_val_inst->result_id(), builder);
168 }
169 
GenVarLoad(uint32_t var_id,InstructionBuilder * builder)170 uint32_t InstrumentPass::GenVarLoad(uint32_t var_id,
171                                     InstructionBuilder* builder) {
172   Instruction* var_inst = get_def_use_mgr()->GetDef(var_id);
173   uint32_t type_id = GetPointeeTypeId(var_inst);
174   Instruction* load_inst = builder->AddUnaryOp(type_id, SpvOpLoad, var_id);
175   return load_inst->result_id();
176 }
177 
GenBuiltinOutputCode(uint32_t builtin_id,uint32_t builtin_off,uint32_t base_offset_id,InstructionBuilder * builder)178 void InstrumentPass::GenBuiltinOutputCode(uint32_t builtin_id,
179                                           uint32_t builtin_off,
180                                           uint32_t base_offset_id,
181                                           InstructionBuilder* builder) {
182   // Load and store builtin
183   uint32_t load_id = GenVarLoad(builtin_id, builder);
184   GenDebugOutputFieldCode(base_offset_id, builtin_off, load_id, builder);
185 }
186 
GenStageStreamWriteCode(uint32_t stage_idx,uint32_t base_offset_id,InstructionBuilder * builder)187 void InstrumentPass::GenStageStreamWriteCode(uint32_t stage_idx,
188                                              uint32_t base_offset_id,
189                                              InstructionBuilder* builder) {
190   // TODO(greg-lunarg): Add support for all stages
191   switch (stage_idx) {
192     case SpvExecutionModelVertex: {
193       // Load and store VertexId and InstanceId
194       GenBuiltinOutputCode(
195           context()->GetBuiltinInputVarId(SpvBuiltInVertexIndex),
196           kInstVertOutVertexIndex, base_offset_id, builder);
197       GenBuiltinOutputCode(
198           context()->GetBuiltinInputVarId(SpvBuiltInInstanceIndex),
199           kInstVertOutInstanceIndex, base_offset_id, builder);
200     } break;
201     case SpvExecutionModelGLCompute:
202     case SpvExecutionModelTaskNV:
203     case SpvExecutionModelMeshNV: {
204       // Load and store GlobalInvocationId.
205       uint32_t load_id = GenVarLoad(
206           context()->GetBuiltinInputVarId(SpvBuiltInGlobalInvocationId),
207           builder);
208       Instruction* x_inst = builder->AddIdLiteralOp(
209           GetUintId(), SpvOpCompositeExtract, load_id, 0);
210       Instruction* y_inst = builder->AddIdLiteralOp(
211           GetUintId(), SpvOpCompositeExtract, load_id, 1);
212       Instruction* z_inst = builder->AddIdLiteralOp(
213           GetUintId(), SpvOpCompositeExtract, load_id, 2);
214       GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdX,
215                               x_inst->result_id(), builder);
216       GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdY,
217                               y_inst->result_id(), builder);
218       GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdZ,
219                               z_inst->result_id(), builder);
220     } break;
221     case SpvExecutionModelGeometry: {
222       // Load and store PrimitiveId and InvocationId.
223       GenBuiltinOutputCode(
224           context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
225           kInstGeomOutPrimitiveId, base_offset_id, builder);
226       GenBuiltinOutputCode(
227           context()->GetBuiltinInputVarId(SpvBuiltInInvocationId),
228           kInstGeomOutInvocationId, base_offset_id, builder);
229     } break;
230     case SpvExecutionModelTessellationControl: {
231       // Load and store InvocationId and PrimitiveId
232       GenBuiltinOutputCode(
233           context()->GetBuiltinInputVarId(SpvBuiltInInvocationId),
234           kInstTessCtlOutInvocationId, base_offset_id, builder);
235       GenBuiltinOutputCode(
236           context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
237           kInstTessCtlOutPrimitiveId, base_offset_id, builder);
238     } break;
239     case SpvExecutionModelTessellationEvaluation: {
240       // Load and store PrimitiveId and TessCoord.uv
241       GenBuiltinOutputCode(
242           context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
243           kInstTessEvalOutPrimitiveId, base_offset_id, builder);
244       uint32_t load_id = GenVarLoad(
245           context()->GetBuiltinInputVarId(SpvBuiltInTessCoord), builder);
246       Instruction* uvec3_cast_inst =
247           builder->AddUnaryOp(GetVec3UintId(), SpvOpBitcast, load_id);
248       uint32_t uvec3_cast_id = uvec3_cast_inst->result_id();
249       Instruction* u_inst = builder->AddIdLiteralOp(
250           GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 0);
251       Instruction* v_inst = builder->AddIdLiteralOp(
252           GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 1);
253       GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordU,
254                               u_inst->result_id(), builder);
255       GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordV,
256                               v_inst->result_id(), builder);
257     } break;
258     case SpvExecutionModelFragment: {
259       // Load FragCoord and convert to Uint
260       Instruction* frag_coord_inst = builder->AddUnaryOp(
261           GetVec4FloatId(), SpvOpLoad,
262           context()->GetBuiltinInputVarId(SpvBuiltInFragCoord));
263       Instruction* uint_frag_coord_inst = builder->AddUnaryOp(
264           GetVec4UintId(), SpvOpBitcast, frag_coord_inst->result_id());
265       for (uint32_t u = 0; u < 2u; ++u)
266         GenFragCoordEltDebugOutputCode(
267             base_offset_id, uint_frag_coord_inst->result_id(), u, builder);
268     } break;
269     case SpvExecutionModelRayGenerationNV:
270     case SpvExecutionModelIntersectionNV:
271     case SpvExecutionModelAnyHitNV:
272     case SpvExecutionModelClosestHitNV:
273     case SpvExecutionModelMissNV:
274     case SpvExecutionModelCallableNV: {
275       // Load and store LaunchIdNV.
