1// Copyright (c) 2019 Google LLC 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// http://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15// This file is specifically named spvtools_fuzz.proto so that the string 16// 'spvtools_fuzz' appears in the names of global-scope symbols that protoc 17// generates when targeting C++. This is to reduce the potential for name 18// clashes with other globally-scoped symbols. 19 20syntax = "proto3"; 21 22package spvtools.fuzz.protobufs; 23 24message UInt32Pair { 25 26 // A pair of uint32s; useful for defining mappings. 27 28 uint32 first = 1; 29 30 uint32 second = 2; 31 32} 33 34message InstructionDescriptor { 35 36 // Describes an instruction in some block of a function with respect to a 37 // base instruction. 38 39 // The id of an instruction after which the instruction being described is 40 // believed to be located. It might be the using instruction itself. 41 uint32 base_instruction_result_id = 1; 42 43 // The opcode for the instruction being described. 44 uint32 target_instruction_opcode = 2; 45 46 // The number of matching opcodes to skip over when searching from the base 47 // instruction to the instruction being described. 48 uint32 num_opcodes_to_ignore = 3; 49 50} 51 52message IdUseDescriptor { 53 54 // Describes a use of an id as an input operand to an instruction in some 55 // block of a function. 56 57 // Example: 58 // - id_of_interest = 42 59 // - enclosing_instruction = ( 60 // base_instruction_result_id = 50, 61 // target_instruction_opcode = OpStore 62 // num_opcodes_to_ignore = 7 63 // ) 64 // - in_operand_index = 1 65 // represents a use of id 42 as input operand 1 to an OpStore instruction, 66 // such that the OpStore instruction can be found in the same basic block as 67 // the instruction with result id 50, and in particular is the 8th OpStore 68 // instruction found from instruction 50 onwards (i.e. 7 OpStore 69 // instructions are skipped). 70 71 // An id that we would like to be able to find a use of. 72 uint32 id_of_interest = 1; 73 74 // The input operand index at which the use is expected. 75 InstructionDescriptor enclosing_instruction = 2; 76 77 uint32 in_operand_index = 3; 78 79} 80 81message DataDescriptor { 82 83 // Represents a data element that can be accessed from an id, by walking the 84 // type hierarchy via a sequence of 0 or more indices. 85 // 86 // Very similar to a UniformBufferElementDescriptor, except that a 87 // DataDescriptor is rooted at the id of a scalar or composite. 88 89 // The object being accessed - a scalar or composite 90 uint32 object = 1; 91 92 // 0 or more indices, used to index into a composite object 93 repeated uint32 index = 2; 94 95} 96 97message UniformBufferElementDescriptor { 98 99 // Represents a data element inside a uniform buffer. The element is 100 // specified via (a) the result id of a uniform variable in which the element 101 // is contained, and (b) a series of indices that need to be followed to get 102 // to the element (via fields and array/vector indices). 103 // 104 // Example: suppose there is a uniform variable with descriptor set 7 and 105 // binding 9, and that the uniform variable has the following type (using 106 // GLSL-like syntax): 107 // 108 // struct S { 109 // float f; 110 // vec3 g; 111 // int4 h[10]; 112 // }; 113 // 114 // Then: 115 // - (7, 9, [0]) describes the 'f' field. 116 // - (7, 9, [1,1]) describes the y component of the 'g' field. 117 // - (7, 9, [2,7,3]) describes the w component of element 7 of the 'h' field 118 119 // The descriptor set and binding associated with a uniform variable. 120 uint32 descriptor_set = 1; 121 uint32 binding = 2; 122 123 // An ordered sequence of indices through composite structures in the 124 // uniform buffer. 125 repeated uint32 index = 3; 126 127} 128 129message InstructionOperand { 130 131 // Represents an operand to a SPIR-V instruction. 132 133 // The type of the operand. 134 uint32 operand_type = 1; 135 136 // The data associated with the operand. For most operands (e.g. ids, 137 // storage classes and literals) this will be a single word. 138 repeated uint32 operand_data = 2; 139 140} 141 142message Instruction { 143 144 // Represents a SPIR-V instruction. 145 146 // The instruction's opcode (e.g. OpLabel). 147 uint32 opcode = 1; 148 149 // The id of the instruction's result type; 0 if there is no result type. 150 uint32 result_type_id = 2; 151 152 // The id of the instruction's result; 0 if there is no result. 153 uint32 result_id = 3; 154 155 // Zero or more input operands. 156 repeated InstructionOperand input_operand = 4; 157 158} 159 160message FactSequence { 161 repeated Fact fact = 1; 162} 163 164message Fact { 165 oneof fact { 166 // Order the fact options by numeric id (rather than alphabetically). 167 FactConstantUniform constant_uniform_fact = 1; 168 FactDataSynonym data_synonym_fact = 2; 169 FactBlockIsDead block_is_dead_fact = 3; 170 FactFunctionIsLivesafe function_is_livesafe_fact = 4; 171 FactPointeeValueIsIrrelevant pointee_value_is_irrelevant_fact = 5; 172 FactIdEquation id_equation_fact = 6; 173 FactIdIsIrrelevant id_is_irrelevant = 7; 174 } 175} 176 177// Keep fact message types in alphabetical order: 178 179message FactBlockIsDead { 180 181 // Records the fact that a block is guaranteed to be dynamically unreachable. 182 // This is useful because it informs the fuzzer that rather arbitrary changes 183 // can be made to this block. 184 185 uint32 block_id = 1; 186 187} 188 189message FactConstantUniform { 190 191 // Records the fact that a uniform buffer element is guaranteed to be equal 192 // to a particular constant value. spirv-fuzz can use such guarantees to 193 // obfuscate code, e.g. to manufacture an expression that will (due to the 194 // guarantee) evaluate to a particular value at runtime but in a manner that 195 // cannot be predicted at compile-time. 196 197 // An element of a uniform buffer 198 UniformBufferElementDescriptor uniform_buffer_element_descriptor = 1; 199 200 // The words of the associated constant 201 repeated uint32 constant_word = 2; 202 203} 204 205message FactDataSynonym { 206 207 // Records the fact that the data held in two data descriptors are guaranteed 208 // to be equal. spirv-fuzz can use this to replace uses of one piece of data 209 // with a known-to-be-equal piece of data. 210 211 // Data descriptors guaranteed to hold identical data. 212 DataDescriptor data1 = 1; 213 214 DataDescriptor data2 = 2; 215 216} 217 218message FactFunctionIsLivesafe { 219 220 // Records the fact that a function is guaranteed to be "livesafe", meaning 221 // that it will not make out-of-bounds accesses, does not contain reachable 222 // OpKill or OpUnreachable instructions, does not contain loops that will 223 // execute for large numbers of iterations, and only invokes other livesafe 224 // functions. 225 226 uint32 function_id = 1; 227 228} 229 230message FactIdEquation { 231 232 // Records the fact that the equation: 233 // 234 // lhs_id = opcode rhs_id[0] rhs_id[1] ... rhs_id[N-1] 235 // 236 // holds; e.g. that the equation: 237 // 238 // %12 = OpIAdd %13 %14 239 // 240 // holds in the case where lhs_id is 12, rhs_id is [13, 14], and the opcode is 241 // OpIAdd. 242 243 // The left-hand-side of the equation. 244 uint32 lhs_id = 1; 245 246 // A SPIR-V opcode, from a restricted set of instructions for which equation 247 // facts make sense. 248 uint32 opcode = 2; 249 250 // The operands to the right-hand-side of the equation. 251 repeated uint32 rhs_id = 3; 252 253} 254 255message FactIdIsIrrelevant { 256 257 // Records a fact that |result_id| is irrelevant (i.e. it's usage doesn't 258 // change the semantics of the module). This implies that a use of this id 259 // can later be replaced with some other id of the same type, or the 260 // definition of |result_id| can be changed so that it yields a different value. 261 262 // An irrelevant id. 263 uint32 result_id = 1; 264 265} 266 267message FactPointeeValueIsIrrelevant { 268 269 // Records the fact that value of the data pointed to by a pointer id does 270 // not influence the observable behaviour of the module. This means that 271 // arbitrary stores can be made through the pointer, and that nothing can be 272 // guaranteed about the values that are loaded via the pointer. 273 274 // A result id of pointer type 275 uint32 pointer_id = 1; 276 277} 278 279message AccessChainClampingInfo { 280 281 // When making a function livesafe it is necessary to clamp the indices that 282 // occur as operands to access chain instructions so that they are guaranteed 283 // to be in bounds. This message type allows an access chain instruction to 284 // have an associated sequence of ids that are reserved for comparing an 285 // access chain index with a bound (e.g. an array size), and selecting 286 // between the access chain index (if it is within bounds) and the bound (if 287 // it is not). 288 // 289 // This allows turning an instruction of the form: 290 // 291 // %result = OpAccessChain %type %object ... %index ... 292 // 293 // into: 294 // 295 // %t1 = OpULessThanEqual %bool %index %bound_minus_one 296 // %t2 = OpSelect %int_type %t1 %index %bound_minus_one 297 // %result = OpAccessChain %type %object ... %t2 ... 298 299 // The result id of an OpAccessChain or OpInBoundsAccessChain instruction. 300 uint32 access_chain_id = 1; 301 302 // A series of pairs of fresh ids, one per access chain index, for the results 303 // of a compare instruction and a select instruction, serving the roles of %t1 304 // and %t2 in the above example. 305 repeated UInt32Pair compare_and_select_ids = 2; 306 307} 308 309message SideEffectWrapperInfo { 310 // When flattening a conditional branch, it is necessary to enclose 311 // instructions that have side effects inside conditionals, so that 312 // they are only executed if the condition holds. Otherwise, there 313 // might be unintended changes in memory, or crashes that would not 314 // originally happen. 315 // For example, the instruction %id = OpLoad %type %ptr, found in 316 // the true branch of the conditional, will be enclosed in a new 317 // conditional (assuming that the block containing it can be split 318 // around it) as follows: 319 // 320 // [previous instructions in the block] 321 // OpSelectionMerge %merge_block_id None 322 // OpBranchConditional %cond %execute_block_id %alternative_block_id 323 // %execute_block_id = OpLabel 324 // %actual_result_id = OpLoad %type %ptr 325 // OpBranch %merge_block_id 326 // %alternative_block_id = OpLabel 327 // %placeholder_result_id = OpCopyObject %type %value_to_copy_id 328 // OpBranch %merge_block_id 329 // %merge_block_id = OpLabel 330 // %id = OpPhi %type %actual_result_id %execute_block_id %placeholder_result_id %alternative_block_id 331 // [following instructions from the original block] 332 // 333 // If the instruction does not have a result id, this is simplified. 