1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Fuzzy image comparison.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuFuzzyImageCompare.hpp"
25 #include "tcuTexture.hpp"
26 #include "tcuTextureUtil.hpp"
27 #include "deMath.h"
28 #include "deRandom.hpp"
29
30 #include <vector>
31
32 namespace tcu
33 {
34
35 enum
36 {
37 MIN_ERR_THRESHOLD = 4 // Magic to make small differences go away
38 };
39
40 using std::vector;
41
42 template<int Channel>
getChannel(deUint32 color)43 static inline deUint8 getChannel (deUint32 color)
44 {
45 return (deUint8)((color >> (Channel*8)) & 0xff);
46 }
47
getChannel(deUint32 color,int channel)48 static inline deUint8 getChannel (deUint32 color, int channel)
49 {
50 return (deUint8)((color >> (channel*8)) & 0xff);
51 }
52
setChannel(deUint32 color,int channel,deUint8 val)53 static inline deUint32 setChannel (deUint32 color, int channel, deUint8 val)
54 {
55 return (color & ~(0xffu << (8*channel))) | (val << (8*channel));
56 }
57
toFloatVec(deUint32 color)58 static inline Vec4 toFloatVec (deUint32 color)
59 {
60 return Vec4((float)getChannel<0>(color), (float)getChannel<1>(color), (float)getChannel<2>(color), (float)getChannel<3>(color));
61 }
62
roundToUint8Sat(float v)63 static inline deUint8 roundToUint8Sat (float v)
64 {
65 return (deUint8)de::clamp((int)(v + 0.5f), 0, 255);
66 }
67
toColor(Vec4 v)68 static inline deUint32 toColor (Vec4 v)
69 {
70 return roundToUint8Sat(v[0]) | (roundToUint8Sat(v[1]) << 8) | (roundToUint8Sat(v[2]) << 16) | (roundToUint8Sat(v[3]) << 24);
71 }
72
73 template<int NumChannels>
readUnorm8(const tcu::ConstPixelBufferAccess & src,int x,int y)74 static inline deUint32 readUnorm8 (const tcu::ConstPixelBufferAccess& src, int x, int y)
75 {
76 const deUint8* ptr = (const deUint8*)src.getDataPtr() + src.getRowPitch()*y + x*NumChannels;
77 deUint32 v = 0;
78
79 for (int c = 0; c < NumChannels; c++)
80 v |= ptr[c] << (c*8);
81
82 if (NumChannels < 4)
83 v |= 0xffu << 24;
84
85 return v;
86 }
87
88 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
89 template<>
readUnorm8(const tcu::ConstPixelBufferAccess & src,int x,int y)90 inline deUint32 readUnorm8<4> (const tcu::ConstPixelBufferAccess& src, int x, int y)
91 {
92 return *(const deUint32*)((const deUint8*)src.getDataPtr() + src.getRowPitch()*y + x*4);
93 }
94 #endif
95
96 template<int NumChannels>
writeUnorm8(const tcu::PixelBufferAccess & dst,int x,int y,deUint32 val)97 static inline void writeUnorm8 (const tcu::PixelBufferAccess& dst, int x, int y, deUint32 val)
98 {
99 deUint8* ptr = (deUint8*)dst.getDataPtr() + dst.getRowPitch()*y + x*NumChannels;
100
101 for (int c = 0; c < NumChannels; c++)
102 ptr[c] = getChannel(val, c);
103 }
104
105 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
106 template<>
writeUnorm8(const tcu::PixelBufferAccess & dst,int x,int y,deUint32 val)107 inline void writeUnorm8<4> (const tcu::PixelBufferAccess& dst, int x, int y, deUint32 val)
108 {
109 *(deUint32*)((deUint8*)dst.getDataPtr() + dst.getRowPitch()*y + x*4) = val;
110 }
111 #endif
112
colorDistSquared(deUint32 pa,deUint32 pb)113 static inline deUint32 colorDistSquared (deUint32 pa, deUint32 pb)
114 {
115 const int r = de::max<int>(de::abs((int)getChannel<0>(pa) - (int)getChannel<0>(pb)) - MIN_ERR_THRESHOLD, 0);
116 const int g = de::max<int>(de::abs((int)getChannel<1>(pa) - (int)getChannel<1>(pb)) - MIN_ERR_THRESHOLD, 0);
117 const int b = de::max<int>(de::abs((int)getChannel<2>(pa) - (int)getChannel<2>(pb)) - MIN_ERR_THRESHOLD, 0);
118 const int a = de::max<int>(de::abs((int)getChannel<3>(pa) - (int)getChannel<3>(pb)) - MIN_ERR_THRESHOLD, 0);
119
120 return deUint32(r*r + g*g + b*b + a*a);
121 }
122
123 template<int NumChannels>
bilinearSample(const ConstPixelBufferAccess & src,float u,float v)124 inline deUint32 bilinearSample (const ConstPixelBufferAccess& src, float u, float v)
125 {
126 int w = src.getWidth();
127 int h = src.getHeight();
128
129 int x0 = deFloorFloatToInt32(u-0.5f);
130 int x1 = x0+1;
131 int y0 = deFloorFloatToInt32(v-0.5f);
132 int y1 = y0+1;
133
134 int i0 = de::clamp(x0, 0, w-1);
135 int i1 = de::clamp(x1, 0, w-1);
136 int j0 = de::clamp(y0, 0, h-1);
137 int j1 = de::clamp(y1, 0, h-1);
138
139 float a = deFloatFrac(u-0.5f);
140 float b = deFloatFrac(v-0.5f);
141
142 deUint32 p00 = readUnorm8<NumChannels>(src, i0, j0);
143 deUint32 p10 = readUnorm8<NumChannels>(src, i1, j0);
144 deUint32 p01 = readUnorm8<NumChannels>(src, i0, j1);
145 deUint32 p11 = readUnorm8<NumChannels>(src, i1, j1);
146 deUint32 dst = 0;
147
148 // Interpolate.
