1 /*
2 * Shared Dragonfly functionality
3 * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4 * Copyright (c) 2019, The Linux Foundation
5 *
6 * This software may be distributed under the terms of the BSD license.
7 * See README for more details.
8 */
9
10 #include "utils/includes.h"
11
12 #include "utils/common.h"
13 #include "utils/const_time.h"
14 #include "crypto/crypto.h"
15 #include "dragonfly.h"
16
17
dragonfly_suitable_group(int group,int ecc_only)18 int dragonfly_suitable_group(int group, int ecc_only)
19 {
20 /* Enforce REVmd rules on which SAE groups are suitable for production
21 * purposes: FFC groups whose prime is >= 3072 bits and ECC groups
22 * defined over a prime field whose prime is >= 256 bits. Furthermore,
23 * ECC groups defined over a characteristic 2 finite field and ECC
24 * groups with a co-factor greater than 1 are not suitable. Disable
25 * groups that use Brainpool curves as well for now since they leak more
26 * timing information due to the prime not being close to a power of
27 * two. */
28 return group == 19 || group == 20 || group == 21 ||
29 (!ecc_only &&
30 (group == 15 || group == 16 || group == 17 || group == 18));
31 }
32
33
dragonfly_min_pwe_loop_iter(int group)34 unsigned int dragonfly_min_pwe_loop_iter(int group)
35 {
36 if (group == 22 || group == 23 || group == 24) {
37 /* FFC groups for which pwd-value is likely to be >= p
38 * frequently */
39 return 40;
40 }
41
42 if (group == 1 || group == 2 || group == 5 || group == 14 ||
43 group == 15 || group == 16 || group == 17 || group == 18) {
44 /* FFC groups that have prime that is close to a power of two */
45 return 1;
46 }
47
48 /* Default to 40 (this covers most ECC groups) */
49 return 40;
50 }
51
52
dragonfly_get_random_qr_qnr(const struct crypto_bignum * prime,struct crypto_bignum ** qr,struct crypto_bignum ** qnr)53 int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
54 struct crypto_bignum **qr,
55 struct crypto_bignum **qnr)
56 {
57 *qr = *qnr = NULL;
58
59 while (!(*qr) || !(*qnr)) {
60 struct crypto_bignum *tmp;
61 int res;
62
63 tmp = crypto_bignum_init();
64 if (!tmp || crypto_bignum_rand(tmp, prime) < 0) {
65 crypto_bignum_deinit(tmp, 0);
66 break;
67 }
68
69 res = crypto_bignum_legendre(tmp, prime);
70 if (res == 1 && !(*qr))
71 *qr = tmp;
72 else if (res == -1 && !(*qnr))
73 *qnr = tmp;
74 else
75 crypto_bignum_deinit(tmp, 0);
76 }
77
78 if (*qr && *qnr)
79 return 0;
80 crypto_bignum_deinit(*qr, 0);
81 crypto_bignum_deinit(*qnr, 0);
82 *qr = *qnr = NULL;
83 return -1;
84 }
85
86
87 static struct crypto_bignum *
dragonfly_get_rand_1_to_p_1(const struct crypto_bignum * prime)88 dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
89 {
90 struct crypto_bignum *tmp, *pm1, *one;
91
92 tmp = crypto_bignum_init();
93 pm1 = crypto_bignum_init();
94 one = crypto_bignum_init_set((const u8 *) "\x01", 1);
95 if (!tmp || !pm1 || !one ||
96 crypto_bignum_sub(prime, one, pm1) < 0 ||
97 crypto_bignum_rand(tmp, pm1) < 0 ||
98 crypto_bignum_add(tmp, one, tmp) < 0) {
99 crypto_bignum_deinit(tmp, 0);
100 tmp = NULL;
101 }
102
103 crypto_bignum_deinit(pm1, 0);
104 crypto_bignum_deinit(one, 0);
105 return tmp;
106 }
107
108
dragonfly_is_quadratic_residue_blind(struct crypto_ec * ec,const u8 * qr,const u8 * qnr,const struct crypto_bignum * val)109 int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
110 const u8 *qr, const u8 *qnr,
111 const struct crypto_bignum *val)
112 {
113 struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
114 int check, res = -1;
115 u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
116 const struct crypto_bignum *prime;
117 size_t prime_len;
118 unsigned int mask;
119
120 prime = crypto_ec_get_prime(ec);
121 prime_len = crypto_ec_prime_len(ec);
122
123 /*
124 * Use a blinding technique to mask val while determining whether it is
125 * a quadratic residue modulo p to avoid leaking timing information
126 * while determining the Legendre symbol.