276       uint32_t launch_id = GenVarLoad(
277           context()->GetBuiltinInputVarId(SpvBuiltInLaunchIdNV), builder);
278       Instruction* x_launch_inst = builder->AddIdLiteralOp(
279           GetUintId(), SpvOpCompositeExtract, launch_id, 0);
280       Instruction* y_launch_inst = builder->AddIdLiteralOp(
281           GetUintId(), SpvOpCompositeExtract, launch_id, 1);
282       Instruction* z_launch_inst = builder->AddIdLiteralOp(
283           GetUintId(), SpvOpCompositeExtract, launch_id, 2);
284       GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdX,
285                               x_launch_inst->result_id(), builder);
286       GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdY,
287                               y_launch_inst->result_id(), builder);
288       GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdZ,
289                               z_launch_inst->result_id(), builder);
290     } break;
291     default: { assert(false && "unsupported stage"); } break;
292   }
293 }
294 
GenDebugStreamWrite(uint32_t instruction_idx,uint32_t stage_idx,const std::vector<uint32_t> & validation_ids,InstructionBuilder * builder)295 void InstrumentPass::GenDebugStreamWrite(
296     uint32_t instruction_idx, uint32_t stage_idx,
297     const std::vector<uint32_t>& validation_ids, InstructionBuilder* builder) {
298   // Call debug output function. Pass func_idx, instruction_idx and
299   // validation ids as args.
300   uint32_t val_id_cnt = static_cast<uint32_t>(validation_ids.size());
301   uint32_t output_func_id = GetStreamWriteFunctionId(stage_idx, val_id_cnt);
302   std::vector<uint32_t> args = {output_func_id,
303                                 builder->GetUintConstantId(instruction_idx)};
304   (void)args.insert(args.end(), validation_ids.begin(), validation_ids.end());
305   (void)builder->AddNaryOp(GetVoidId(), SpvOpFunctionCall, args);
306 }
307 
AllConstant(const std::vector<uint32_t> & ids)308 bool InstrumentPass::AllConstant(const std::vector<uint32_t>& ids) {
309   for (auto& id : ids) {
310     Instruction* id_inst = context()->get_def_use_mgr()->GetDef(id);
311     if (!spvOpcodeIsConstant(id_inst->opcode())) return false;
312   }
313   return true;
314 }
315 
GenDebugDirectRead(const std::vector<uint32_t> & offset_ids,InstructionBuilder * ref_builder)316 uint32_t InstrumentPass::GenDebugDirectRead(
317     const std::vector<uint32_t>& offset_ids, InstructionBuilder* ref_builder) {
318   // Call debug input function. Pass func_idx and offset ids as args.
319   uint32_t off_id_cnt = static_cast<uint32_t>(offset_ids.size());
320   uint32_t input_func_id = GetDirectReadFunctionId(off_id_cnt);
321   std::vector<uint32_t> args = {input_func_id};
322   (void)args.insert(args.end(), offset_ids.begin(), offset_ids.end());
323   // If optimizing direct reads and the call has already been generated,
324   // use its result
325   if (opt_direct_reads_) {
326     uint32_t res_id = call2id_[args];
327     if (res_id != 0) return res_id;
328   }
329   // If the offsets are all constants, the call can be moved to the first block
330   // of the function where its result can be reused. One example where this is
331   // profitable is for uniform buffer references, of which there are often many.
332   InstructionBuilder builder(ref_builder->GetContext(),
333                              &*ref_builder->GetInsertPoint(),
334                              ref_builder->GetPreservedAnalysis());
335   bool insert_in_first_block = opt_direct_reads_ && AllConstant(offset_ids);
336   if (insert_in_first_block) {
337     Instruction* insert_before = &*curr_func_->begin()->tail();
338     builder.SetInsertPoint(insert_before);
339   }
340   uint32_t res_id =
341       builder.AddNaryOp(GetUintId(), SpvOpFunctionCall, args)->result_id();
342   if (insert_in_first_block) call2id_[args] = res_id;
343   return res_id;
344 }
345 
IsSameBlockOp(const Instruction * inst) const346 bool InstrumentPass::IsSameBlockOp(const Instruction* inst) const {
347   return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage;
348 }
349 
CloneSameBlockOps(std::unique_ptr<Instruction> * inst,std::unordered_map<uint32_t,uint32_t> * same_blk_post,std::unordered_map<uint32_t,Instruction * > * same_blk_pre,BasicBlock * block_ptr)350 void InstrumentPass::CloneSameBlockOps(
351     std::unique_ptr<Instruction>* inst,
352     std::unordered_map<uint32_t, uint32_t>* same_blk_post,
353     std::unordered_map<uint32_t, Instruction*>* same_blk_pre,
354     BasicBlock* block_ptr) {
355   bool changed = false;
356   (*inst)->ForEachInId([&same_blk_post, &same_blk_pre, &block_ptr, &changed,
357                         this](uint32_t* iid) {
358     const auto map_itr = (*same_blk_post).find(*iid);
359     if (map_itr == (*same_blk_post).end()) {
360       const auto map_itr2 = (*same_blk_pre).find(*iid);
361       if (map_itr2 != (*same_blk_pre).end()) {
362         // Clone pre-call same-block ops, map result id.
