• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program Tester Core
3  * ----------------------------------------
4  *
5  * Copyright 2014 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief CPU warm-up utility, used to counteract CPU throttling.
22  *//*--------------------------------------------------------------------*/
23 
24 #include "tcuCPUWarmup.hpp"
25 #include "deDefs.hpp"
26 #include "deMath.h"
27 #include "deClock.h"
28 
29 #include <algorithm>
30 
31 namespace tcu
32 {
33 
34 namespace warmupCPUInternal
35 {
36 
37 volatile Dummy g_dummy;
38 
39 }
40 
41 template <typename T, int Size>
floatMedian(const T (& v)[Size])42 static inline float floatMedian (const T (&v)[Size])
43 {
44 	T temp[Size];
45 	for (int i = 0; i < Size; i++)
46 		temp[i] = v[i];
47 
48 	std::sort(DE_ARRAY_BEGIN(temp), DE_ARRAY_END(temp));
49 
50 	return Size % 2 == 0
51 		   ? 0.5f * ((float)temp[Size/2-1] + (float)temp[Size/2])
52 		   : (float)temp[Size/2];
53 }
54 
55 template <typename T, int Size>
floatRelativeMedianAbsoluteDeviation(const T (& v)[Size])56 static inline float floatRelativeMedianAbsoluteDeviation (const T (&v)[Size])
57 {
58 	const float		median = floatMedian(v);
59 	float			absoluteDeviations[Size];
60 
61 	for (int i = 0; i < Size; i++)
62 		absoluteDeviations[i] = deFloatAbs((float)v[i] - median);
63 
64 	return floatMedian(absoluteDeviations) / median;
65 }
66 
dummyComputation(float initial,int numIterations)67 static inline float dummyComputation (float initial, int numIterations)
68 {
69 	float	a = initial;
70 	int		b = 123;
71 
72 	for (int i = 0; i < numIterations; i++)
73 	{
74 		// Arbitrary computations.
75 		for (int j = 0; j < 4; j++)
76 		{
77 			a = deFloatCos(a + (float)b);
78 			b = (b + 63) % 107 + de::abs((int)(a*10.0f));
79 		}
80 	}
81 
82 	return a + (float)b;
83 }
84 
warmupCPU(void)85 void warmupCPU (void)
86 {
87 	float	dummy				= *warmupCPUInternal::g_dummy.m_v;
88 	int		computationSize		= 1;
89 
90 	// Do a rough calibration for computationSize to get dummyComputation's running time above a certain threshold.
91 	while (computationSize < 1<<30) // \note This condition is unlikely to be met. The "real" loop exit is the break below.
92 	{
93 		const float		singleMeasurementThreshold	= 10000.0f;
94 		const int		numMeasurements				= 3;
95 		deInt64			times[numMeasurements];
96 
97 		for (int i = 0; i < numMeasurements; i++)
98 		{
99 			const deUint64 startTime = deGetMicroseconds();
100 			dummy = dummyComputation(dummy, computationSize);
101 			times[i] = (deInt64)(deGetMicroseconds() - startTime);
102 		}
103 
104 		if (floatMedian(times) >= singleMeasurementThreshold)
105 			break;
106 
107 		computationSize *= 2;
108 	}
109 
110 	// Do dummyComputations until running time seems stable enough.
111 	{
112 		const int			maxNumMeasurements							= 50;
113 		const int			numConsecutiveMeasurementsRequired			= 5;
114 		const float			relativeMedianAbsoluteDeviationThreshold	= 0.05f;
115 		deInt64				latestTimes[numConsecutiveMeasurementsRequired];
116 
117 		for (int measurementNdx = 0;
118 
119 			 measurementNdx < maxNumMeasurements &&
120 			 (measurementNdx < numConsecutiveMeasurementsRequired ||
121 			  floatRelativeMedianAbsoluteDeviation(latestTimes) > relativeMedianAbsoluteDeviationThreshold);
122 
123 			 measurementNdx++)
124 		{
125 			const deUint64 startTime = deGetMicroseconds();
126 			dummy = dummyComputation(dummy, computationSize);
127 			latestTimes[measurementNdx % numConsecutiveMeasurementsRequired] = (deInt64)(deGetMicroseconds() - startTime);
128 		}
129 	}
130 
131 	*warmupCPUInternal::g_dummy.m_v = dummy;
132 }
133 
134 } // tcu
135