334 // For example, OpStore %ptr %value, found in the true branch of a 335 // conditional, is enclosed as follows: 336 // 337 // [previous instructions in the block] 338 // OpSelectionMerge %merge_block None 339 // OpBranchConditional %cond %execute_block_id %merge_block_id 340 // %execute_block_id = OpLabel 341 // OpStore %ptr %value 342 // OpBranch %merge_block_id 343 // %merge_block_id = OpLabel 344 // [following instructions from the original block] 345 // 346 // The same happens if the instruction is found in the false branch 347 // of the conditional being flattened, except that the label ids in 348 // the OpBranchConditional are swapped. 349 350 351 // An instruction descriptor for identifying the instruction to be 352 // enclosed inside a conditional. An instruction descriptor is 353 // necessary because the instruction might not have a result id. 354 InstructionDescriptor instruction = 1; 355 356 // A fresh id for the new merge block. 357 uint32 merge_block_id = 2; 358 359 // A fresh id for the new block where the actual instruction is 360 // executed. 361 uint32 execute_block_id = 3; 362 363 // The following fields are only needed if the original instruction has a 364 // result id. They can be set to 0 if not needed. 365 366 // A fresh id for the result id of the instruction (the original 367 // one is used by the OpPhi instruction). 368 uint32 actual_result_id = 4; 369 370 // A fresh id for the new block where the placeholder instruction 371 // is placed. 372 uint32 alternative_block_id = 5; 373 374 // A fresh id for the placeholder instruction. 375 uint32 placeholder_result_id = 6; 376 377 // An id present in the module, available to use at this point in 378 // the program and with the same type as the original instruction, 379 // that can be used to create a placeholder OpCopyObject 380 // instruction. 381 uint32 value_to_copy_id = 7; 382} 383 384message ReturnMergingInfo { 385 // TransformationMergeFunctionReturns needs to modify each merge block of 386 // loops containing return instructions, by: 387 // - adding instructions to decide whether the function is returning 388 // - adding instructions to pass on the return value of the function, 389 // if it is returning 390 // - changing the branch instruction (which must be an unconditional branch) 391 // to a conditional branch that, if the function is returning, branches to 392 // the merge block of the innermost loop that contains this merge block 393 // (which can be the new merge block introduced by the transformation). 394 // 395 // One such merge block of the form: 396 // %block = OpLabel 397 // %phi1 = OpPhi %type1 %val1_1 %pred1 %val1_2 %pred2 398 // %phi2 = OpPhi %type2 %val2_1 %pred1 %val2_2 %pred2 399 // OpBranch %next 400 // 401 // is transformed into: 402 // %block = OpLabel 403 // %is_returning_id = OpPhi %bool %false %pred1 %false %pred2 %true %ret_bb1 %is_bb2_returning %mer_bb2 404 // %maybe_return_val_id = OpPhi %return_type %any_returnable_val %pred1 %any_returnable_val %pred2 405 // %ret_val1 %ret_bb1 %ret_val2 %mer_bb2 406 // %phi1 = OpPhi %type1 %val1_1 %pred1 %val1_2 %pred2 407 // %any_suitable_id_1 %ret_bb1 %any_suitable_id_1 %mer_bb2 408 // %phi2 = OpPhi %type2 %val2_1 %pred1 %val2_2 %pred2 409 // %any_suitable_id_1 %ret_bb1 %any_suitable_id_1 %mer_bb2 410 // OpBranchConditional %is_returning_id %innermost_loop_merge %next 411 // 412 // where %ret_bb1 is a block that originally contains a return instruction and %mer_bb2 is the merge block of an inner 413 // loop, from where the function might be returning. 414 // 415 // Note that the block is required to only have OpLabel, OpPhi or OpBranch instructions. 416 417 // The id of the merge block that needs to be modified. 418 uint32 merge_block_id = 1; 419 420 // A fresh id for a boolean OpPhi whose value will be true iff the function 421 // is returning. This will be used to decide whether to break out of the loop 422 // or to use the original branch of the function. This value will also be 423 // used by the merge block of the enclosing loop (if there is one) if the 424 // function is returning from this block. 425 uint32 is_returning_id = 2; 426 427 // A fresh id that will get the value being returned, if the function is 428 // returning. If the function return type is void, this is ignored. 429 uint32 maybe_return_val_id = 3; 430 431 // A mapping from each existing OpPhi id to a suitable id of the same type 432 // available to use before the instruction. 433 repeated UInt32Pair opphi_to_suitable_id = 4; 434} 435 436message LoopLimiterInfo { 437 438 // Structure capturing the information required to manipulate a loop limiter 439 // at a loop header. 440 441 // The header for the loop. 442 uint32 loop_header_id = 1; 443 444 // A fresh id into which the loop limiter's current value can be loaded. 445 uint32 load_id = 2; 446 447 // A fresh id that can be used to increment the loaded value by 1. 448 uint32 increment_id = 3; 449 450 // A fresh id that can be used to compare the loaded value with the loop 451 // limit. 452 uint32 compare_id = 4; 453 454 // A fresh id that can be used to compute the conjunction or disjunction of 455 // an original loop exit condition with |compare_id|, if the loop's back edge 456 // block can conditionally exit the loop. 457 uint32 logical_op_id = 5; 458 459 // A sequence of ids suitable for extending OpPhi instructions of the loop 460 // merge block if it did not previously have an incoming edge from the loop 461 // back edge block. 462 repeated uint32 phi_id = 6; 463 464} 465 466message TransformationSequence { 467 repeated Transformation transformation = 1; 468} 469 470message Transformation { 471 oneof transformation { 472 // Order the transformation options by numeric id (rather than 473 // alphabetically). 474 TransformationMoveBlockDown move_block_down = 1; 475 TransformationSplitBlock split_block = 2; 476 TransformationAddConstantBoolean add_constant_boolean = 3; 477 TransformationAddConstantScalar add_constant_scalar = 4; 478 TransformationAddTypeBoolean add_type_boolean = 5; 479 TransformationAddTypeFloat add_type_float = 6; 480 TransformationAddTypeInt add_type_int = 7; 481 TransformationAddDeadBreak add_dead_break = 8; 482 TransformationReplaceBooleanConstantWithConstantBinary 483 replace_boolean_constant_with_constant_binary = 9; 484 TransformationAddTypePointer add_type_pointer = 10; 485 TransformationReplaceConstantWithUniform replace_constant_with_uniform = 11; 486 TransformationAddDeadContinue add_dead_continue = 12; 487 TransformationReplaceIdWithSynonym replace_id_with_synonym = 13; 488 TransformationSetSelectionControl set_selection_control = 14; 489 TransformationCompositeConstruct composite_construct = 15; 490 TransformationSetLoopControl set_loop_control = 16; 491 TransformationSetFunctionControl set_function_control = 17; 492 TransformationAddNoContractionDecoration add_no_contraction_decoration = 18; 493 TransformationSetMemoryOperandsMask set_memory_operands_mask = 19; 494 TransformationCompositeExtract composite_extract = 20; 495 TransformationVectorShuffle vector_shuffle = 21; 496 TransformationOutlineFunction outline_function = 22; 497 TransformationMergeBlocks merge_blocks = 23; 498 TransformationAddTypeVector add_type_vector = 24; 499 TransformationAddTypeArray add_type_array = 25; 500 TransformationAddTypeMatrix add_type_matrix = 26; 501 TransformationAddTypeStruct add_type_struct = 27; 502 TransformationAddTypeFunction add_type_function = 28; 503 TransformationAddConstantComposite add_constant_composite = 29; 504 TransformationAddGlobalVariable add_global_variable = 30; 505 TransformationAddGlobalUndef add_global_undef = 31; 506 TransformationAddFunction add_function = 32; 507 TransformationAddDeadBlock add_dead_block = 33; 508 TransformationAddLocalVariable add_local_variable = 34; 509 TransformationLoad load = 35; 510 TransformationStore store = 36; 511 TransformationFunctionCall function_call = 37; 512 TransformationAccessChain access_chain = 38; 513 TransformationEquationInstruction equation_instruction = 39; 514 TransformationSwapCommutableOperands swap_commutable_operands = 40; 515 TransformationPermuteFunctionParameters permute_function_parameters = 41; 516 TransformationToggleAccessChainInstruction toggle_access_chain_instruction = 42; 517 TransformationAddConstantNull add_constant_null = 43; 518 TransformationComputeDataSynonymFactClosure compute_data_synonym_fact_closure = 44; 519 TransformationAdjustBranchWeights adjust_branch_weights = 45; 520 TransformationPushIdThroughVariable push_id_through_variable = 46; 521 TransformationAddSpecConstantOp add_spec_constant_op = 47; 522 TransformationReplaceLinearAlgebraInstruction replace_linear_algebra_instruction = 48; 523 TransformationSwapConditionalBranchOperands swap_conditional_branch_operands = 49; 524 TransformationPermutePhiOperands permute_phi_operands = 50; 525 TransformationAddParameter add_parameter = 51; 526 TransformationAddCopyMemory add_copy_memory = 52; 527 TransformationInvertComparisonOperator invert_comparison_operator = 53; 528 TransformationAddImageSampleUnusedComponents add_image_sample_unused_components = 54; 529 TransformationReplaceParameterWithGlobal replace_parameter_with_global = 55; 530 TransformationRecordSynonymousConstants record_synonymous_constants = 56; 531 TransformationAddSynonym add_synonym = 57; 532 TransformationAddRelaxedDecoration add_relaxed_decoration = 58; 533 TransformationReplaceParamsWithStruct replace_params_with_struct = 59; 534 TransformationReplaceCopyObjectWithStoreLoad replace_copy_object_with_store_load = 60; 535 TransformationReplaceCopyMemoryWithLoadStore replace_copy_memory_with_load_store = 61; 536 TransformationReplaceLoadStoreWithCopyMemory replace_load_store_with_copy_memory = 62; 537 TransformationAddLoopPreheader add_loop_preheader = 63; 538 TransformationMoveInstructionDown move_instruction_down = 64; 539 TransformationMakeVectorOperationDynamic make_vector_operation_dynamic = 65; 540 TransformationReplaceAddSubMulWithCarryingExtended replace_add_sub_mul_with_carrying_extended = 66; 541 TransformationPropagateInstructionUp propagate_instruction_up = 67; 542 TransformationCompositeInsert composite_insert = 68; 543 TransformationInlineFunction inline_function = 69; 544 TransformationAddOpPhiSynonym add_opphi_synonym = 70; 545 TransformationMutatePointer mutate_pointer = 71; 546 TransformationReplaceIrrelevantId replace_irrelevant_id = 72; 547 TransformationReplaceOpPhiIdFromDeadPredecessor replace_opphi_id_from_dead_predecessor = 73; 548 TransformationReplaceOpSelectWithConditionalBranch replace_opselect_with_conditional_branch = 74; 549 TransformationDuplicateRegionWithSelection duplicate_region_with_selection = 75; 550 TransformationFlattenConditionalBranch flatten_conditional_branch = 76; 551 TransformationAddBitInstructionSynonym add_bit_instruction_synonym = 77; 552 TransformationAddLoopToCreateIntConstantSynonym add_loop_to_create_int_constant_synonym = 78; 553 TransformationWrapRegionInSelection wrap_region_in_selection = 79; 554 TransformationAddEarlyTerminatorWrapper add_early_terminator_wrapper = 80; 555 TransformationPropagateInstructionDown propagate_instruction_down = 81; 556 TransformationReplaceBranchFromDeadBlockWithExit replace_branch_from_dead_block_with_exit = 82; 557 TransformationWrapEarlyTerminatorInFunction wrap_early_terminator_in_function = 83; 558 TransformationMergeFunctionReturns merge_function_returns = 84; 559 TransformationExpandVectorReduction expand_vector_reduction = 85; 560 // Add additional option using the next available number. 