363         const Instruction* in_inst = map_itr2->second;
364         std::unique_ptr<Instruction> sb_inst(in_inst->Clone(context()));
365         const uint32_t rid = sb_inst->result_id();
366         const uint32_t nid = this->TakeNextId();
367         get_decoration_mgr()->CloneDecorations(rid, nid);
368         sb_inst->SetResultId(nid);
369         get_def_use_mgr()->AnalyzeInstDefUse(&*sb_inst);
370         (*same_blk_post)[rid] = nid;
371         *iid = nid;
372         changed = true;
373         CloneSameBlockOps(&sb_inst, same_blk_post, same_blk_pre, block_ptr);
374         block_ptr->AddInstruction(std::move(sb_inst));
375       }
376     } else {
377       // Reset same-block op operand if necessary
378       if (*iid != map_itr->second) {
379         *iid = map_itr->second;
380         changed = true;
381       }
382     }
383   });
384   if (changed) get_def_use_mgr()->AnalyzeInstUse(&**inst);
385 }
386 
UpdateSucceedingPhis(std::vector<std::unique_ptr<BasicBlock>> & new_blocks)387 void InstrumentPass::UpdateSucceedingPhis(
388     std::vector<std::unique_ptr<BasicBlock>>& new_blocks) {
389   const auto first_blk = new_blocks.begin();
390   const auto last_blk = new_blocks.end() - 1;
391   const uint32_t first_id = (*first_blk)->id();
392   const uint32_t last_id = (*last_blk)->id();
393   const BasicBlock& const_last_block = *last_blk->get();
394   const_last_block.ForEachSuccessorLabel(
395       [&first_id, &last_id, this](const uint32_t succ) {
396         BasicBlock* sbp = this->id2block_[succ];
397         sbp->ForEachPhiInst([&first_id, &last_id, this](Instruction* phi) {
398           bool changed = false;
399           phi->ForEachInId([&first_id, &last_id, &changed](uint32_t* id) {
400             if (*id == first_id) {
401               *id = last_id;
402               changed = true;
403             }
404           });
405           if (changed) get_def_use_mgr()->AnalyzeInstUse(phi);
406         });
407       });
408 }
409 
GetOutputBufferPtrId()410 uint32_t InstrumentPass::GetOutputBufferPtrId() {
411   if (output_buffer_ptr_id_ == 0) {
412     output_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType(
413         GetUintId(), SpvStorageClassStorageBuffer);
414   }
415   return output_buffer_ptr_id_;
416 }
417 
GetInputBufferTypeId()418 uint32_t InstrumentPass::GetInputBufferTypeId() {
419   return (validation_id_ == kInstValidationIdBuffAddr) ? GetUint64Id()
420                                                        : GetUintId();
421 }
422 
GetInputBufferPtrId()423 uint32_t InstrumentPass::GetInputBufferPtrId() {
424   if (input_buffer_ptr_id_ == 0) {
425     input_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType(
426         GetInputBufferTypeId(), SpvStorageClassStorageBuffer);
427   }
428   return input_buffer_ptr_id_;
429 }
430 
GetOutputBufferBinding()431 uint32_t InstrumentPass::GetOutputBufferBinding() {
432   switch (validation_id_) {
433     case kInstValidationIdBindless:
434       return kDebugOutputBindingStream;
435     case kInstValidationIdBuffAddr:
436       return kDebugOutputBindingStream;
437     case kInstValidationIdDebugPrintf:
438       return kDebugOutputPrintfStream;
439     default:
440       assert(false && "unexpected validation id");
441   }
442   return 0;
443 }
444 
GetInputBufferBinding()445 uint32_t InstrumentPass::GetInputBufferBinding() {
446   switch (validation_id_) {
447     case kInstValidationIdBindless:
448       return kDebugInputBindingBindless;
449     case kInstValidationIdBuffAddr:
450       return kDebugInputBindingBuffAddr;
451     default:
452       assert(false && "unexpected validation id");
453   }
454   return 0;
455 }
456 
GetUintXRuntimeArrayType(uint32_t width,analysis::Type ** rarr_ty)457 analysis::Type* InstrumentPass::GetUintXRuntimeArrayType(
458     uint32_t width, analysis::Type** rarr_ty) {
459   if (*rarr_ty == nullptr) {
460     analysis::DecorationManager* deco_mgr = get_decoration_mgr();
461     analysis::TypeManager* type_mgr = context()->get_type_mgr();
462     analysis::Integer uint_ty(width, false);
463     analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
464     analysis::RuntimeArray uint_rarr_ty_tmp(reg_uint_ty);
465     *rarr_ty = type_mgr->GetRegisteredType(&uint_rarr_ty_tmp);
466     uint32_t uint_arr_ty_id = type_mgr->GetTypeInstruction(*rarr_ty);
467     // By the Vulkan spec, a pre-existing RuntimeArray of uint must be part of
468     // a block, and will therefore be decorated with an ArrayStride. Therefore
469     // the undecorated type returned here will not be pre-existing and can
470     // safely be decorated. Since this type is now decorated, it is out of
471     // sync with the TypeManager and therefore the TypeManager must be
472     // invalidated after this pass.
473     assert(context()->get_def_use_mgr()->NumUses(uint_arr_ty_id) == 0 &&
474            "used RuntimeArray type returned");
475     deco_mgr->AddDecorationVal(uint_arr_ty_id, SpvDecorationArrayStride,
476                                width / 8u);
477   }
478   return *rarr_ty;
479 }
480 
GetUintRuntimeArrayType(uint32_t width)481 analysis::Type* InstrumentPass::GetUintRuntimeArrayType(uint32_t width) {
482   analysis::Type** rarr_ty =
483       (width == 64) ? &uint64_rarr_ty_ : &uint32_rarr_ty_;
484   return GetUintXRuntimeArrayType(width, rarr_ty);
485 }
486 
AddStorageBufferExt()487 void InstrumentPass::AddStorageBufferExt() {
488   if (storage_buffer_ext_defined_) return;
489   if (!get_feature_mgr()->HasExtension(kSPV_KHR_storage_buffer_storage_class)) {
490     context()->AddExtension("SPV_KHR_storage_buffer_storage_class");
491   }
492   storage_buffer_ext_defined_ = true;
493 }
494 
495 // Return id for output buffer
GetOutputBufferId()496 uint32_t InstrumentPass::GetOutputBufferId() {
497   if (output_buffer_id_ == 0) {
498     // If not created yet, create one
499     analysis::DecorationManager* deco_mgr = get_decoration_mgr();
500     analysis::TypeManager* type_mgr = context()->get_type_mgr();
501     analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(32);
502     analysis::Integer uint_ty(32, false);
503     analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
504     analysis::Struct buf_ty({reg_uint_ty, reg_uint_rarr_ty});
505     analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty);
506     uint32_t obufTyId = type_mgr->GetTypeInstruction(reg_buf_ty);
507     // By the Vulkan spec, a pre-existing struct containing a RuntimeArray
508     // must be a block, and will therefore be decorated with Block. Therefore
509     // the undecorated type returned here will not be pre-existing and can
510     // safely be decorated. Since this type is now decorated, it is out of
511     // sync with the TypeManager and therefore the TypeManager must be
512     // invalidated after this pass.