127 *
128 * v = val
129 * r = a random number between 1 and p-1, inclusive
130 * num = (v * r * r) modulo p
131 */
132 r = dragonfly_get_rand_1_to_p_1(prime);
133 if (!r)
134 return -1;
135
136 num = crypto_bignum_init();
137 if (!num ||
138 crypto_bignum_mulmod(val, r, prime, num) < 0 ||
139 crypto_bignum_mulmod(num, r, prime, num) < 0)
140 goto fail;
141
142 /*
143 * Need to minimize differences in handling different cases, so try to
144 * avoid branches and timing differences.
145 *
146 * If r is odd:
147 * num = (num * qr) module p
148 * LGR(num, p) = 1 ==> quadratic residue
149 * else:
150 * num = (num * qnr) module p
151 * LGR(num, p) = -1 ==> quadratic residue
152 *
153 * mask is set to !odd(r)
154 */
155 mask = const_time_is_zero(crypto_bignum_is_odd(r));
156 const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
157 qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
158 if (!qr_or_qnr ||
159 crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
160 goto fail;
161 /* branchless version of check = odd(r) ? 1 : -1, */
162 check = const_time_select_int(mask, -1, 1);
163
164 /* Determine the Legendre symbol on the masked value */
165 res = crypto_bignum_legendre(num, prime);
166 if (res == -2) {
167 res = -1;
168 goto fail;
169 }
170 /* branchless version of res = res == check
171 * (res is -1, 0, or 1; check is -1 or 1) */
172 mask = const_time_eq(res, check);
173 res = const_time_select_int(mask, 1, 0);
174 fail:
175 crypto_bignum_deinit(num, 1);
176 crypto_bignum_deinit(r, 1);
177 crypto_bignum_deinit(qr_or_qnr, 1);
178 return res;
179 }
180
181
dragonfly_get_rand_2_to_r_1(struct crypto_bignum * val,const struct crypto_bignum * order)182 static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val,
183 const struct crypto_bignum *order)
184 {
185 return crypto_bignum_rand(val, order) == 0 &&
186 !crypto_bignum_is_zero(val) &&
187 !crypto_bignum_is_one(val);
188 }
189
190
dragonfly_generate_scalar(const struct crypto_bignum * order,struct crypto_bignum * _rand,struct crypto_bignum * _mask,struct crypto_bignum * scalar)191 int dragonfly_generate_scalar(const struct crypto_bignum *order,
192 struct crypto_bignum *_rand,
193 struct crypto_bignum *_mask,
194 struct crypto_bignum *scalar)
195 {
196 int count;
197
198 /* Select two random values rand,mask such that 1 < rand,mask < r and
199 * rand + mask mod r > 1. */
200 for (count = 0; count < 100; count++) {
201 if (dragonfly_get_rand_2_to_r_1(_rand, order) &&
202 dragonfly_get_rand_2_to_r_1(_mask, order) &&
203 crypto_bignum_add(_rand, _mask, scalar) == 0 &&
204 crypto_bignum_mod(scalar, order, scalar) == 0 &&
205 !crypto_bignum_is_zero(scalar) &&
206 !crypto_bignum_is_one(scalar))
207 return 0;
208 }
209
210 /* This should not be reachable in practice if the random number
211 * generation is working. */
212 wpa_printf(MSG_INFO,
213 "dragonfly: Unable to get randomness for own scalar");
214 return -1;
215 }
216
217
218 /* res = sqrt(val) */
dragonfly_sqrt(struct crypto_ec * ec,const struct crypto_bignum * val,struct crypto_bignum * res)219 int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val,
220 struct crypto_bignum *res)
221 {
222 const struct crypto_bignum *prime;
223 struct crypto_bignum *tmp, *one;
224 int ret = 0;
225 u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
226 size_t prime_len;
227
228 /* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */
229
230 prime = crypto_ec_get_prime(ec);
231 prime_len = crypto_ec_prime_len(ec);
232 tmp = crypto_bignum_init();
233 one = crypto_bignum_init_uint(1);
234
235 if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin),
236 prime_len) < 0 ||
237 (prime_bin[prime_len - 1] & 0x03) != 3 ||
238 !tmp || !one ||
239 /* tmp = (p+1)/4 */
240 crypto_bignum_add(prime, one, tmp) < 0 ||
241 crypto_bignum_rshift(tmp, 2, tmp) < 0 ||
242 /* res = sqrt(val) */
243 crypto_bignum_exptmod(val, tmp, prime, res) < 0)
244 ret = -1;
245
246 crypto_bignum_deinit(tmp, 0);
247 crypto_bignum_deinit(one, 0);
248 return ret;
249 }
250