149 for (int c = 0; c < NumChannels; c++)
150 {
151 float f = (getChannel(p00, c)*(1.0f-a)*(1.0f-b)) +
152 (getChannel(p10, c)*( a)*(1.0f-b)) +
153 (getChannel(p01, c)*(1.0f-a)*( b)) +
154 (getChannel(p11, c)*( a)*( b));
155 dst = setChannel(dst, c, roundToUint8Sat(f));
156 }
157
158 return dst;
159 }
160
161 template<int DstChannels, int SrcChannels>
separableConvolve(const PixelBufferAccess & dst,const ConstPixelBufferAccess & src,int shiftX,int shiftY,const std::vector<float> & kernelX,const std::vector<float> & kernelY)162 static void separableConvolve (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src, int shiftX, int shiftY, const std::vector<float>& kernelX, const std::vector<float>& kernelY)
163 {
164 DE_ASSERT(dst.getWidth() == src.getWidth() && dst.getHeight() == src.getHeight());
165
166 TextureLevel tmp (dst.getFormat(), dst.getHeight(), dst.getWidth());
167 PixelBufferAccess tmpAccess = tmp.getAccess();
168
169 int kw = (int)kernelX.size();
170 int kh = (int)kernelY.size();
171
172 // Horizontal pass
173 // \note Temporary surface is written in column-wise order
174 for (int j = 0; j < src.getHeight(); j++)
175 {
176 for (int i = 0; i < src.getWidth(); i++)
177 {
178 Vec4 sum(0);
179
180 for (int kx = 0; kx < kw; kx++)
181 {
182 float f = kernelX[kw-kx-1];
183 deUint32 p = readUnorm8<SrcChannels>(src, de::clamp(i+kx-shiftX, 0, src.getWidth()-1), j);
184
185 sum += toFloatVec(p)*f;
186 }
187
188 writeUnorm8<DstChannels>(tmpAccess, j, i, toColor(sum));
189 }
190 }
191
192 // Vertical pass
193 for (int j = 0; j < src.getHeight(); j++)
194 {
195 for (int i = 0; i < src.getWidth(); i++)
196 {
197 Vec4 sum(0.0f);
198
199 for (int ky = 0; ky < kh; ky++)
200 {
201 float f = kernelY[kh-ky-1];
202 deUint32 p = readUnorm8<DstChannels>(tmpAccess, de::clamp(j+ky-shiftY, 0, tmp.getWidth()-1), i);
203
204 sum += toFloatVec(p)*f;
205 }
206
207 writeUnorm8<DstChannels>(dst, i, j, toColor(sum));
208 }
209 }
210 }
211
212 template<int NumChannels>
distSquaredToNeighbor(de::Random & rnd,deUint32 pixel,const ConstPixelBufferAccess & surface,int x,int y)213 static deUint32 distSquaredToNeighbor (de::Random& rnd, deUint32 pixel, const ConstPixelBufferAccess& surface, int x, int y)
214 {
215 // (x, y) + (0, 0)
216 deUint32 minDist = colorDistSquared(pixel, readUnorm8<NumChannels>(surface, x, y));
217
218 if (minDist == 0)
219 return minDist;
220
221 // Area around (x, y)
222 static const int s_coords[][2] =
223 {
224 {-1, -1},
225 { 0, -1},
226 {+1, -1},
227 {-1, 0},
228 {+1, 0},
229 {-1, +1},
230 { 0, +1},
231 {+1, +1}
232 };
233
234 for (int d = 0; d < (int)DE_LENGTH_OF_ARRAY(s_coords); d++)
235 {
236 int dx = x + s_coords[d][0];
237 int dy = y + s_coords[d][1];
238
239 if (!deInBounds32(dx, 0, surface.getWidth()) || !deInBounds32(dy, 0, surface.getHeight()))
240 continue;
241
242 minDist = de::min(minDist, colorDistSquared(pixel, readUnorm8<NumChannels>(surface, dx, dy)));
243 if (minDist == 0)
244 return minDist;
245 }
246
247 // Random bilinear-interpolated samples around (x, y)
248 for (int s = 0; s < 32; s++)
249 {
250 float dx = (float)x + rnd.getFloat()*2.0f - 0.5f;
251 float dy = (float)y + rnd.getFloat()*2.0f - 0.5f;
252
253 deUint32 sample = bilinearSample<NumChannels>(surface, dx, dy);
254
255 minDist = de::min(minDist, colorDistSquared(pixel, sample));
256 if (minDist == 0)
257 return minDist;
258 }
259
260 return minDist;
261 }
262
toGrayscale(const Vec4 & c)263 static inline float toGrayscale (const Vec4& c)
264 {
265 return 0.2126f*c[0] + 0.7152f*c[1] + 0.0722f*c[2];
266 }
267
isFormatSupported(const TextureFormat & format)268 static bool isFormatSupported (const TextureFormat& format)