513     assert(context()->get_def_use_mgr()->NumUses(obufTyId) == 0 &&
514            "used struct type returned");
515     deco_mgr->AddDecoration(obufTyId, SpvDecorationBlock);
516     deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputSizeOffset,
517                                   SpvDecorationOffset, 0);
518     deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputDataOffset,
519                                   SpvDecorationOffset, 4);
520     uint32_t obufTyPtrId_ =
521         type_mgr->FindPointerToType(obufTyId, SpvStorageClassStorageBuffer);
522     output_buffer_id_ = TakeNextId();
523     std::unique_ptr<Instruction> newVarOp(new Instruction(
524         context(), SpvOpVariable, obufTyPtrId_, output_buffer_id_,
525         {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
526           {SpvStorageClassStorageBuffer}}}));
527     context()->AddGlobalValue(std::move(newVarOp));
528     deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationDescriptorSet,
529                                desc_set_);
530     deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationBinding,
531                                GetOutputBufferBinding());
532     AddStorageBufferExt();
533     if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) {
534       // Add the new buffer to all entry points.
535       for (auto& entry : get_module()->entry_points()) {
536         entry.AddOperand({SPV_OPERAND_TYPE_ID, {output_buffer_id_}});
537         context()->AnalyzeUses(&entry);
538       }
539     }
540   }
541   return output_buffer_id_;
542 }
543 
GetInputBufferId()544 uint32_t InstrumentPass::GetInputBufferId() {
545   if (input_buffer_id_ == 0) {
546     // If not created yet, create one
547     analysis::DecorationManager* deco_mgr = get_decoration_mgr();
548     analysis::TypeManager* type_mgr = context()->get_type_mgr();
549     uint32_t width = (validation_id_ == kInstValidationIdBuffAddr) ? 64u : 32u;
550     analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(width);
551     analysis::Struct buf_ty({reg_uint_rarr_ty});
552     analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty);
553     uint32_t ibufTyId = type_mgr->GetTypeInstruction(reg_buf_ty);
554     // By the Vulkan spec, a pre-existing struct containing a RuntimeArray
555     // must be a block, and will therefore be decorated with Block. Therefore
556     // the undecorated type returned here will not be pre-existing and can
557     // safely be decorated. Since this type is now decorated, it is out of
558     // sync with the TypeManager and therefore the TypeManager must be
559     // invalidated after this pass.
560     assert(context()->get_def_use_mgr()->NumUses(ibufTyId) == 0 &&
561            "used struct type returned");
562     deco_mgr->AddDecoration(ibufTyId, SpvDecorationBlock);
563     deco_mgr->AddMemberDecoration(ibufTyId, 0, SpvDecorationOffset, 0);
564     uint32_t ibufTyPtrId_ =
565         type_mgr->FindPointerToType(ibufTyId, SpvStorageClassStorageBuffer);
566     input_buffer_id_ = TakeNextId();
567     std::unique_ptr<Instruction> newVarOp(new Instruction(
568         context(), SpvOpVariable, ibufTyPtrId_, input_buffer_id_,
569         {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
570           {SpvStorageClassStorageBuffer}}}));
571     context()->AddGlobalValue(std::move(newVarOp));
572     deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationDescriptorSet,
573                                desc_set_);
574     deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationBinding,
575                                GetInputBufferBinding());
576     AddStorageBufferExt();
577     if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) {
578       // Add the new buffer to all entry points.
579       for (auto& entry : get_module()->entry_points()) {
580         entry.AddOperand({SPV_OPERAND_TYPE_ID, {input_buffer_id_}});
581         context()->AnalyzeUses(&entry);
582       }
583     }
584   }
585   return input_buffer_id_;
586 }
587 
GetFloatId()588 uint32_t InstrumentPass::GetFloatId() {
589   if (float_id_ == 0) {
590     analysis::TypeManager* type_mgr = context()->get_type_mgr();
591     analysis::Float float_ty(32);
592     analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
593     float_id_ = type_mgr->GetTypeInstruction(reg_float_ty);
594   }
595   return float_id_;
596 }
597 
GetVec4FloatId()598 uint32_t InstrumentPass::GetVec4FloatId() {
599   if (v4float_id_ == 0) {
600     analysis::TypeManager* type_mgr = context()->get_type_mgr();
601     analysis::Float float_ty(32);
602     analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
603     analysis::Vector v4float_ty(reg_float_ty, 4);
604     analysis::Type* reg_v4float_ty = type_mgr->GetRegisteredType(&v4float_ty);
605     v4float_id_ = type_mgr->GetTypeInstruction(reg_v4float_ty);
606   }
607   return v4float_id_;
608 }
609 
GetUintId()610 uint32_t InstrumentPass::GetUintId() {
611   if (uint_id_ == 0) {
612     analysis::TypeManager* type_mgr = context()->get_type_mgr();
613     analysis::Integer uint_ty(32, false);
614     analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
615     uint_id_ = type_mgr->GetTypeInstruction(reg_uint_ty);
616   }
617   return uint_id_;
618 }
619 
GetUint64Id()620 uint32_t InstrumentPass::GetUint64Id() {
