• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "source/val/function.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <sstream>
20 #include <unordered_map>
21 #include <unordered_set>
22 #include <utility>
23 
24 #include "source/cfa.h"
25 #include "source/val/basic_block.h"
26 #include "source/val/construct.h"
27 #include "source/val/validate.h"
28 
29 namespace spvtools {
30 namespace val {
31 
32 // Universal Limit of ResultID + 1
33 static const uint32_t kInvalidId = 0x400000;
34 
Function(uint32_t function_id,uint32_t result_type_id,SpvFunctionControlMask function_control,uint32_t function_type_id)35 Function::Function(uint32_t function_id, uint32_t result_type_id,
36                    SpvFunctionControlMask function_control,
37                    uint32_t function_type_id)
38     : id_(function_id),
39       function_type_id_(function_type_id),
40       result_type_id_(result_type_id),
41       function_control_(function_control),
42       declaration_type_(FunctionDecl::kFunctionDeclUnknown),
43       end_has_been_registered_(false),
44       blocks_(),
45       current_block_(nullptr),
46       pseudo_entry_block_(0),
47       pseudo_exit_block_(kInvalidId),
48       cfg_constructs_(),
49       variable_ids_(),
50       parameter_ids_() {}
51 
IsFirstBlock(uint32_t block_id) const52 bool Function::IsFirstBlock(uint32_t block_id) const {
53   return !ordered_blocks_.empty() && *first_block() == block_id;
54 }
55 
RegisterFunctionParameter(uint32_t parameter_id,uint32_t type_id)56 spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id,
57                                                  uint32_t type_id) {
58   assert(current_block_ == nullptr &&
59          "RegisterFunctionParameter can only be called when parsing the binary "
60          "ouside of a block");
61   // TODO(umar): Validate function parameter type order and count
62   // TODO(umar): Use these variables to validate parameter type
63   (void)parameter_id;
64   (void)type_id;
65   return SPV_SUCCESS;
66 }
67 
RegisterLoopMerge(uint32_t merge_id,uint32_t continue_id)68 spv_result_t Function::RegisterLoopMerge(uint32_t merge_id,
69                                          uint32_t continue_id) {
70   RegisterBlock(merge_id, false);
71   RegisterBlock(continue_id, false);
72   BasicBlock& merge_block = blocks_.at(merge_id);
73   BasicBlock& continue_target_block = blocks_.at(continue_id);
74   assert(current_block_ &&
75          "RegisterLoopMerge must be called when called within a block");
76 
77   current_block_->set_type(kBlockTypeLoop);
78   merge_block.set_type(kBlockTypeMerge);
79   continue_target_block.set_type(kBlockTypeContinue);
80   Construct& loop_construct =
81       AddConstruct({ConstructType::kLoop, current_block_, &merge_block});
82   Construct& continue_construct =
83       AddConstruct({ConstructType::kContinue, &continue_target_block});
84 
85   continue_construct.set_corresponding_constructs({&loop_construct});
86   loop_construct.set_corresponding_constructs({&continue_construct});
87   merge_block_header_[&merge_block] = current_block_;
88   if (continue_target_headers_.find(&continue_target_block) ==
89       continue_target_headers_.end()) {
90     continue_target_headers_[&continue_target_block] = {current_block_};
91   } else {
92     continue_target_headers_[&continue_target_block].push_back(current_block_);
93   }
94 
95   return SPV_SUCCESS;
96 }
97 
RegisterSelectionMerge(uint32_t merge_id)98 spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) {
99   RegisterBlock(merge_id, false);
100   BasicBlock& merge_block = blocks_.at(merge_id);
101   current_block_->set_type(kBlockTypeSelection);
102   merge_block.set_type(kBlockTypeMerge);
103   merge_block_header_[&merge_block] = current_block_;
104 
105   AddConstruct({ConstructType::kSelection, current_block(), &merge_block});
106 
107   return SPV_SUCCESS;
108 }
109 
RegisterSetFunctionDeclType(FunctionDecl type)110 spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) {
111   assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown);