561 } 562} 563 564// Keep transformation message types in alphabetical order: 565 566message TransformationAccessChain { 567 568 // Adds an access chain instruction based on a given pointer and indices. 569 570 // When accessing a struct, the corresponding indices must be 32-bit integer constants. 571 // For any other composite, the indices can be any 32-bit integer, and the transformation 572 // adds two instructions for each such index to clamp it to the bound, as follows: 573 // 574 // %t1 = OpULessThanEqual %bool %index %bound_minus_one 575 // %t2 = OpSelect %int_type %t1 %index %bound_minus_one 576 577 // Result id for the access chain 578 uint32 fresh_id = 1; 579 580 // The pointer from which the access chain starts 581 uint32 pointer_id = 2; 582 583 // Zero or more access chain indices 584 repeated uint32 index_id = 3; 585 586 // A descriptor for an instruction in a block before which the new 587 // OpAccessChain instruction should be inserted 588 InstructionDescriptor instruction_to_insert_before = 4; 589 590 // Additional fresh ids, required to clamp index variables. A pair is needed 591 // for each access to a non-struct composite. 592 repeated UInt32Pair fresh_ids_for_clamping = 5; 593 594} 595 596message TransformationAddBitInstructionSynonym { 597 598 // A transformation that adds synonyms for bit instructions by evaluating 599 // each bit with the corresponding operation. There is a SPIR-V code example in the 600 // header file of the transformation class that can help understand the transformation. 601 602 // This transformation is only applicable if the described instruction has one of the following opcodes. 603 // Supported: 604 // OpBitwiseOr 605 // OpBitwiseXor 606 // OpBitwiseAnd 607 // OpNot 608 // To be supported in the future: 609 // OpShiftRightLogical 610 // OpShiftRightArithmetic 611 // OpShiftLeftLogical 612 // OpBitReverse 613 // OpBitCount 614 615 // The bit instruction result id. 616 uint32 instruction_result_id = 1; 617 618 // The fresh ids required to apply the transformation. 619 repeated uint32 fresh_ids = 2; 620 621} 622 623message TransformationAddConstantBoolean { 624 625 // Supports adding the constants true and false to a module, which may be 626 // necessary in order to enable other transformations if they are not present. 627 // Also, creates an IdIsIrrelevant fact about |fresh_id| if |is_irrelevant| is true. 628 629 uint32 fresh_id = 1; 630 bool is_true = 2; 631 632 // If the constant should be marked as irrelevant. 633 bool is_irrelevant = 3; 634 635} 636 637message TransformationAddConstantComposite { 638 639 // Adds a constant of the given composite type to the module. 640 // Also, creates an IdIsIrrelevant fact about |fresh_id| if 641 // |is_irrelevant| is true. 642 643 // Fresh id for the composite 644 uint32 fresh_id = 1; 645 646 // A composite type id 647 uint32 type_id = 2; 648 649 // Constituent ids for the composite 650 repeated uint32 constituent_id = 3; 651 652 // If the constant should be marked as irrelevant. 653 bool is_irrelevant = 4; 654 655} 656 657message TransformationAddConstantNull { 658 659 // Adds a null constant. 660 661 // Id for the constant 662 uint32 fresh_id = 1; 663 664 // Type of the constant 665 uint32 type_id = 2; 666 667} 668 669message TransformationAddConstantScalar { 670 671 // Adds a constant of the given scalar type. 672 // Also, creates an IdIsIrrelevant fact about 673 // |fresh_id| if |is_irrelevant| is true. 674 675 // Id for the constant 676 uint32 fresh_id = 1; 677 678 // Id for the scalar type of the constant 679 uint32 type_id = 2; 680 681 // Value of the constant 682 repeated uint32 word = 3; 683 684 // If the constant should be marked as irrelevant. 685 bool is_irrelevant = 4; 686 687} 688 689message TransformationAddCopyMemory { 690 691 // Adds an OpCopyMemory instruction into the module. 692 // Creates either a global or a local variable (based on 693 // |storage_class| field) to copy the target into. 694 695 // OpCopyMemory will be inserted before this instruction. 696 InstructionDescriptor instruction_descriptor = 1; 697 698 // Fresh id to copy memory into. 699 uint32 fresh_id = 2; 700 701 // Source to copy memory from. 702 uint32 source_id = 3; 703 704 // Storage class for the target variable. Can be either Function or Private. 705 uint32 storage_class = 4; 706 707 // Result id for the variable's initializer operand. Its type must be equal to 708 // variable's pointee type. 709 uint32 initializer_id = 5; 710 711} 712 713message TransformationAddDeadBlock { 714 715 // Adds a new block to the module that is statically reachable from an 716 // existing block, but dynamically unreachable. 717 718 // Fresh id for the dead block 719 uint32 fresh_id = 1; 720 721 // Id of an existing block terminated with OpBranch, such that this OpBranch 722 // can be replaced with an OpBranchConditional to its exiting successor or 723 // the dead block 724 uint32 existing_block = 2; 725 726 // Determines whether the condition associated with the OpBranchConditional 727 // is true or false 728 bool condition_value = 3; 729 730} 731 732message TransformationAddDeadBreak { 733 734 // A transformation that turns a basic block that unconditionally branches to 735 // its successor into a block that potentially breaks out of a structured 736 // control flow construct, but in such a manner that the break cannot actually 737 // be taken. 738 739 // The block to break from 740 uint32 from_block = 1; 741 742 // The merge block to break to 743 uint32 to_block = 2; 744 745 // Determines whether the break condition is true or false 746 bool break_condition_value = 3; 747 748 // A sequence of ids suitable for extending OpPhi instructions as a result of 749 // the new break edge 750 repeated uint32 phi_id = 4; 751 752} 753 754message TransformationAddDeadContinue { 755 756 // A transformation that turns a basic block appearing in a loop and that 757 // unconditionally branches to its successor into a block that potentially 758 // branches to the continue target of the loop, but in such a manner that the 759 // continue branch cannot actually be taken. 760 761 // The block to continue from 762 uint32 from_block = 1; 763 764 // Determines whether the continue condition is true or false 765 bool continue_condition_value = 2; 766 767 // A sequence of ids suitable for extending OpPhi instructions as a result of 768 // the new break edge 769 repeated uint32 phi_id = 3; 770 771} 772 773message TransformationAddEarlyTerminatorWrapper { 774 775 // Adds a function to the module containing a single block with a single non- 776 // label instruction that is either OpKill, OpUnreachable, or 777 // OpTerminateInvocation. The purpose of this is to allow such instructions 778 // to be subsequently replaced with wrapper functions, which can then enable 779 // transformations (such as inlining) that are hard in the direct presence 780 // of these instructions. 781 782 // Fresh id for the function. 783 uint32 function_fresh_id = 1; 784 785 // Fresh id for the single basic block in the function. 786 uint32 label_fresh_id = 2; 787 788 // One of OpKill, OpUnreachable, OpTerminateInvocation. If additional early 789 // termination instructions are added to SPIR-V they should also be handled 790 // here. 791 uint32 opcode = 3; 792 793} 794 795message TransformationAddFunction { 796 797 // Adds a SPIR-V function to the module. 798 799 // The series of instructions that comprise the function. 800 repeated Instruction instruction = 1; 801 802 // True if and only if the given function should be made livesafe (see 803 // FactFunctionIsLivesafe for definition). 804 bool is_livesafe = 2; 805 806 // Fresh id for a new variable that will serve as a "loop limiter" for the 807 // function; only relevant if |is_livesafe| holds. 808 uint32 loop_limiter_variable_id = 3; 809 810 // Id of an existing unsigned integer constant providing the maximum value 811 // that the loop limiter can reach before the loop is broken from; only 812 // relevant if |is_livesafe| holds. 813 uint32 loop_limit_constant_id = 4; 814 815 // Fresh ids for each loop in the function that allow the loop limiter to be 816 // manipulated; only relevant if |is_livesafe| holds. 817 repeated LoopLimiterInfo loop_limiter_info = 5; 818 819 // Id of an existing global value with the same return type as the function 820 // that can be used to replace OpKill and OpReachable instructions with 821 // ReturnValue instructions. Ignored if the function has void return type. 822 // Only relevant if |is_livesafe| holds. 823 uint32 kill_unreachable_return_value_id = 6; 824 825 // A mapping (represented as a sequence) from every access chain result id in 826 // the function to the ids required to clamp its indices to ensure they are in 827 // bounds; only relevant if |is_livesafe| holds. 828 repeated AccessChainClampingInfo access_chain_clamping_info = 7; 829 830} 831 832message TransformationAddGlobalUndef { 833 834 // Adds an undefined value of a given type to the module at global scope. 835 836 // Fresh id for the undefined value 837 uint32 fresh_id = 1; 838 839 // The type of the undefined value 840 uint32 type_id = 2; 841 842} 843 844message TransformationAddGlobalVariable { 845 846 // Adds a global variable of the given type to the module, with Private or 847 // Workgroup storage class, and optionally (for the Private case) with an 848 // initializer. 