621   if (uint64_id_ == 0) {
622     analysis::TypeManager* type_mgr = context()->get_type_mgr();
623     analysis::Integer uint64_ty(64, false);
624     analysis::Type* reg_uint64_ty = type_mgr->GetRegisteredType(&uint64_ty);
625     uint64_id_ = type_mgr->GetTypeInstruction(reg_uint64_ty);
626   }
627   return uint64_id_;
628 }
629 
GetUint8Id()630 uint32_t InstrumentPass::GetUint8Id() {
631   if (uint8_id_ == 0) {
632     analysis::TypeManager* type_mgr = context()->get_type_mgr();
633     analysis::Integer uint8_ty(8, false);
634     analysis::Type* reg_uint8_ty = type_mgr->GetRegisteredType(&uint8_ty);
635     uint8_id_ = type_mgr->GetTypeInstruction(reg_uint8_ty);
636   }
637   return uint8_id_;
638 }
639 
GetVecUintId(uint32_t len)640 uint32_t InstrumentPass::GetVecUintId(uint32_t len) {
641   analysis::TypeManager* type_mgr = context()->get_type_mgr();
642   analysis::Integer uint_ty(32, false);
643   analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
644   analysis::Vector v_uint_ty(reg_uint_ty, len);
645   analysis::Type* reg_v_uint_ty = type_mgr->GetRegisteredType(&v_uint_ty);
646   uint32_t v_uint_id = type_mgr->GetTypeInstruction(reg_v_uint_ty);
647   return v_uint_id;
648 }
649 
GetVec4UintId()650 uint32_t InstrumentPass::GetVec4UintId() {
651   if (v4uint_id_ == 0) v4uint_id_ = GetVecUintId(4u);
652   return v4uint_id_;
653 }
654 
GetVec3UintId()655 uint32_t InstrumentPass::GetVec3UintId() {
656   if (v3uint_id_ == 0) v3uint_id_ = GetVecUintId(3u);
657   return v3uint_id_;
658 }
659 
GetBoolId()660 uint32_t InstrumentPass::GetBoolId() {
661   if (bool_id_ == 0) {
662     analysis::TypeManager* type_mgr = context()->get_type_mgr();
663     analysis::Bool bool_ty;
664     analysis::Type* reg_bool_ty = type_mgr->GetRegisteredType(&bool_ty);
665     bool_id_ = type_mgr->GetTypeInstruction(reg_bool_ty);
666   }
667   return bool_id_;
668 }
669 
GetVoidId()670 uint32_t InstrumentPass::GetVoidId() {
671   if (void_id_ == 0) {
672     analysis::TypeManager* type_mgr = context()->get_type_mgr();
673     analysis::Void void_ty;
674     analysis::Type* reg_void_ty = type_mgr->GetRegisteredType(&void_ty);
675     void_id_ = type_mgr->GetTypeInstruction(reg_void_ty);
676   }
677   return void_id_;
678 }
679 
GetStreamWriteFunctionId(uint32_t stage_idx,uint32_t val_spec_param_cnt)680 uint32_t InstrumentPass::GetStreamWriteFunctionId(uint32_t stage_idx,
681                                                   uint32_t val_spec_param_cnt) {
682   // Total param count is common params plus validation-specific
683   // params
684   uint32_t param_cnt = kInstCommonParamCnt + val_spec_param_cnt;
685   if (param2output_func_id_[param_cnt] == 0) {
686     // Create function
687     param2output_func_id_[param_cnt] = TakeNextId();
688     analysis::TypeManager* type_mgr = context()->get_type_mgr();
689     std::vector<const analysis::Type*> param_types;
690     for (uint32_t c = 0; c < param_cnt; ++c)
691       param_types.push_back(type_mgr->GetType(GetUintId()));
692     analysis::Function func_ty(type_mgr->GetType(GetVoidId()), param_types);
693     analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty);
694     std::unique_ptr<Instruction> func_inst(
695         new Instruction(get_module()->context(), SpvOpFunction, GetVoidId(),
696                         param2output_func_id_[param_cnt],
697                         {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
698                           {SpvFunctionControlMaskNone}},
699                          {spv_operand_type_t::SPV_OPERAND_TYPE_ID,
700                           {type_mgr->GetTypeInstruction(reg_func_ty)}}}));
701     get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
702     std::unique_ptr<Function> output_func =
703         MakeUnique<Function>(std::move(func_inst));
704     // Add parameters
705     std::vector<uint32_t> param_vec;
706     for (uint32_t c = 0; c < param_cnt; ++c) {
707       uint32_t pid = TakeNextId();
708       param_vec.push_back(pid);
709       std::unique_ptr<Instruction> param_inst(
710           new Instruction(get_module()->context(), SpvOpFunctionParameter,
711                           GetUintId(), pid, {}));
712       get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst);
713       output_func->AddParameter(std::move(param_inst));
714     }
715     // Create first block
716     uint32_t test_blk_id = TakeNextId();
717     std::unique_ptr<Instruction> test_label(NewLabel(test_blk_id));
718     std::unique_ptr<BasicBlock> new_blk_ptr =
719         MakeUnique<BasicBlock>(std::move(test_label));
720     InstructionBuilder builder(
721         context(), &*new_blk_ptr,
722         IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
723     // Gen test if debug output buffer size will not be exceeded.
724     uint32_t val_spec_offset = kInstStageOutCnt;
725     uint32_t obuf_record_sz = val_spec_offset + val_spec_param_cnt;
726     uint32_t buf_id = GetOutputBufferId();
727     uint32_t buf_uint_ptr_id = GetOutputBufferPtrId();
728     Instruction* obuf_curr_sz_ac_inst =
729         builder.AddBinaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id,
730                             builder.GetUintConstantId(kDebugOutputSizeOffset));
731     // Fetch the current debug buffer written size atomically, adding the
732     // size of the record to be written.