112   declaration_type_ = type;
113   return SPV_SUCCESS;
114 }
115 
RegisterBlock(uint32_t block_id,bool is_definition)116 spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) {
117   assert(
118       declaration_type_ == FunctionDecl::kFunctionDeclDefinition &&
119       "RegisterBlocks can only be called after declaration_type_ is defined");
120 
121   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
122   bool success = false;
123   tie(inserted_block, success) =
124       blocks_.insert({block_id, BasicBlock(block_id)});
125   if (is_definition) {  // new block definition
126     assert(current_block_ == nullptr &&
127            "Register Block can only be called when parsing a binary outside of "
128            "a BasicBlock");
129 
130     undefined_blocks_.erase(block_id);
131     current_block_ = &inserted_block->second;
132     ordered_blocks_.push_back(current_block_);
133   } else if (success) {  // Block doesn't exsist but this is not a definition
134     undefined_blocks_.insert(block_id);
135   }
136 
137   return SPV_SUCCESS;
138 }
139 
RegisterBlockEnd(std::vector<uint32_t> next_list)140 void Function::RegisterBlockEnd(std::vector<uint32_t> next_list) {
141   assert(
142       current_block_ &&
143       "RegisterBlockEnd can only be called when parsing a binary in a block");
144   std::vector<BasicBlock*> next_blocks;
145   next_blocks.reserve(next_list.size());
146 
147   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
148   bool success;
149   for (uint32_t successor_id : next_list) {
150     tie(inserted_block, success) =
151         blocks_.insert({successor_id, BasicBlock(successor_id)});
152     if (success) {
153       undefined_blocks_.insert(successor_id);
154     }
155     next_blocks.push_back(&inserted_block->second);
156   }
157 
158   if (current_block_->is_type(kBlockTypeLoop)) {
159     // For each loop header, record the set of its successors, and include
160     // its continue target if the continue target is not the loop header
161     // itself.
162     std::vector<BasicBlock*>& next_blocks_plus_continue_target =
163         loop_header_successors_plus_continue_target_map_[current_block_];
164     next_blocks_plus_continue_target = next_blocks;
165     auto continue_target =
166         FindConstructForEntryBlock(current_block_, ConstructType::kLoop)
167             .corresponding_constructs()
168             .back()
169             ->entry_block();
170     if (continue_target != current_block_) {
171       next_blocks_plus_continue_target.push_back(continue_target);
172     }
173   }
174 
175   current_block_->RegisterSuccessors(next_blocks);
176   current_block_ = nullptr;
177   return;
178 }
179 
RegisterFunctionEnd()180 void Function::RegisterFunctionEnd() {
181   if (!end_has_been_registered_) {
182     end_has_been_registered_ = true;
183 
184     ComputeAugmentedCFG();
185   }
186 }
187 
block_count() const188 size_t Function::block_count() const { return blocks_.size(); }
189 
undefined_block_count() const190 size_t Function::undefined_block_count() const {
191   return undefined_blocks_.size();
192 }
193 
ordered_blocks() const194 const std::vector<BasicBlock*>& Function::ordered_blocks() const {
195   return ordered_blocks_;
196 }
ordered_blocks()197 std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; }
198 
current_block() const199 const BasicBlock* Function::current_block() const { return current_block_; }
current_block()200 BasicBlock* Function::current_block() { return current_block_; }
201 
constructs() const202 const std::list<Construct>& Function::constructs() const {
203   return cfg_constructs_;
204 }
constructs()205 std::list<Construct>& Function::constructs() { return cfg_constructs_; }
206 
first_block() const207 const BasicBlock* Function::first_block() const {
208   if (ordered_blocks_.empty()) return nullptr;
209   return ordered_blocks_[0];
210 }
first_block()211 BasicBlock* Function::first_block() {
212   if (ordered_blocks_.empty()) return nullptr;
213   return ordered_blocks_[0];
214 }
215 