849 850 // Fresh id for the global variable 851 uint32 fresh_id = 1; 852 853 // The type of the global variable 854 uint32 type_id = 2; 855 856 uint32 storage_class = 3; 857 858 // Initial value of the variable 859 uint32 initializer_id = 4; 860 861 // True if and only if the behaviour of the module should not depend on the 862 // value of the variable, in which case stores to the variable can be 863 // performed in an arbitrary fashion. 864 bool value_is_irrelevant = 5; 865 866} 867 868message TransformationAddImageSampleUnusedComponents { 869 870 // A transformation that adds unused components to an image sample coordinate. 871 872 // An vector id with the original coordinate and the unused components. 873 uint32 coordinate_with_unused_components_id = 1; 874 875 // A descriptor for an image sample instruction. 876 InstructionDescriptor instruction_descriptor = 2; 877 878} 879 880message TransformationAddLocalVariable { 881 882 // Adds a local variable of the given type (which must be a pointer with 883 // Function storage class) to the given function, initialized to the given 884 // id. 885 886 // Fresh id for the local variable 887 uint32 fresh_id = 1; 888 889 // The type of the local variable 890 uint32 type_id = 2; 891 892 // The id of the function to which the local variable should be added 893 uint32 function_id = 3; 894 895 // Initial value of the variable 896 uint32 initializer_id = 4; 897 898 // True if and only if the behaviour of the module should not depend on the 899 // value of the variable, in which case stores to the variable can be 900 // performed in an arbitrary fashion. 901 bool value_is_irrelevant = 5; 902 903} 904 905message TransformationAddLoopPreheader { 906 907 // A transformation that adds a loop preheader block before the given loop header. 908 909 // The id of the loop header block 910 uint32 loop_header_block = 1; 911 912 // A fresh id for the preheader block 913 uint32 fresh_id = 2; 914 915 // Fresh ids for splitting the OpPhi instructions in the header. 916 // A new OpPhi instruction in the preheader is needed for each OpPhi instruction in the header, 917 // if the header has more than one predecessor outside of the loop. 918 // This allows turning instructions of the form: 919 // 920 // %loop_header_block = OpLabel 921 // %id1 = OpPhi %type %val1 %pred1_id %val2 %pred2_id %val3 %backedge_block_id 922 // 923 // into: 924 // %fresh_id = OpLabel 925 // %phi_id1 = OpPhi %type %val1 %pred1_id %val2 %pred2_id 926 // OpBranch %header_id 927 // %loop_header_block = OpLabel 928 // %id1 = OpPhi %type %phi_id1 %fresh_id %val3 %backedge_block_id 929 repeated uint32 phi_id = 3; 930 931} 932 933message TransformationAddLoopToCreateIntConstantSynonym { 934 // A transformation that uses a loop to create a synonym for an integer 935 // constant C (scalar or vector) using an initial value I, a step value S and 936 // a number of iterations N such that C = I - N * S. For each iteration, S is 937 // subtracted from the total. 938 // The loop can be made up of one or two blocks, and it is inserted before a 939 // block with a single predecessor. In the one-block case, it is of the form: 940 // 941 // %loop_id = OpLabel 942 // %ctr_id = OpPhi %int %int_0 %pred %incremented_ctr_id %loop_id 943 // %temp_id = OpPhi %type_of_I %I %pred %eventual_syn_id %loop_id 944 // %eventual_syn_id = OpISub %type_of_I %temp_id %step_val_id 945 // %incremented_ctr_id = OpIAdd %int %ctr_id %int_1 946 // %cond_id = OpSLessThan %bool %incremented_ctr_id %num_iterations_id 947 // OpLoopMerge %block_after_loop_id %loop_id None 948 // OpBranchConditional %cond_id %loop_id %block_after_loop_id 949 // 950 // A new OpPhi instruction is then added to %block_after_loop_id, as follows: 951 // 952 // %block_after_loop_id = OpLabel 953 // %syn_id = OpPhi %type_of_I %eventual_syn_id %loop_id 954 // 955 // This can be translated, assuming that N > 0, to: 956 // int syn = I; 957 // for (int ctr = 0; ctr < N; ctr++) syn = syn - S; 958 // 959 // All existing OpPhi instructions in %block_after_loop_id are also updated 960 // to reflect the fact that its predecessor is now %loop_id. 961 962 // The following are existing ids. 963 964 // The id of the integer constant C that we want a synonym of. 965 uint32 constant_id = 1; 966 967 // The id of the initial value integer constant I. 968 uint32 initial_val_id = 2; 969 970 // The id of the step value integer constant S. 971 uint32 step_val_id = 3; 972 973 // The id of the integer scalar constant, its value being the number of 974 // iterations N. 975 uint32 num_iterations_id = 4; 976 977 // The label id of the block before which the loop must be inserted. 978 uint32 block_after_loop_id = 5; 979 980 981 // The following are fresh ids. 982 983 // A fresh id for the synonym. 984 uint32 syn_id = 6; 985 986 // A fresh id for the label of the loop, 987 uint32 loop_id = 7; 988 989 // A fresh id for the counter. 990 uint32 ctr_id = 8; 991 992 // A fresh id taking the value I - S * ctr at the ctr-th iteration. 993 uint32 temp_id = 9; 994 995 // A fresh id taking the value I - S * (ctr + 1) at the ctr-th iteration, and 996 // thus I - S * N at the last iteration. 997 uint32 eventual_syn_id = 10; 998 999 // A fresh id for the incremented counter. 1000 uint32 incremented_ctr_id = 11; 1001 1002 // A fresh id for the loop condition. 1003 uint32 cond_id = 12; 1004 1005 // The instructions in the loop can also be laid out in two basic blocks, as follows: 1006 // 1007 // %loop_id = OpLabel 1008 // %ctr_id = OpPhi %int %int_0 %pred %incremented_ctr_id %loop_id 1009 // %temp_id = OpPhi %type_of_I %I %pred %eventual_syn_id %loop_id 1010 // OpLoopMerge %block_after_loop_id %additional_block_id None 1011 // OpBranch %additional_block_id 1012 // 1013 // %additional_block_id = OpLabel 1014 // %eventual_syn_id = OpISub %type_of_I %temp_id %step_val_id 1015 // %incremented_ctr_id = OpIAdd %int %ctr_id %int_1 1016 // %cond_id = OpSLessThan %bool %incremented_ctr_id %num_iterations_id 1017 // OpBranchConditional %cond_id %loop_id %block_after_loop_id 1018 1019 // A fresh id for the additional block. If this is 0, it means that only one 1020 // block is to be created. 1021 uint32 additional_block_id = 13; 1022} 1023 1024message TransformationAddNoContractionDecoration { 1025 1026 // Applies OpDecorate NoContraction to the given result id 1027 1028 // Result id to be decorated 1029 uint32 result_id = 1; 1030 1031} 1032 1033message TransformationAddOpPhiSynonym { 1034 1035 // Adds an OpPhi instruction at the start of a block with n predecessors (pred_1, pred_2, ..., pred_n) 1036 // and n related ids (id_1, id_2, ..., id_n) which are pairwise synonymous. 1037 // The instruction will be of the form: 1038 // %fresh_id = OpPhi %type %id_1 %pred_1 %id_2 %pred_2 ... %id_n %pred_n 1039 // and fresh_id will be recorded as being synonymous with all the other ids. 1040 1041 // Label id of the block 1042 uint32 block_id = 1; 1043 1044 // Pairs (pred_i, id_i) 1045 repeated UInt32Pair pred_to_id = 2; 1046 1047 // Fresh id for the new instruction 1048 uint32 fresh_id = 3; 1049} 1050 1051message TransformationAddParameter { 1052 1053 // Adds a new parameter into the function. 1054 1055 // Result id of the function to add parameters to. 1056 uint32 function_id = 1; 1057 1058 // Fresh id for a new parameter. 1059 uint32 parameter_fresh_id = 2; 1060 1061 // Type id for a new parameter. 1062 uint32 parameter_type_id = 3; 1063 1064 // A map that maps from the OpFunctionCall id to the id that will be passed as the new 1065 // parameter at that call site. It must have the same type as that of the new parameter. 1066 repeated UInt32Pair call_parameter_ids = 4; 1067 1068 // A fresh id for a new function type. This might not be used 1069 // if a required function type already exists or if we can change 1070 // the old function type. 1071 uint32 function_type_fresh_id = 5; 1072 1073} 1074 1075message TransformationAddRelaxedDecoration { 1076 1077 // Applies OpDecorate RelaxedPrecision to the given result id 1078 1079 // Result id to be decorated 1080 uint32 result_id = 1; 1081 1082} 1083 1084message TransformationAddSpecConstantOp { 1085 1086 // Adds OpSpecConstantOp into the module. 1087 1088 // Result id for the new instruction. 1089 uint32 fresh_id = 1; 1090 1091 // Type id for the new instruction. 1092 uint32 type_id = 2; 1093 1094 // Opcode operand of the OpSpecConstantOp instruction. 1095 uint32 opcode = 3; 1096 1097 // Operands of the |opcode| instruction. 1098 repeated InstructionOperand operand = 4; 1099 1100} 1101 1102message TransformationAddSynonym { 1103 1104 // Adds a |synonymous_instruction| before |insert_before| instruction with 1105 // and creates a fact that |result_id| and the result id of |synonymous_instruction| 1106 // are synonymous. 1107 1108 // Result id of the first synonym. 1109 uint32 result_id = 1; 1110 1111 // Type of the synonym to apply. Some types might produce instructions 1112 // with commutative operands. Such types do not specify the order of the 1113 // operands since we have a special transformation to swap commutable operands. 1114 // 1115 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3499): 1116 // Consider adding more types here. 1117 enum SynonymType { 1118 // New synonym is derived by adding zero to the |result_id|. 1119 ADD_ZERO = 0; 1120 1121 // New synonym is derived by subtracting zero from the |result_id|. 1122 SUB_ZERO = 1; 1123 1124 // New synonym is derived by multiplying |result_id| by one. 1125 MUL_ONE = 2; 1126 1127 // New synonym is derived by applying OpCopyObject instruction to |result_id|. 1128 COPY_OBJECT = 3; 1129 1130 // New synonym is derived by applying OpLogicalOr to |result_id| with the second 1131 // operand being 'false'. 1132 LOGICAL_OR = 4; 1133 1134 // New synonym is derived by applying OpLogicalAnd to |result_id| with the second 1135 // operand being 'true'. 1136 LOGICAL_AND = 5; 1137 } 1138 1139 // Type of the synonym to create. See SynonymType for more details. 1140 SynonymType synonym_type = 2; 1141 1142 // Fresh result id for a created synonym. 1143 uint32 synonym_fresh_id = 3; 1144 1145 // An instruction to insert a new synonym before. 