733     uint32_t obuf_record_sz_id = builder.GetUintConstantId(obuf_record_sz);
734     uint32_t mask_none_id = builder.GetUintConstantId(SpvMemoryAccessMaskNone);
735     uint32_t scope_invok_id = builder.GetUintConstantId(SpvScopeInvocation);
736     Instruction* obuf_curr_sz_inst = builder.AddQuadOp(
737         GetUintId(), SpvOpAtomicIAdd, obuf_curr_sz_ac_inst->result_id(),
738         scope_invok_id, mask_none_id, obuf_record_sz_id);
739     uint32_t obuf_curr_sz_id = obuf_curr_sz_inst->result_id();
740     // Compute new written size
741     Instruction* obuf_new_sz_inst =
742         builder.AddBinaryOp(GetUintId(), SpvOpIAdd, obuf_curr_sz_id,
743                             builder.GetUintConstantId(obuf_record_sz));
744     // Fetch the data bound
745     Instruction* obuf_bnd_inst =
746         builder.AddIdLiteralOp(GetUintId(), SpvOpArrayLength,
747                                GetOutputBufferId(), kDebugOutputDataOffset);
748     // Test that new written size is less than or equal to debug output
749     // data bound
750     Instruction* obuf_safe_inst = builder.AddBinaryOp(
751         GetBoolId(), SpvOpULessThanEqual, obuf_new_sz_inst->result_id(),
752         obuf_bnd_inst->result_id());
753     uint32_t merge_blk_id = TakeNextId();
754     uint32_t write_blk_id = TakeNextId();
755     std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
756     std::unique_ptr<Instruction> write_label(NewLabel(write_blk_id));
757     (void)builder.AddConditionalBranch(obuf_safe_inst->result_id(),
758                                        write_blk_id, merge_blk_id, merge_blk_id,
759                                        SpvSelectionControlMaskNone);
760     // Close safety test block and gen write block
761     output_func->AddBasicBlock(std::move(new_blk_ptr));
762     new_blk_ptr = MakeUnique<BasicBlock>(std::move(write_label));
763     builder.SetInsertPoint(&*new_blk_ptr);
764     // Generate common and stage-specific debug record members
765     GenCommonStreamWriteCode(obuf_record_sz, param_vec[kInstCommonParamInstIdx],
766                              stage_idx, obuf_curr_sz_id, &builder);
767     GenStageStreamWriteCode(stage_idx, obuf_curr_sz_id, &builder);
768     // Gen writes of validation specific data
769     for (uint32_t i = 0; i < val_spec_param_cnt; ++i) {
770       GenDebugOutputFieldCode(obuf_curr_sz_id, val_spec_offset + i,
771                               param_vec[kInstCommonParamCnt + i], &builder);
772     }
773     // Close write block and gen merge block
774     (void)builder.AddBranch(merge_blk_id);
775     output_func->AddBasicBlock(std::move(new_blk_ptr));
776     new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
777     builder.SetInsertPoint(&*new_blk_ptr);
778     // Close merge block and function and add function to module
779     (void)builder.AddNullaryOp(0, SpvOpReturn);
780     output_func->AddBasicBlock(std::move(new_blk_ptr));
781     std::unique_ptr<Instruction> func_end_inst(
782         new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {}));
783     get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst);
784     output_func->SetFunctionEnd(std::move(func_end_inst));
785     context()->AddFunction(std::move(output_func));
786   }
787   return param2output_func_id_[param_cnt];
788 }
789 
GetDirectReadFunctionId(uint32_t param_cnt)790 uint32_t InstrumentPass::GetDirectReadFunctionId(uint32_t param_cnt) {
791   uint32_t func_id = param2input_func_id_[param_cnt];
792   if (func_id != 0) return func_id;
793   // Create input function for param_cnt.
794   func_id = TakeNextId();
795   analysis::TypeManager* type_mgr = context()->get_type_mgr();
796   std::vector<const analysis::Type*> param_types;
797   for (uint32_t c = 0; c < param_cnt; ++c)
798     param_types.push_back(type_mgr->GetType(GetUintId()));
799   uint32_t ibuf_type_id = GetInputBufferTypeId();
800   analysis::Function func_ty(type_mgr->GetType(ibuf_type_id), param_types);
801   analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty);
802   std::unique_ptr<Instruction> func_inst(new Instruction(
803       get_module()->context(), SpvOpFunction, ibuf_type_id, func_id,
804       {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
805         {SpvFunctionControlMaskNone}},
806        {spv_operand_type_t::SPV_OPERAND_TYPE_ID,
807         {type_mgr->GetTypeInstruction(reg_func_ty)}}}));
808   get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
809   std::unique_ptr<Function> input_func =
810       MakeUnique<Function>(std::move(func_inst));
811   // Add parameters
812   std::vector<uint32_t> param_vec;
813   for (uint32_t c = 0; c < param_cnt; ++c) {
814     uint32_t pid = TakeNextId();
815     param_vec.push_back(pid);
816     std::unique_ptr<Instruction> param_inst(new Instruction(
817         get_module()->context(), SpvOpFunctionParameter, GetUintId(), pid, {}));
818     get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst);
819     input_func->AddParameter(std::move(param_inst));
820   }
821   // Create block
822   uint32_t blk_id = TakeNextId();
823   std::unique_ptr<Instruction> blk_label(NewLabel(blk_id));
824   std::unique_ptr<BasicBlock> new_blk_ptr =
825       MakeUnique<BasicBlock>(std::move(blk_label));
826   InstructionBuilder builder(
827       context(), &*new_blk_ptr,
828       IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
829   // For each offset parameter, generate new offset with parameter, adding last
830   // loaded value if it exists, and load value from input buffer at new offset.
831   // Return last loaded value.