IsBlockType(uint32_t merge_block_id,BlockType type) const216 bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const {
217   bool ret = false;
218   const BasicBlock* block;
219   std::tie(block, std::ignore) = GetBlock(merge_block_id);
220   if (block) {
221     ret = block->is_type(type);
222   }
223   return ret;
224 }
225 
GetBlock(uint32_t block_id) const226 std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const {
227   const auto b = blocks_.find(block_id);
228   if (b != end(blocks_)) {
229     const BasicBlock* block = &(b->second);
230     bool defined =
231         undefined_blocks_.find(block->id()) == std::end(undefined_blocks_);
232     return std::make_pair(block, defined);
233   } else {
234     return std::make_pair(nullptr, false);
235   }
236 }
237 
GetBlock(uint32_t block_id)238 std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) {
239   const BasicBlock* out;
240   bool defined;
241   std::tie(out, defined) =
242       const_cast<const Function*>(this)->GetBlock(block_id);
243   return std::make_pair(const_cast<BasicBlock*>(out), defined);
244 }
245 
AugmentedCFGSuccessorsFunction() const246 Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const {
247   return [this](const BasicBlock* block) {
248     auto where = augmented_successors_map_.find(block);
249     return where == augmented_successors_map_.end() ? block->successors()
250                                                     : &(*where).second;
251   };
252 }
253 
254 Function::GetBlocksFunction
AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const255 Function::AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const {
256   return [this](const BasicBlock* block) {
257     auto where = loop_header_successors_plus_continue_target_map_.find(block);
258     return where == loop_header_successors_plus_continue_target_map_.end()
259                ? AugmentedCFGSuccessorsFunction()(block)
260                : &(*where).second;
261   };
262 }
263 
AugmentedCFGPredecessorsFunction() const264 Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const {
265   return [this](const BasicBlock* block) {
266     auto where = augmented_predecessors_map_.find(block);
267     return where == augmented_predecessors_map_.end() ? block->predecessors()
268                                                       : &(*where).second;
269   };
270 }
271 
ComputeAugmentedCFG()272 void Function::ComputeAugmentedCFG() {
273   // Compute the successors of the pseudo-entry block, and
274   // the predecessors of the pseudo exit block.
275   auto succ_func = [](const BasicBlock* b) { return b->successors(); };
276   auto pred_func = [](const BasicBlock* b) { return b->predecessors(); };
277   CFA<BasicBlock>::ComputeAugmentedCFG(
278       ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_,
279       &augmented_successors_map_, &augmented_predecessors_map_, succ_func,
280       pred_func);
281 }
282 
AddConstruct(const Construct & new_construct)283 Construct& Function::AddConstruct(const Construct& new_construct) {
284   cfg_constructs_.push_back(new_construct);
285   auto& result = cfg_constructs_.back();
286   entry_block_to_construct_[std::make_pair(new_construct.entry_block(),
287                                            new_construct.type())] = &result;
288   return result;
289 }
290 
FindConstructForEntryBlock(const BasicBlock * entry_block,ConstructType type)291 Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block,
292                                                 ConstructType type) {
293   auto where =
294       entry_block_to_construct_.find(std::make_pair(entry_block, type));
295   assert(where != entry_block_to_construct_.end());
296   auto construct_ptr = (*where).second;
297   assert(construct_ptr);
298   return *construct_ptr;
299 }
300 
GetBlockDepth(BasicBlock * bb)301 int Function::GetBlockDepth(BasicBlock* bb) {
302   // Guard against nullptr.
303   if (!bb) {
304     return 0;
305   }
306   // Only calculate the depth if it's not already calculated.
307   // This function uses memoization to avoid duplicate CFG depth calculations.