1146 InstructionDescriptor insert_before = 4; 1147 1148} 1149 1150message TransformationAddTypeArray { 1151 1152 // Adds an array type of the given element type and size to the module 1153 1154 // Fresh id for the array type 1155 uint32 fresh_id = 1; 1156 1157 // The array's element type 1158 uint32 element_type_id = 2; 1159 1160 // The array's size 1161 uint32 size_id = 3; 1162 1163} 1164 1165message TransformationAddTypeBoolean { 1166 1167 // Adds OpTypeBool to the module 1168 1169 // Id to be used for the type 1170 uint32 fresh_id = 1; 1171 1172} 1173 1174message TransformationAddTypeFloat { 1175 1176 // Adds OpTypeFloat to the module with the given width 1177 1178 // Id to be used for the type 1179 uint32 fresh_id = 1; 1180 1181 // Floating-point width 1182 uint32 width = 2; 1183 1184} 1185 1186message TransformationAddTypeFunction { 1187 1188 // Adds a function type to the module 1189 1190 // Fresh id for the function type 1191 uint32 fresh_id = 1; 1192 1193 // The function's return type 1194 uint32 return_type_id = 2; 1195 1196 // The function's argument types 1197 repeated uint32 argument_type_id = 3; 1198 1199} 1200 1201message TransformationAddTypeInt { 1202 1203 // Adds OpTypeInt to the module with the given width and signedness 1204 1205 // Id to be used for the type 1206 uint32 fresh_id = 1; 1207 1208 // Integer width 1209 uint32 width = 2; 1210 1211 // True if and only if this is a signed type 1212 bool is_signed = 3; 1213 1214} 1215 1216message TransformationAddTypeMatrix { 1217 1218 // Adds a matrix type to the module 1219 1220 // Fresh id for the matrix type 1221 uint32 fresh_id = 1; 1222 1223 // The matrix's column type, which must be a floating-point vector (as per 1224 // the "data rules" in the SPIR-V specification). 1225 uint32 column_type_id = 2; 1226 1227 // The matrix's column count 1228 uint32 column_count = 3; 1229 1230} 1231 1232message TransformationAddTypePointer { 1233 1234 // Adds OpTypePointer to the module, with the given storage class and base 1235 // type 1236 1237 // Id to be used for the type 1238 uint32 fresh_id = 1; 1239 1240 // Pointer storage class 1241 uint32 storage_class = 2; 1242 1243 // Id of the base type for the pointer 1244 uint32 base_type_id = 3; 1245 1246} 1247 1248message TransformationAddTypeStruct { 1249 1250 // Adds a struct type to the module 1251 1252 // Fresh id for the struct type 1253 uint32 fresh_id = 1; 1254 1255 // The struct's member types 1256 repeated uint32 member_type_id = 3; 1257 1258} 1259 1260message TransformationAddTypeVector { 1261 1262 // Adds a vector type to the module 1263 1264 // Fresh id for the vector type 1265 uint32 fresh_id = 1; 1266 1267 // The vector's component type 1268 uint32 component_type_id = 2; 1269 1270 // The vector's component count 1271 uint32 component_count = 3; 1272 1273} 1274 1275message TransformationAdjustBranchWeights { 1276 1277 // A transformation that adjusts the branch weights 1278 // of a branch conditional instruction. 1279 1280 // A descriptor for a branch conditional instruction. 1281 InstructionDescriptor instruction_descriptor = 1; 1282 1283 // Branch weights of a branch conditional instruction. 1284 UInt32Pair branch_weights = 2; 1285 1286} 1287 1288message TransformationCompositeConstruct { 1289 1290 // A transformation that introduces an OpCompositeConstruct instruction to 1291 // make a composite object. 1292 1293 // Id of the type of the composite that is to be constructed 1294 uint32 composite_type_id = 1; 1295 1296 // Ids of the objects that will form the components of the composite 1297 repeated uint32 component = 2; 1298 1299 // A descriptor for an instruction in a block before which the new 1300 // OpCompositeConstruct instruction should be inserted 1301 InstructionDescriptor instruction_to_insert_before = 3; 1302 1303 // A fresh id for the composite object 1304 uint32 fresh_id = 4; 1305 1306} 1307 1308message TransformationCompositeExtract { 1309 1310 // A transformation that adds an instruction to extract an element from a 1311 // composite. 1312 1313 // A descriptor for an instruction in a block before which the new 1314 // OpCompositeExtract instruction should be inserted 1315 InstructionDescriptor instruction_to_insert_before = 1; 1316 1317 // Result id for the extract operation. 1318 uint32 fresh_id = 2; 1319 1320 // Id of the composite from which data is to be extracted. 1321 uint32 composite_id = 3; 1322 1323 // Indices that indicate which part of the composite should be extracted. 1324 repeated uint32 index = 4; 1325 1326} 1327 1328message TransformationCompositeInsert { 1329 1330 // A transformation that adds an instruction OpCompositeInsert which creates 1331 // a new composite from an existing composite, with an element inserted. 1332 1333 // A descriptor for an instruction before which the new instruction 1334 // OpCompositeInsert should be inserted. 1335 InstructionDescriptor instruction_to_insert_before = 1; 1336 1337 // Result id of the inserted OpCompositeInsert instruction. 1338 uint32 fresh_id = 2; 1339 1340 // Id of the composite used as the basis for the insertion. 1341 uint32 composite_id = 3; 1342 1343 // Id of the object to be inserted. 1344 uint32 object_id = 4; 1345 1346 // Indices that indicate which part of the composite should be inserted into. 1347 repeated uint32 index = 5; 1348 1349} 1350 1351message TransformationComputeDataSynonymFactClosure { 1352 1353 // A transformation that impacts the fact manager only, forcing a computation 1354 // of the closure of data synonym facts, so that e.g. if the components of 1355 // vectors v and w are known to be pairwise synonymous, it is deduced that v 1356 // and w are themselves synonymous. 1357 1358 // When searching equivalence classes for implied facts, equivalence classes 1359 // larger than this size will be skipped. 1360 uint32 maximum_equivalence_class_size = 1; 1361 1362} 1363 1364message TransformationDuplicateRegionWithSelection { 1365 1366 // A transformation that inserts a conditional statement with a boolean expression 1367 // of arbitrary value and duplicates a given single-entry, single-exit region, so 1368 // that it is present in each conditional branch and will be executed regardless 1369 // of which branch will be taken. 1370 1371 // Fresh id for a label of the new entry block. 1372 uint32 new_entry_fresh_id = 1; 1373 1374 // Id for a boolean expression. 1375 uint32 condition_id = 2; 1376 1377 // Fresh id for a label of the merge block of the conditional. 1378 uint32 merge_label_fresh_id = 3; 1379 1380 // Block id of the entry block of the original region. 1381 uint32 entry_block_id = 4; 1382 1383 // Block id of the exit block of the original region. 1384 uint32 exit_block_id = 5; 1385 1386 // Map that maps from a label in the original region to the corresponding label 1387 // in the duplicated region. 1388 repeated UInt32Pair original_label_to_duplicate_label = 6; 1389 1390 // Map that maps from a result id in the original region to the corresponding 1391 // result id in the duplicated region. 1392 repeated UInt32Pair original_id_to_duplicate_id = 7; 1393 1394 // Map that maps from a result id in the original region to the result id of the 1395 // corresponding OpPhi instruction. 1396 repeated UInt32Pair original_id_to_phi_id = 8; 1397} 1398 1399message TransformationEquationInstruction { 1400 1401 // A transformation that adds an instruction to the module that defines an 1402 // equation between its result id and input operand ids, such that the 1403 // equation is guaranteed to hold at any program point where all ids involved 1404 // are available (i.e. at any program point dominated by the instruction). 1405 1406 // The result id of the new instruction 1407 uint32 fresh_id = 1; 1408 1409 // The instruction's opcode 1410 uint32 opcode = 2; 1411 1412 // The input operands to the instruction 1413 repeated uint32 in_operand_id = 3; 1414 1415 // A descriptor for an instruction in a block before which the new 1416 // instruction should be inserted 1417 InstructionDescriptor instruction_to_insert_before = 4; 1418 1419} 1420 1421message TransformationExpandVectorReduction { 1422 1423 // A transformation that adds synonyms for OpAny and OpAll instructions by 1424 // evaluating each vector component with the corresponding logical operation. 1425 // There is a SPIR-V code example in the header file of the transformation 1426 // class that can help understand the transformation. 1427 1428 // The OpAny or OpAll instruction result id. 1429 uint32 instruction_result_id = 1; 1430 1431 // The fresh ids required to apply the transformation. 1432 repeated uint32 fresh_ids = 2; 1433 1434} 1435 1436message TransformationFlattenConditionalBranch { 1437 1438 // A transformation that takes a selection construct with a header 1439 // containing an OpBranchConditional instruction and flattens it. 1440 // For example, something of the form: 1441 // 1442 // %1 = OpLabel 1443 // [header instructions] 1444 // OpSelectionMerge %4 None 1445 // OpBranchConditional %cond %2 %3 1446 // %2 = OpLabel 1447 // [true branch instructions] 1448 // OpBranch %4 1449 // %3 = OpLabel 1450 // [false branch instructions] 1451 // OpBranch %4 1452 // %4 = OpLabel 1453 // ... 1454 // 1455 // becomes: 1456 // 1457 // %1 = OpLabel 1458 // [header instructions] 1459 // OpBranch %2 1460 // %2 = OpLabel 1461 // [true branch instructions] 1462 // OpBranch %3 1463 // %3 = OpLabel 1464 // [false branch instructions] 1465 // OpBranch %4 1466 // %4 = OpLabel 1467 // ... 1468 // 1469 // If all of the instructions in the true or false branches have 1470 // no side effects, this is semantics-preserving. 1471 // Side-effecting instructions will instead be enclosed by smaller 1472 // conditionals. For more details, look at the definition for the 1473 // SideEffectWrapperInfo message. 1474 // 1475 // Nested conditionals or loops are not supported. The false branch 1476 // could also be executed before the true branch, depending on the 1477 // |true_branch_first| field. 1478 1479 // The label id of the header block 1480 uint32 header_block_id = 1; 1481 1482 // A boolean field deciding the order in which the original branches 1483 // will be laid out: the true branch will be laid out first iff this 1484 // field is true. 1485 bool true_branch_first = 2; 1486 1487 // If the convergence block contains an OpPhi with bvec2 result type, it may 1488 // be necessary to introduce a bvec2 with the selection construct's condition 1489 // in both components in order to turn the OpPhi into an OpSelect. This 1490 // this field provides a fresh id for an OpCompositeConstruct instruction for 1491 // this purpose. It should be set to 0 if no such instruction is required. 1492 uint32 fresh_id_for_bvec2_selector = 3; 1493 1494 // The same as |fresh_id_for_bvec2_selector| but for the bvec3 case. 1495 uint32 fresh_id_for_bvec3_selector = 4; 1496 1497 // The same as |fresh_id_for_bvec2_selector| but for the bvec4 case. 1498 uint32 fresh_id_for_bvec4_selector = 5; 1499 1500 // A list of instructions with side effects, which must be enclosed 1501 // inside smaller conditionals before flattening the main one, and 1502 // the corresponding fresh ids and module ids needed. 