832   uint32_t buf_id = GetInputBufferId();
833   uint32_t buf_ptr_id = GetInputBufferPtrId();
834   uint32_t last_value_id = 0;
835   for (uint32_t p = 0; p < param_cnt; ++p) {
836     uint32_t offset_id;
837     if (p == 0) {
838       offset_id = param_vec[0];
839     } else {
840       if (ibuf_type_id != GetUintId()) {
841         Instruction* ucvt_inst =
842             builder.AddUnaryOp(GetUintId(), SpvOpUConvert, last_value_id);
843         last_value_id = ucvt_inst->result_id();
844       }
845       Instruction* offset_inst = builder.AddBinaryOp(
846           GetUintId(), SpvOpIAdd, last_value_id, param_vec[p]);
847       offset_id = offset_inst->result_id();
848     }
849     Instruction* ac_inst = builder.AddTernaryOp(
850         buf_ptr_id, SpvOpAccessChain, buf_id,
851         builder.GetUintConstantId(kDebugInputDataOffset), offset_id);
852     Instruction* load_inst =
853         builder.AddUnaryOp(ibuf_type_id, SpvOpLoad, ac_inst->result_id());
854     last_value_id = load_inst->result_id();
855   }
856   (void)builder.AddInstruction(MakeUnique<Instruction>(
857       context(), SpvOpReturnValue, 0, 0,
858       std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {last_value_id}}}));
859   // Close block and function and add function to module
860   input_func->AddBasicBlock(std::move(new_blk_ptr));
861   std::unique_ptr<Instruction> func_end_inst(
862       new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {}));
863   get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst);
864   input_func->SetFunctionEnd(std::move(func_end_inst));
865   context()->AddFunction(std::move(input_func));
866   param2input_func_id_[param_cnt] = func_id;
867   return func_id;
868 }
869 
SplitBlock(BasicBlock::iterator inst_itr,UptrVectorIterator<BasicBlock> block_itr,std::vector<std::unique_ptr<BasicBlock>> * new_blocks)870 void InstrumentPass::SplitBlock(
871     BasicBlock::iterator inst_itr, UptrVectorIterator<BasicBlock> block_itr,
872     std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
873   // Make sure def/use analysis is done before we start moving instructions
874   // out of function
875   (void)get_def_use_mgr();
876   // Move original block's preceding instructions into first new block
877   std::unique_ptr<BasicBlock> first_blk_ptr;
878   MovePreludeCode(inst_itr, block_itr, &first_blk_ptr);
879   InstructionBuilder builder(
880       context(), &*first_blk_ptr,
881       IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
882   uint32_t split_blk_id = TakeNextId();
883   std::unique_ptr<Instruction> split_label(NewLabel(split_blk_id));
884   (void)builder.AddBranch(split_blk_id);
885   new_blocks->push_back(std::move(first_blk_ptr));
886   // Move remaining instructions into split block and add to new blocks
887   std::unique_ptr<BasicBlock> split_blk_ptr(
888       new BasicBlock(std::move(split_label)));
889   MovePostludeCode(block_itr, &*split_blk_ptr);
890   new_blocks->push_back(std::move(split_blk_ptr));
891 }
892 
InstrumentFunction(Function * func,uint32_t stage_idx,InstProcessFunction & pfn)893 bool InstrumentPass::InstrumentFunction(Function* func, uint32_t stage_idx,
894                                         InstProcessFunction& pfn) {
895   curr_func_ = func;
896   call2id_.clear();
897   bool first_block_split = false;
898   bool modified = false;
899   // Apply instrumentation function to each instruction.
900   // Using block iterators here because of block erasures and insertions.
901   std::vector<std::unique_ptr<BasicBlock>> new_blks;
902   for (auto bi = func->begin(); bi != func->end(); ++bi) {
903     for (auto ii = bi->begin(); ii != bi->end();) {
904       // Split all executable instructions out of first block into a following
905       // block. This will allow function calls to be inserted into the first
906       // block without interfering with the instrumentation algorithm.
907       if (opt_direct_reads_ && !first_block_split) {
908         if (ii->opcode() != SpvOpVariable) {
909           SplitBlock(ii, bi, &new_blks);
910           first_block_split = true;
911         }
912       } else {
913         pfn(ii, bi, stage_idx, &new_blks);
914       }
915       // If no new code, continue
916       if (new_blks.size() == 0) {
917         ++ii;
918         continue;
919       }
920       // Add new blocks to label id map
921       for (auto& blk : new_blks) id2block_[blk->id()] = &*blk;
922       // If there are new blocks we know there will always be two or
923       // more, so update succeeding phis with label of new last block.
924       size_t newBlocksSize = new_blks.size();
925       assert(newBlocksSize > 1);
926       UpdateSucceedingPhis(new_blks);
927       // Replace original block with new block(s)
928       bi = bi.Erase();
929       for (auto& bb : new_blks) {
930         bb->SetParent(func);
931       }
932       bi = bi.InsertBefore(&new_blks);
933       // Reset block iterator to last new block
934       for (size_t i = 0; i < newBlocksSize - 1; i++) ++bi;
935       modified = true;
936       // Restart instrumenting at beginning of last new block,
937       // but skip over any new phi or copy instruction.
938       ii = bi->begin();
939       if (ii->opcode() == SpvOpPhi || ii->opcode() == SpvOpCopyObject) ++ii;
940       new_blks.clear();
941     }
942   }
943   return modified;
944 }
945 
InstProcessCallTreeFromRoots(InstProcessFunction & pfn,std::queue<uint32_t> * roots,uint32_t stage_idx)946 bool InstrumentPass::InstProcessCallTreeFromRoots(InstProcessFunction& pfn,
947                                                   std::queue<uint32_t>* roots,
948                                                   uint32_t stage_idx) {
949   bool modified = false;
950   std::unordered_set<uint32_t> done;
951   // Don't process input and output functions
952   for (auto& ifn : param2input_func_id_) done.insert(ifn.second);
953   for (auto& ofn : param2output_func_id_) done.insert(ofn.second);
954   // Process all functions from roots
955   while (!roots->empty()) {
956     const uint32_t fi = roots->front();
957     roots->pop();
958     if (done.insert(fi).second) {
959       Function* fn = id2function_.at(fi);
960       // Add calls first so we don't add new output function
961       context()->AddCalls(fn, roots);
962       modified = InstrumentFunction(fn, stage_idx, pfn) || modified;
963     }
964   }
965   return modified;
966 }
967 
InstProcessEntryPointCallTree(InstProcessFunction & pfn)968 bool InstrumentPass::InstProcessEntryPointCallTree(InstProcessFunction& pfn) {
969   // Make sure all entry points have the same execution model. Do not
970   // instrument if they do not.