269 {
270 return format.type == TextureFormat::UNORM_INT8 && (format.order == TextureFormat::RGB || format.order == TextureFormat::RGBA);
271 }
272
fuzzyCompare(const FuzzyCompareParams & params,const ConstPixelBufferAccess & ref,const ConstPixelBufferAccess & cmp,const PixelBufferAccess & errorMask)273 float fuzzyCompare (const FuzzyCompareParams& params, const ConstPixelBufferAccess& ref, const ConstPixelBufferAccess& cmp, const PixelBufferAccess& errorMask)
274 {
275 DE_ASSERT(ref.getWidth() == cmp.getWidth() && ref.getHeight() == cmp.getHeight());
276 DE_ASSERT(errorMask.getWidth() == ref.getWidth() && errorMask.getHeight() == ref.getHeight());
277
278 if (!isFormatSupported(ref.getFormat()) || !isFormatSupported(cmp.getFormat()))
279 throw InternalError("Unsupported format in fuzzy comparison", DE_NULL, __FILE__, __LINE__);
280
281 int width = ref.getWidth();
282 int height = ref.getHeight();
283 de::Random rnd (667);
284
285 // Filtered
286 TextureLevel refFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
287 TextureLevel cmpFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
288
289 // Kernel = {0.1, 0.8, 0.1}
290 vector<float> kernel(3);
291 kernel[0] = kernel[2] = 0.1f; kernel[1]= 0.8f;
292 int shift = (int)(kernel.size() - 1) / 2;
293
294 switch (ref.getFormat().order)
295 {
296 case TextureFormat::RGBA: separableConvolve<4, 4>(refFiltered, ref, shift, shift, kernel, kernel); break;
297 case TextureFormat::RGB: separableConvolve<4, 3>(refFiltered, ref, shift, shift, kernel, kernel); break;
298 default:
299 DE_ASSERT(DE_FALSE);
300 }
301
302 switch (cmp.getFormat().order)
303 {
304 case TextureFormat::RGBA: separableConvolve<4, 4>(cmpFiltered, cmp, shift, shift, kernel, kernel); break;
305 case TextureFormat::RGB: separableConvolve<4, 3>(cmpFiltered, cmp, shift, shift, kernel, kernel); break;
306 default:
307 DE_ASSERT(DE_FALSE);
308 }
309
310 int numSamples = 0;
311 deUint64 distSum4 = 0ull;
312
313 // Clear error mask to green.
314 clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f));
315
316 ConstPixelBufferAccess refAccess = refFiltered.getAccess();
317 ConstPixelBufferAccess cmpAccess = cmpFiltered.getAccess();
318
319 for (int y = 1; y < height-1; y++)
320 {
321 for (int x = 1; x < width-1; x += params.maxSampleSkip > 0 ? (int)rnd.getInt(1, params.maxSampleSkip) : 1)
322 {
323 const deUint32 minDist2RefToCmp = distSquaredToNeighbor<4>(rnd, readUnorm8<4>(refAccess, x, y), cmpAccess, x, y);
324 const deUint32 minDist2CmpToRef = distSquaredToNeighbor<4>(rnd, readUnorm8<4>(cmpAccess, x, y), refAccess, x, y);
325 const deUint32 minDist2 = de::min(minDist2RefToCmp, minDist2CmpToRef);
326 const deUint64 newSum4 = distSum4 + minDist2*minDist2;
327
328 distSum4 = (newSum4 >= distSum4) ? newSum4 : ~0ull; // In case of overflow
329 numSamples += 1;
330
331 // Build error image.
332 {
333 const int scale = 255-MIN_ERR_THRESHOLD;
334 const float err2 = float(minDist2) / float(scale*scale);
335 const float err4 = err2*err2;
336 const float red = err4 * 500.0f;
337 const float luma = toGrayscale(cmp.getPixel(x, y));
338 const float rF = 0.7f + 0.3f*luma;
339
340 errorMask.setPixel(Vec4(red*rF, (1.0f-red)*rF, 0.0f, 1.0f), x, y);
341 }
342 }
343 }
344
345 {
346 // Scale error sum based on number of samples taken
347 const double pSamples = double((width-2) * (height-2)) / double(numSamples);
348 const deUint64 colScale = deUint64(255-MIN_ERR_THRESHOLD);
349 const deUint64 colScale4 = colScale*colScale*colScale*colScale;
350
351 return float(double(distSum4) / double(colScale4) * pSamples);
352 }
353 }
354
355 } // tcu
356