1503 repeated SideEffectWrapperInfo side_effect_wrapper_info = 6; 1504} 1505 1506message TransformationFunctionCall { 1507 1508 // A transformation that introduces an OpFunctionCall instruction. The call 1509 // must not make the module's call graph cyclic. Beyond that, if the call 1510 // is in a dead block it can be to any function with arbitrary suitably-typed 1511 // arguments; otherwise it must be to a livesafe function, with injected 1512 // variables as pointer arguments and arbitrary non-pointer arguments. 1513 1514 // A fresh id for the result of the call 1515 uint32 fresh_id = 1; 1516 1517 // Id of the function to be called 1518 uint32 callee_id = 2; 1519 1520 // Ids for arguments to the function 1521 repeated uint32 argument_id = 3; 1522 1523 // A descriptor for an instruction in a block before which the new 1524 // OpFunctionCall instruction should be inserted 1525 InstructionDescriptor instruction_to_insert_before = 4; 1526 1527} 1528 1529message TransformationInlineFunction { 1530 1531 // This transformation inlines a function by mapping the function instructions to fresh ids. 1532 1533 // Result id of the function call instruction. 1534 uint32 function_call_id = 1; 1535 1536 // For each result id defined by the called function, 1537 // this map provides an associated fresh id that can 1538 // be used in the inlined version of the function call. 1539 repeated UInt32Pair result_id_map = 2; 1540 1541} 1542 1543message TransformationInvertComparisonOperator { 1544 1545 // For some instruction with result id |operator_id| that 1546 // represents a binary comparison operator (e.g. <, >, <=), this transformation 1547 // will replace that instruction's result id with |fresh_id|, 1548 // invert the opcode (< will become >=) and insert OpLogicalNot 1549 // instruction with result id |operator_id| below. 1550 1551 // Result id of the instruction to invert. 1552 uint32 operator_id = 1; 1553 1554 // Fresh id that will be used by the operator after the inversion. 1555 uint32 fresh_id = 2; 1556 1557} 1558 1559message TransformationLoad { 1560 1561 // Transformation that adds an OpLoad instruction from a pointer into an id. 1562 1563 // The result of the load instruction 1564 uint32 fresh_id = 1; 1565 1566 // The pointer to be loaded from 1567 uint32 pointer_id = 2; 1568 1569 // A descriptor for an instruction in a block before which the new OpLoad 1570 // instruction should be inserted 1571 InstructionDescriptor instruction_to_insert_before = 3; 1572 1573} 1574 1575message TransformationMakeVectorOperationDynamic { 1576 1577 // A transformation that replaces the OpCompositeExtract and OpCompositeInsert 1578 // instructions with the OpVectorExtractDynamic and OpVectorInsertDynamic instructions. 1579 1580 // The composite instruction result id. 1581 uint32 instruction_result_id = 1; 1582 1583 // The OpCompositeExtract/Insert instructions accept integer literals as indices to the composite object. 1584 // However, the OpVectorInsert/ExtractDynamic instructions require its single index to be an integer instruction. 1585 // This is the result id of the integer instruction. 1586 uint32 constant_index_id = 2; 1587 1588} 1589 1590message TransformationMergeBlocks { 1591 1592 // A transformation that merges a block with its predecessor. 1593 1594 // The id of the block that is to be merged with its predecessor; the merged 1595 // block will have the *predecessor's* id. 1596 uint32 block_id = 1; 1597 1598} 1599 1600message TransformationMergeFunctionReturns { 1601 1602 // A transformation that modifies a function so that it does not return early, 1603 // so it only has one return statement (ignoring unreachable blocks). 1604 // 1605 // The function is enclosed inside an outer loop, that is only executed once, 1606 // and whose merge block is the new return block of the function. 1607 // 1608 // Each return instruction is replaced by: 1609 // OpBranch %innermost_loop_merge 1610 // where %innermost_loop_merge is the innermost loop containing the return 1611 // instruction. 1612 // 1613 // Each merge block whose associated loop contains return instructions is 1614 // changed so that it branches to the merge block of the loop containing it, 1615 // as explained in the comments to the ReturnMergingInfo message. 1616 // 1617 // The new return block (the merge block of the new outer loop) will be of 1618 // the following form (if the return type is not void): 1619 // %outer_return_id = OpLabel 1620 // %return_val_id = OpPhi %return_type %val1 %block_1 %val2 %block_2 ... 1621 // OpReturnValue %return_val_id 1622 // where %block_k is either a return block that, in the original function, is 1623 // outside of any loops, or the merge block of a loop that contains return 1624 // instructions and is not, originally, nested inside another loop, and 1625 // %block_k is the corresponding return value. 1626 // If the function has void type, there will be no OpPhi instruction and the 1627 // last instruction will be OpReturn. 1628 1629 // The id of the function to which the transformation is being applied. 1630 uint32 function_id = 1; 1631 1632 // A fresh id for the header of the new outer loop. 1633 uint32 outer_header_id = 2; 1634 1635 // A fresh id for the new return block of the function, 1636 // i.e. the merge block of the new outer loop. 1637 uint32 outer_return_id = 3; 1638 1639 // A fresh id for the value that will be returned. 1640 // This is ignored if the function has void return type. 1641 uint32 return_val_id = 4; 1642 1643 // An existing id of the same type as the return value, which is 1644 // available to use at the end of the entry block. 1645 // This is ignored if the function has void return type or if no 1646 // loops in the function contain a return instruction. 1647 // If the function is not void, the transformation will add an 1648 // OpPhi instruction to each merge block whose associated loop 1649 // contains at least a return instruction. The value associated 1650 // with existing predecessors from which the function cannot be 1651 // returning will be this id, used as a placeholder. 1652 uint32 any_returnable_val_id = 5; 1653 1654 // The information needed to modify the merge blocks of 1655 // loops containing return instructions. 1656 repeated ReturnMergingInfo return_merging_info = 6; 1657} 1658 1659message TransformationMoveBlockDown { 1660 1661 // A transformation that moves a basic block to be one position lower in 1662 // program order. 1663 1664 // The id of the block to move down. 1665 uint32 block_id = 1; 1666} 1667 1668message TransformationMoveInstructionDown { 1669 1670 // Swaps |instruction| with the next instruction in the block. 1671 1672 // The instruction to move down. 1673 InstructionDescriptor instruction = 1; 1674 1675} 1676 1677message TransformationMutatePointer { 1678 1679 // Backs up value of the pointer, writes into the pointer and 1680 // restores the original value. 1681 1682 // Result id of the pointer instruction to mutate. 1683 uint32 pointer_id = 1; 1684 1685 // Fresh id for the OpLoad instruction. 1686 uint32 fresh_id = 2; 1687 1688 // Instruction to insert backup, mutation and restoration code before. 1689 InstructionDescriptor insert_before = 3; 1690 1691} 1692 1693message TransformationOutlineFunction { 1694 1695 // A transformation that outlines a single-entry single-exit region of a 1696 // control flow graph into a separate function, and replaces the region with 1697 // a call to that function. 1698 1699 // Id of the entry block of the single-entry single-exit region to be outlined 1700 uint32 entry_block = 1; 1701 1702 // Id of the exit block of the single-entry single-exit region to be outlined 1703 uint32 exit_block = 2; 1704 1705 // Id of a struct that will store the return values of the new function 1706 uint32 new_function_struct_return_type_id = 3; 1707 1708 // A fresh id for the type of the outlined function 1709 uint32 new_function_type_id = 4; 1710 1711 // A fresh id for the outlined function itself 1712 uint32 new_function_id = 5; 1713 1714 // A fresh id to represent the block in the outlined function that represents 1715 // the first block of the outlined region. 1716 uint32 new_function_region_entry_block = 6; 1717 1718 // A fresh id for the result of the OpFunctionCall instruction that will call 1719 // the outlined function 1720 uint32 new_caller_result_id = 7; 1721 1722 // A fresh id to capture the return value of the outlined function - the 1723 // argument to OpReturn 1724 uint32 new_callee_result_id = 8; 1725 1726 // Ids defined outside the region and used inside the region will become 1727 // parameters to the outlined function. This is a mapping from used ids to 1728 // fresh parameter ids. 1729 repeated UInt32Pair input_id_to_fresh_id = 9; 1730 1731 // Ids defined inside the region and used outside the region will become 1732 // fresh ids defined by the outlined function, which get copied into the 1733 // function's struct return value and then copied into their destination ids 1734 // by the caller. This is a mapping from original ids to corresponding fresh 1735 // ids. 1736 repeated UInt32Pair output_id_to_fresh_id = 10; 1737 1738} 1739 1740message TransformationPermuteFunctionParameters { 1741 1742 // A transformation that, given a non-entry-point function taking n 1743 // parameters and a permutation of the set [0, n-1]: 1744 // - Introduces a new function type that is the same as the original 1745 // function's type but with the order of arguments permuted 1746 // (only if it doesn't already exist) 1747 // - Changes the type of the function to this type 1748 // - Adjusts all calls to the function so that their arguments are permuted 1749 1750 // Function, whose parameters will be permuted 1751 uint32 function_id = 1; 1752 1753 // Fresh id for a new type of the function. This might not be used 1754 // if a required function type already exists or if we can change 1755 // the old function type. 1756 uint32 function_type_fresh_id = 2; 1757 1758 // An array of size |n|, where |n| is a number of arguments to a function 1759 // with |function_id|. For each i: 0 <= permutation[i] < n. 1760 // 1761 // i-th element of this array contains a position for an i-th 1762 // function's argument (i.e. i-th argument will be permutation[i]-th 1763 // after running this transformation) 1764 repeated uint32 permutation = 3; 1765 1766} 1767 1768message TransformationPermutePhiOperands { 1769 1770 // Permutes operands of some OpPhi instruction. 