971   // TODO(greg-lunarg): Handle mixed stages. Technically, a shader module
972   // can contain entry points with different execution models, although
973   // such modules will likely be rare as GLSL and HLSL are geared toward
974   // one model per module. In such cases we will need
975   // to clone any functions which are in the call trees of entrypoints
976   // with differing execution models.
977   uint32_t ecnt = 0;
978   uint32_t stage = SpvExecutionModelMax;
979   for (auto& e : get_module()->entry_points()) {
980     if (ecnt == 0)
981       stage = e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx);
982     else if (e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx) !=
983              stage) {
984       if (consumer()) {
985         std::string message = "Mixed stage shader module not supported";
986         consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
987       }
988       return false;
989     }
990     ++ecnt;
991   }
992   // Check for supported stages
993   if (stage != SpvExecutionModelVertex && stage != SpvExecutionModelFragment &&
994       stage != SpvExecutionModelGeometry &&
995       stage != SpvExecutionModelGLCompute &&
996       stage != SpvExecutionModelTessellationControl &&
997       stage != SpvExecutionModelTessellationEvaluation &&
998       stage != SpvExecutionModelTaskNV && stage != SpvExecutionModelMeshNV &&
999       stage != SpvExecutionModelRayGenerationNV &&
1000       stage != SpvExecutionModelIntersectionNV &&
1001       stage != SpvExecutionModelAnyHitNV &&
1002       stage != SpvExecutionModelClosestHitNV &&
1003       stage != SpvExecutionModelMissNV &&
1004       stage != SpvExecutionModelCallableNV) {
1005     if (consumer()) {
1006       std::string message = "Stage not supported by instrumentation";
1007       consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
1008     }
1009     return false;
1010   }
1011   // Add together the roots of all entry points
1012   std::queue<uint32_t> roots;
1013   for (auto& e : get_module()->entry_points()) {
1014     roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx));
1015   }
1016   bool modified = InstProcessCallTreeFromRoots(pfn, &roots, stage);
1017   return modified;
1018 }
1019 
InitializeInstrument()1020 void InstrumentPass::InitializeInstrument() {
1021   output_buffer_id_ = 0;
1022   output_buffer_ptr_id_ = 0;
1023   input_buffer_ptr_id_ = 0;
1024   input_buffer_id_ = 0;
1025   float_id_ = 0;
1026   v4float_id_ = 0;
1027   uint_id_ = 0;
1028   uint64_id_ = 0;
1029   uint8_id_ = 0;
1030   v4uint_id_ = 0;
1031   v3uint_id_ = 0;
1032   bool_id_ = 0;
1033   void_id_ = 0;
1034   storage_buffer_ext_defined_ = false;
1035   uint32_rarr_ty_ = nullptr;
1036   uint64_rarr_ty_ = nullptr;
1037 
1038   // clear collections
1039   id2function_.clear();
1040   id2block_.clear();
1041 
1042   // clear maps
1043   param2input_func_id_.clear();
1044   param2output_func_id_.clear();
1045 
1046   // Initialize function and block maps.
1047   for (auto& fn : *get_module()) {
1048     id2function_[fn.result_id()] = &fn;
1049     for (auto& blk : fn) {
1050       id2block_[blk.id()] = &blk;
1051     }
1052   }
1053 
1054   // Remember original instruction offsets
1055   uint32_t module_offset = 0;
1056   Module* module = get_module();
1057   for (auto& i : context()->capabilities()) {
1058     (void)i;
1059     ++module_offset;
1060   }
1061   for (auto& i : module->extensions()) {
1062     (void)i;
1063     ++module_offset;
1064   }
1065   for (auto& i : module->ext_inst_imports()) {
1066     (void)i;
1067     ++module_offset;
1068   }
1069   ++module_offset;  // memory_model
1070   for (auto& i : module->entry_points()) {
1071     (void)i;
1072     ++module_offset;
1073   }
1074   for (auto& i : module->execution_modes()) {
1075     (void)i;
1076     ++module_offset;
1077   }
1078   for (auto& i : module->debugs1()) {
1079     (void)i;
1080     ++module_offset;
1081   }
1082   for (auto& i : module->debugs2()) {
1083     (void)i;
1084     ++module_offset;
1085   }
1086   for (auto& i : module->debugs3()) {
1087     (void)i;
1088     ++module_offset;
1089   }
1090   for (auto& i : module->ext_inst_debuginfo()) {
1091     (void)i;
1092     ++module_offset;
1093   }
1094   for (auto& i : module->annotations()) {
1095     (void)i;
1096     ++module_offset;
1097   }
1098   for (auto& i : module->types_values()) {
1099     module_offset += 1;
1100     module_offset += static_cast<uint32_t>(i.dbg_line_insts().size());
1101   }
1102 
1103   auto curr_fn = get_module()->begin();
1104   for (; curr_fn != get_module()->end(); ++curr_fn) {
1105     // Count function instruction
1106     module_offset += 1;
1107     curr_fn->ForEachParam(
1108         [&module_offset](const Instruction*) { module_offset += 1; }, true);
1109     for (auto& blk : *curr_fn) {
1110       // Count label
1111       module_offset += 1;
1112       for (auto& inst : blk) {
1113         module_offset += static_cast<uint32_t>(inst.dbg_line_insts().size());
1114         uid2offset_[inst.unique_id()] = module_offset;
1115         module_offset += 1;
1116       }
1117     }
1118     // Count function end instruction
1119     module_offset += 1;
1120   }
1121 }
1122 
1123 }  // namespace opt
1124 }  // namespace spvtools
1125