308   if (block_depth_.find(bb) != block_depth_.end()) {
309     return block_depth_[bb];
310   }
311 
312   BasicBlock* bb_dom = bb->immediate_dominator();
313   if (!bb_dom || bb == bb_dom) {
314     // This block has no dominator, so it's at depth 0.
315     block_depth_[bb] = 0;
316   } else if (bb->is_type(kBlockTypeContinue)) {
317     // This rule must precede the rule for merge blocks in order to set up
318     // depths correctly. If a block is both a merge and continue then the merge
319     // is nested within the continue's loop (or the graph is incorrect).
320     // The depth of the continue block entry point is 1 + loop header depth.
321     Construct* continue_construct =
322         entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)];
323     assert(continue_construct);
324     // Continue construct has only 1 corresponding construct (loop header).
325     Construct* loop_construct =
326         continue_construct->corresponding_constructs()[0];
327     assert(loop_construct);
328     BasicBlock* loop_header = loop_construct->entry_block();
329     // The continue target may be the loop itself (while 1).
330     // In such cases, the depth of the continue block is: 1 + depth of the
331     // loop's dominator block.
332     if (loop_header == bb) {
333       block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
334     } else {
335       block_depth_[bb] = 1 + GetBlockDepth(loop_header);
336     }
337   } else if (bb->is_type(kBlockTypeMerge)) {
338     // If this is a merge block, its depth is equal to the block before
339     // branching.
340     BasicBlock* header = merge_block_header_[bb];
341     assert(header);
342     block_depth_[bb] = GetBlockDepth(header);
343   } else if (bb_dom->is_type(kBlockTypeSelection) ||
344              bb_dom->is_type(kBlockTypeLoop)) {
345     // The dominator of the given block is a header block. So, the nesting
346     // depth of this block is: 1 + nesting depth of the header.
347     block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
348   } else {
349     block_depth_[bb] = GetBlockDepth(bb_dom);
350   }
351   return block_depth_[bb];
352 }
353 
RegisterExecutionModelLimitation(SpvExecutionModel model,const std::string & message)354 void Function::RegisterExecutionModelLimitation(SpvExecutionModel model,
355                                                 const std::string& message) {
356   execution_model_limitations_.push_back(
357       [model, message](SpvExecutionModel in_model, std::string* out_message) {
358         if (model != in_model) {
359           if (out_message) {
360             *out_message = message;
361           }
362           return false;
363         }
364         return true;
365       });
366 }
367 
IsCompatibleWithExecutionModel(SpvExecutionModel model,std::string * reason) const368 bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model,
369                                               std::string* reason) const {
370   bool return_value = true;
371   std::stringstream ss_reason;
372 
373   for (const auto& is_compatible : execution_model_limitations_) {
374     std::string message;
375     if (!is_compatible(model, &message)) {
376       if (!reason) return false;
377       return_value = false;
378       if (!message.empty()) {
379         ss_reason << message << "\n";
380       }
381     }
382   }
383 
384   if (!return_value && reason) {
385     *reason = ss_reason.str();
386   }
387 
388   return return_value;
389 }
390 
CheckLimitations(const ValidationState_t & _,const Function * entry_point,std::string * reason) const391 bool Function::CheckLimitations(const ValidationState_t& _,
392                                 const Function* entry_point,
393                                 std::string* reason) const {
394   bool return_value = true;
395   std::stringstream ss_reason;
396 
397   for (const auto& is_compatible : limitations_) {
398     std::string message;
399     if (!is_compatible(_, entry_point, &message)) {
400       if (!reason) return false;
401       return_value = false;
402       if (!message.empty()) {
403         ss_reason << message << "\n";
404       }
405     }
406   }
407 
408   if (!return_value && reason) {
409     *reason = ss_reason.str();
410   }
411 
412   return return_value;
413 }
414 
415 }  // namespace val
416 }  // namespace spvtools
417