1771 1772 // Result id of the instruction to apply the transformation to. 1773 uint32 result_id = 1; 1774 1775 // A sequence of numbers in the range [0, n/2 - 1] where |n| is the number 1776 // of operands of the OpPhi instruction with |result_id|. 1777 repeated uint32 permutation = 2; 1778 1779} 1780 1781message TransformationPropagateInstructionDown { 1782 1783 // Propagates an instruction from |block_id| into its successors. 1784 // Concretely, the transformation clones the propagated instruction 1785 // into some of the successors of |block_id| and removes the original 1786 // instruction. Additionally, an OpPhi instruction may be added to make sure 1787 // that the transformation can be applied in various scenarios. 1788 // 1789 // Note that the instruction might not be propagated down into every successor 1790 // of |block_id| since it might make the module invalid. 1791 1792 // Id of the block to propagate an instruction from. The decision on what 1793 // instruction to propagate is made based on whether the instruction interacts 1794 // with memory, whether that instruction is used in its block etc (see the 1795 // transformation class for more details). 1796 uint32 block_id = 1; 1797 1798 // A fresh id for an OpPhi instruction. This might not be used by the 1799 // transformation since an OpPhi instruction is created only if needed 1800 // (e.g. an instruction is propagated into divergent blocks). 1801 uint32 phi_fresh_id = 2; 1802 1803 // A map from the id of some successor of the |block_id| to the fresh id. 1804 // The map contains a fresh id for at least every successor of the |block_id|. 1805 // Every fresh id in the map corresponds to the result id of the clone, 1806 // propagated into the corresponding successor block. This transformation 1807 // might use overflow ids if they are available and this field doesn't account 1808 // for every successor of |block_id|. 1809 repeated UInt32Pair successor_id_to_fresh_id = 3; 1810 1811} 1812 1813message TransformationPropagateInstructionUp { 1814 1815 // Propagates an instruction in the block into the block's predecessors. 1816 // Concretely, this transformation clones some particular instruction from 1817 // the |block_id| into every block's predecessor and replaces the original 1818 // instruction with OpPhi. Take a look at the transformation class to learn 1819 // more about how we choose what instruction to propagate. 1820 1821 // Id of the block to propagate an instruction from. 1822 uint32 block_id = 1; 1823 1824 // A map from the id of some predecessor of the |block_id| to the fresh id. 1825 // The map contains a fresh id for at least every predecessor of the |block_id|. 1826 // The instruction is propagated by creating a number of clones - one clone for 1827 // each predecessor. Fresh ids from this field are used as result ids of cloned 1828 // instructions. 1829 repeated UInt32Pair predecessor_id_to_fresh_id = 2; 1830 1831} 1832 1833message TransformationPushIdThroughVariable { 1834 1835 // A transformation that makes |value_synonym_id| and |value_id| to be 1836 // synonymous by storing |value_id| into |variable_id| and 1837 // loading |variable_id| to |value_synonym_id|. 1838 1839 // The value to be stored. 1840 uint32 value_id = 1; 1841 1842 // A fresh id for the result of the load instruction. 1843 uint32 value_synonym_id = 2; 1844 1845 // A fresh id for the variable to be stored to. 1846 uint32 variable_id = 3; 1847 1848 // Constant to initialize the variable from. 1849 uint32 initializer_id = 4; 1850 1851 // The variable storage class (global or local). 1852 uint32 variable_storage_class = 5; 1853 1854 // A descriptor for an instruction which the new OpStore 1855 // and OpLoad instructions might be inserted before. 1856 InstructionDescriptor instruction_descriptor = 6; 1857 1858} 1859 1860message TransformationRecordSynonymousConstants { 1861 1862 // A transformation that, given the IDs to two synonymous constants, 1863 // records the fact that they are synonymous. The module is not changed. 1864 // Two constants are synonymous if: 1865 // - they have the same type (ignoring the presence of integer sign) 1866 // - they have the same opcode (one of OpConstant, OpConstantTrue, 1867 // OpConstantFalse, OpConstantNull) 1868 // - they have the same value 1869 // If the types are the same, OpConstantNull is equivalent to 1870 // OpConstantFalse or OpConstant with value zero. 1871 1872 // The id of a constant 1873 uint32 constant1_id = 1; 1874 1875 // The id of the synonym 1876 uint32 constant2_id = 2; 1877 1878} 1879 1880message TransformationReplaceAddSubMulWithCarryingExtended { 1881 1882 // Replaces OpIAdd with OpIAddCarry, OpISub with OpISubBorrow, OpIMul 1883 // with OpUMulExtended or OpSMulExtended (depending on the signedness 1884 // of the operands) and stores the result into a |struct_fresh_id|. 1885 // In the original instruction the result type id and the type ids of 1886 // the operands must be the same. Then the transformation extracts 1887 // the first element of the result into the original |result_id|. 1888 // This value is the same as the result of the original instruction. 1889 1890 // The fresh id of the intermediate result. 1891 uint32 struct_fresh_id = 1; 1892 1893 // The result id of the original instruction. 1894 uint32 result_id = 2; 1895 1896} 1897 1898message TransformationReplaceBranchFromDeadBlockWithExit { 1899 1900 // Given a dead block that ends with OpBranch, replaces OpBranch with an 1901 // "exit" instruction; one of OpReturn/OpReturnValue, OpKill (in a fragment 1902 // shader) or OpUnreachable. 1903 1904 // The dead block whose terminator is to be replaced. 1905 uint32 block_id = 1; 1906 1907 // The opcode of the new terminator. 1908 uint32 opcode = 2; 1909 1910 // Ignored unless opcode is OpReturnValue, in which case this field provides 1911 // a suitable result id to be returned. 1912 uint32 return_value_id = 3; 1913 1914} 1915 1916message TransformationReplaceParameterWithGlobal { 1917 1918 // Removes parameter with result id |parameter_id| from its function 1919 // and creates a global variable to pass its value to the function instead. 1920 1921 // Fresh id for a new function type. This might not be used if a required 1922 // function type already exists or if we can change the old function type. 1923 uint32 function_type_fresh_id = 2; 1924 1925 // Result id of the OpFunctionParameter instruction to remove. 1926 uint32 parameter_id = 3; 1927 1928 // Fresh id of a global variable used to pass parameter's value to the function. 1929 uint32 global_variable_fresh_id = 4; 1930 1931} 1932 1933message TransformationReplaceBooleanConstantWithConstantBinary { 1934 1935 // A transformation to capture replacing a use of a boolean constant with 1936 // binary operation on two constant values 1937 1938 // A descriptor for the boolean constant id we would like to replace 1939 IdUseDescriptor id_use_descriptor = 1; 1940 1941 // Id for the constant to be used on the LHS of the comparision 1942 uint32 lhs_id = 2; 1943 1944 // Id for the constant to be used on the RHS of the comparision 1945 uint32 rhs_id = 3; 1946 1947 // Opcode for binary operator 1948 uint32 opcode = 4; 1949 1950 // Id that will store the result of the binary operation instruction 1951 uint32 fresh_id_for_binary_operation = 5; 1952 1953} 1954 1955message TransformationReplaceConstantWithUniform { 1956 1957 // Replaces a use of a constant id with the result of a load from an 1958 // element of uniform buffer known to hold the same value as the constant 1959 1960 // A descriptor for the id we would like to replace 1961 IdUseDescriptor id_use_descriptor = 1; 1962 1963 // Uniform descriptor to identify which uniform value to choose 1964 UniformBufferElementDescriptor uniform_descriptor = 2; 1965 1966 // Id that will store the result of an access chain 1967 uint32 fresh_id_for_access_chain = 3; 1968 1969 // Id that will store the result of a load 1970 uint32 fresh_id_for_load = 4; 1971 1972} 1973 1974message TransformationReplaceCopyMemoryWithLoadStore { 1975 1976 // A transformation that replaces instructions OpCopyMemory with loading 1977 // the source variable to an intermediate value and storing this value into the 1978 // target variable of the original OpCopyMemory instruction. 1979 1980 // The intermediate value. 1981 uint32 fresh_id = 1; 1982 1983 // The instruction descriptor to OpCopyMemory. It is necessary, because 1984 // OpCopyMemory doesn't have a result id. 1985 InstructionDescriptor copy_memory_instruction_descriptor = 2; 1986} 1987 1988message TransformationReplaceCopyObjectWithStoreLoad { 1989 1990 // A transformation that replaces instruction OpCopyObject with 1991 // storing into a new variable and immediately loading from this 1992 // variable to |result_id| of the original OpCopyObject instruction. 1993 1994 // The result id of initial OpCopyObject instruction 1995 uint32 copy_object_result_id = 1; 1996 1997 // A fresh id for the variable to be stored to. 1998 uint32 fresh_variable_id = 2; 1999 2000 // The variable storage class (Function or Private). 2001 uint32 variable_storage_class = 3; 2002 2003 // Constant to initialize the variable with. 2004 uint32 variable_initializer_id = 4; 2005} 2006 2007message TransformationReplaceIdWithSynonym { 2008 2009 // Replaces a use of an id with an id that is known to be synonymous, e.g. 2010 // because it was obtained via applying OpCopyObject 2011 2012 // The id use that is to be replaced 2013 IdUseDescriptor id_use_descriptor = 1; 2014 2015 // The synonymous id 2016 uint32 synonymous_id = 2; 2017 2018} 2019 2020message TransformationReplaceIrrelevantId { 2021 2022 // Replaces an irrelevant id with another id of the same type. 2023 2024 // The id use that is to be replaced 2025 IdUseDescriptor id_use_descriptor = 1; 2026 2027 // The replacement id 2028 uint32 replacement_id = 2; 2029} 2030 2031message TransformationReplaceLinearAlgebraInstruction { 2032 2033 // Replaces a linear algebra instruction with its 2034 // mathematical definition. 2035 2036 // The fresh ids needed to apply the transformation. 2037 repeated uint32 fresh_ids = 1; 2038 2039 // A descriptor for a linear algebra instruction. 2040 InstructionDescriptor instruction_descriptor = 2; 2041 2042} 2043 2044message TransformationReplaceLoadStoreWithCopyMemory { 2045 // A transformation that takes a pair of instruction descriptors 2046 // to OpLoad and OpStore that have the same intermediate value 2047 // and replaces the OpStore with an equivalent OpCopyMemory. 2048 2049 // The instruction descriptor to OpLoad 2050 InstructionDescriptor load_instruction_descriptor = 1; 2051 2052 // The instruction descriptor to OpStore 2053 InstructionDescriptor store_instruction_descriptor = 2; 2054} 2055 2056message TransformationReplaceOpPhiIdFromDeadPredecessor { 2057 2058 // Replaces one of the ids used by an OpPhi instruction, when 2059 // the corresponding predecessor is dead, with any available id 2060 // of the correct type. 2061 2062 // The result id of the OpPhi instruction. 2063 uint32 opphi_id = 1; 2064 2065 // The label id of one of the predecessors of the block containing 2066 // the OpPhi instruction, corresponding to the id that we want to 2067 // replace. 2068 uint32 pred_label_id = 2; 2069 2070 // The id that, after the transformation, will be associated with 2071 // the given predecessor. 2072 uint32 replacement_id = 3; 2073 2074} 2075 2076message TransformationReplaceOpSelectWithConditionalBranch { 2077 2078 // A transformation that takes an OpSelect instruction with a 2079 // scalar boolean condition and replaces it with a conditional 2080 // branch and an OpPhi instruction. 2081 // The OpSelect instruction must be the first instruction in its 2082 // block, which must have a unique predecessor. The block will 2083 // become the merge block of a new construct, while its predecessor 2084 // will become the header. 2085 // Given the original OpSelect instruction: 2086 // %id = OpSelect %type %cond %then %else 2087 // The branching instruction of the header will be: 2088 // OpBranchConditional %cond %true_block_id %false_block_id 2089 // and the OpSelect instruction will be turned into: 2090 // %id = OpPhi %type %then %true_block_id %else %false_block_id 2091 // At most one of |true_block_id| and |false_block_id| can be zero. In 2092 // that case, there will be no such block and all references to it 2093 // will be replaced by %merge_block (where %merge_block is the 2094 // block containing the OpSelect instruction). 2095 2096 // The result id of the OpSelect instruction. 2097 uint32 select_id = 1; 2098 2099 // A fresh id for the new block that the predecessor of the block 2100 // containing |select_id| will branch to if the condition holds. 2101 uint32 true_block_id = 2; 2102 2103 // A fresh id for the new block that the predecessor of the block 2104 // containing |select_id| will branch to if the condition does not 2105 // hold. 2106 uint32 false_block_id = 3; 2107} 2108 2109message TransformationReplaceParamsWithStruct { 2110 2111 // Replaces parameters of the function with a struct containing 2112 // values of those parameters. 2113 2114 // Result ids of parameters to replace. 2115 repeated uint32 parameter_id = 1; 2116 2117 // Fresh id for a new function type. This might be unused if the required type 2118 // already exists in the module or if we can change the old type. 2119 uint32 fresh_function_type_id = 2; 2120 2121 // Fresh id for a new struct function parameter to be used as a replacement. 2122 uint32 fresh_parameter_id = 3; 2123 2124 // Fresh ids for struct objects containing values of replaced parameters. 2125 // This field contains a fresh id for at least every result id of a relevant 2126 // OpFunctionCall instruction. 2127 repeated UInt32Pair caller_id_to_fresh_composite_id = 4; 2128 2129} 2130 2131message TransformationSetFunctionControl { 2132 2133 // A transformation that sets the function control operand of an OpFunction 2134 // instruction. 2135 2136 // The result id of an OpFunction instruction 2137 uint32 function_id = 1; 2138 2139 // The value to which the 'function control' operand should be set. 2140 uint32 function_control = 2; 2141 2142} 2143 2144message TransformationSetLoopControl { 2145 2146 // A transformation that sets the loop control operand of an OpLoopMerge 2147 // instruction. 2148 2149 // The id of a basic block that should contain OpLoopMerge 2150 uint32 block_id = 1; 2151 2152 // The value to which the 'loop control' operand should be set. 2153 // This must be a legal loop control mask. 2154 uint32 loop_control = 2; 2155 2156 // Provides a peel count value for the loop. Used if and only if the 2157 // PeelCount bit is set. Must be zero if the PeelCount bit is not set (can 2158 // still be zero if this bit is set). 2159 uint32 peel_count = 3; 2160 2161 // Provides a partial count value for the loop. Used if and only if the 2162 // PartialCount bit is set. Must be zero if the PartialCount bit is not set 2163 // (can still be zero if this bit is set). 2164 uint32 partial_count = 4; 2165 2166} 2167 2168message TransformationSetMemoryOperandsMask { 2169 2170 // A transformation that sets the memory operands mask of a memory access 2171 // instruction. 2172 2173 // A descriptor for a memory access instruction, e.g. an OpLoad 2174 InstructionDescriptor memory_access_instruction = 1; 2175 2176 // A mask of memory operands to be applied to the instruction. It must be the 2177 // same as the original mask, except that Volatile can be added, and 2178 // Nontemporal can be added or removed. 2179 uint32 memory_operands_mask = 2; 2180 2181 // Some memory access instructions allow more than one mask to be specified; 2182 // this field indicates which mask should be set 2183 uint32 memory_operands_mask_index = 3; 2184 2185} 2186 2187message TransformationSetSelectionControl { 2188 2189 // A transformation that sets the selection control operand of an 2190 // OpSelectionMerge instruction. 2191 2192 // The id of a basic block that should contain OpSelectionMerge 2193 uint32 block_id = 1; 2194 2195 // The value to which the 'selection control' operand should be set. 2196 // Although technically 'selection control' is a literal mask that can be 2197 // some combination of 'None', 'Flatten' and 'DontFlatten', the combination 2198 // 'Flatten | DontFlatten' does not make sense and is not allowed here. 2199 uint32 selection_control = 2; 2200 2201} 2202 2203message TransformationSplitBlock { 2204 2205 // A transformation that splits a basic block into two basic blocks 2206 2207 // A descriptor for an instruction such that the block containing the 2208 // described instruction should be split right before the instruction. 2209 InstructionDescriptor instruction_to_split_before = 1; 2210 2211 // An id that must not yet be used by the module to which this transformation 2212 // is applied. Rather than having the transformation choose a suitable id on 2213 // application, we require the id to be given upfront in order to facilitate 2214 // reducing fuzzed shaders by removing transformations. The reason is that 2215 // future transformations may refer to the fresh id introduced by this 2216 // transformation, and if we end up changing what that id is, due to removing 2217 // earlier transformations, it may inhibit later transformations from 2218 // applying. 2219 uint32 fresh_id = 2; 2220 2221} 2222 2223message TransformationStore { 2224 2225 // Transformation that adds an OpStore instruction of an id to a pointer. 2226 2227 // The pointer to be stored to 2228 uint32 pointer_id = 1; 2229 2230 // The value to be stored 2231 uint32 value_id = 2; 2232 2233 // A descriptor for an instruction in a block before which the new OpStore 2234 // instruction should be inserted 2235 InstructionDescriptor instruction_to_insert_before = 3; 2236 2237} 2238 2239message TransformationSwapCommutableOperands { 2240 2241 // A transformation that swaps the operands of a commutative instruction. 2242 2243 // A descriptor for a commutative instruction 2244 InstructionDescriptor instruction_descriptor = 1; 2245 2246} 2247 2248message TransformationSwapConditionalBranchOperands { 2249 2250 // Swaps label ids in OpBranchConditional instruction. 2251 // Additionally, inverts the guard and swaps branch weights 2252 // if present. 2253 2254 // Descriptor of the instruction to swap operands of. 2255 InstructionDescriptor instruction_descriptor = 1; 2256 2257 // Fresh result id for the OpLogicalNot instruction, used 2258 // to invert the guard. 2259 uint32 fresh_id = 2; 2260 2261} 2262 2263message TransformationToggleAccessChainInstruction { 2264 2265 // A transformation that toggles an access chain instruction. 2266 2267 // A descriptor for an access chain instruction 2268 InstructionDescriptor instruction_descriptor = 1; 2269 2270} 2271 2272message TransformationVectorShuffle { 2273 2274 // A transformation that adds a vector shuffle instruction. 2275 2276 // A descriptor for an instruction in a block before which the new 2277 // OpVectorShuffle instruction should be inserted 2278 InstructionDescriptor instruction_to_insert_before = 1; 2279 2280 // Result id for the shuffle operation. 2281 uint32 fresh_id = 2; 2282 2283 // Id of the first vector operand. 2284 uint32 vector1 = 3; 2285 2286 // Id of the second vector operand. 2287 uint32 vector2 = 4; 2288 2289 // Indices that indicate which components of the input vectors should be used. 2290 repeated uint32 component = 5; 2291 2292} 2293 2294message TransformationWrapEarlyTerminatorInFunction { 2295 2296 // Replaces an early terminator - OpKill, OpReachable or OpTerminateInvocation 2297 // - with a call to a wrapper function for the terminator. 2298 2299 // A fresh id for a new OpFunctionCall instruction. 2300 uint32 fresh_id = 1; 2301 2302 // A descriptor for an OpKill, OpUnreachable or OpTerminateInvocation 2303 // instruction. 2304 InstructionDescriptor early_terminator_instruction = 2; 2305 2306 // An id with the same type as the enclosing function's return type that is 2307 // available at the early terminator. This is used to change the terminator 2308 // to OpReturnValue. Ignored if the enclosing function has void return type, 2309 // in which case OpReturn can be used as the new terminator. 2310 uint32 returned_value_id = 3; 2311 2312} 2313 2314message TransformationWrapRegionInSelection { 2315 2316 // Transforms a single-entry-single-exit region R into 2317 // if (|branch_condition|) { R } else { R } 2318 // The entry block for R becomes a selection header and 2319 // the exit block - a selection merge. 2320 // 2321 // Note that the region R is not duplicated. Thus, the effect of 2322 // this transformation can be represented as follows: 2323 // entry 2324 // entry / \ 2325 // | \ / 2326 // R --> R 2327 // | | 2328 // exit exit 2329 2330 // This behaviour is different from TransformationDuplicateRegionWithSelection 2331 // that copies the blocks in R. 2332 2333 // The entry block for the region R. 2334 uint32 region_entry_block_id = 1; 2335 2336 // The exit block for the region R. 2337 uint32 region_exit_block_id = 2; 2338 2339 // Boolean value for the condition expression. 2340 bool branch_condition = 3; 2341 2342} 2343