1 /** 2 * Copyright 2020 Huawei Technologies Co., Ltd 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #ifndef MINDSPORE_INCLUDE_API_MODEL_H 17 #define MINDSPORE_INCLUDE_API_MODEL_H 18 19 #include <string> 20 #include <vector> 21 #include <map> 22 #include <memory> 23 #include <utility> 24 #include "include/api/status.h" 25 #include "include/api/types.h" 26 #include "include/api/graph.h" 27 #include "include/api/context.h" 28 #include "include/api/callback/callback.h" 29 #include "include/api/cell.h" 30 #include "include/api/cfg.h" 31 #include "include/api/dual_abi_helper.h" 32 33 namespace mindspore { 34 class ModelImpl; 35 class Metrics; 36 37 namespace dataset { 38 class Dataset; 39 } // namespace dataset 40 /// \brief The Model class is used to define a MindSpore model, facilitating computational graph management. 41 class MS_API Model { 42 public: 43 Model(); 44 ~Model(); 45 Model(const Model &) = delete; 46 void operator=(const Model &) = delete; 47 48 /// \brief Builds a model so that it can run on a device. 49 /// 50 /// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed 51 /// from Graph, for example, model.Build(GraphCell(graph), context). 52 /// \param[in] model_context A context used to store options during execution. 53 /// \param[in] train_cfg A config used by training. 54 /// 55 /// \return Status. 56 Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr, 57 const std::shared_ptr<TrainCfg> &train_cfg = nullptr); 58 59 /// \brief Resizes the shapes of inputs. 60 /// 61 /// \param[in] inputs A vector that includes all input tensors in order. 62 /// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs. 63 /// 64 /// \return Status. 65 Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims); 66 67 /// \brief Inference model. 68 /// 69 /// \param[in] inputs A vector where model inputs are arranged in sequence. 70 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence. 71 /// \param[in] before CallBack before predict. 72 /// \param[in] after CallBack after predict. 73 /// 74 /// \return Status. 75 Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs, 76 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr); 77 78 /// \brief Inference model with preprocess in model. 79 /// 80 /// \param[in] inputs A vector where model inputs are arranged in sequence. 81 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence. 82 /// \param[in] whether to use data preprocess in model. 83 /// \param[in] before CallBack before predict. 84 /// \param[in] after CallBack after predict. 85 /// 86 /// \return Status. 87 Status PredictWithPreprocess(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs, 88 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr); 89 90 /// \brief Apply data preprocess if it exits in model. 91 /// 92 /// \param[in] inputs A vector where model inputs are arranged in sequence. 93 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence. 94 /// 95 /// \return Status. 96 Status Preprocess(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs); 97 98 /// \brief Check if data preprocess exists in model. 99 /// \return true if data preprocess exists. 100 bool HasPreprocess(); 101 102 /// \brief Load config file. 103 /// 104 /// \param[in] config_path config file path. 105 /// 106 /// \return Status. 107 Status LoadConfig(const std::string &config_path); 108 109 /// \brief Obtains all input tensors of the model. 110 /// 111 /// \return The vector that includes all input tensors. 112 std::vector<MSTensor> GetInputs(); 113 114 /// \brief Obtains the input tensor of the model by name. 115 /// 116 /// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned. 117 inline MSTensor GetInputByTensorName(const std::string &tensor_name); 118 119 /// \brief Obtains all gradient tensors of the model. 120 /// 121 /// \return The vector that includes all gradient tensors. 122 std::vector<MSTensor> GetGradients() const; 123 124 /// \brief update gradient tensors of the model. 125 /// 126 /// \param[in] inputs A vector new gradients. 127 /// \return Status of operation 128 Status ApplyGradients(const std::vector<MSTensor> &gradients); 129 130 /// \brief Obtains optimizer params tensors of the model. 131 /// 132 /// \return The vector that includes all params tensors. 133 std::vector<MSTensor> GetOptimizerParams() const; 134 135 /// \brief update the optimizer parameters 136 /// 137 /// \param[in] inputs A vector new optimizer params. 138 /// \return Status of operation 139 Status SetOptimizerParams(const std::vector<MSTensor> ¶ms); 140 141 Status InitMetrics(std::vector<Metrics *> metrics); 142 std::vector<Metrics *> GetMetrics(); 143 144 /// \brief Obtains all output tensors of the model. 145 /// 146 /// \return The vector that includes all output tensors. 147 std::vector<MSTensor> GetOutputs(); 148 149 /// \brief Obtains names of all output tensors of the model. 150 /// 151 /// \return A vector that includes names of all output tensors. 152 inline std::vector<std::string> GetOutputTensorNames(); 153 154 /// \brief Obtains the output tensor of the model by name. 155 /// 156 /// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned. 157 inline MSTensor GetOutputByTensorName(const std::string &tensor_name); 158 159 /// \brief Get output MSTensors of model by node name. 160 /// 161 /// \param[in] node_name Define node name. 162 /// 163 /// \note Deprecated, replace with GetOutputByTensorName 164 /// 165 /// \return The vector of output MSTensor. 166 inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name); 167 168 /// \brief Inference model. 169 /// 170 /// \param[in] device_type Device type,options are kGPU, kAscend910, etc. 171 /// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM. 172 /// 173 /// \return Is supported or not. 174 static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type); 175 176 Status SetTrainMode(bool train); 177 bool GetTrainMode() const; 178 Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs); 179 Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs); 180 181 /// \brief Build a model from model buffer so that it can run on a device. Only valid for Lite. 182 /// 183 /// \param[in] model_data Define the buffer read from a model file. 184 /// \param[in] size Define bytes number of model buffer. 185 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only 186 /// ModelType::kMindIR is valid for Lite. 187 /// \param[in] model_context Define the context used to store options during execution. 188 /// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32. 189 /// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC. 190 /// 191 /// \return Status. 192 Status Build(const void *model_data, size_t data_size, ModelType model_type, 193 const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {}, 194 const std::string &dec_mode = kDecModeAesGcm); 195 196 /// \brief Load and build a model from model buffer so that it can run on a device. Only valid for Lite. 197 /// 198 /// \param[in] model_path Define the model path. 199 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only 200 /// ModelType::kMindIR is valid for Lite. 201 /// \param[in] model_context Define the context used to store options during execution. 202 /// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32. 203 /// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC. 204 /// 205 /// \return Status. 206 Status Build(const std::string &model_path, ModelType model_type, 207 const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {}, 208 const std::string &dec_mode = kDecModeAesGcm); 209 210 private: 211 friend class Serialization; 212 // api without std::string 213 MSTensor GetInputByTensorName(const std::vector<char> &tensor_name); 214 std::vector<std::vector<char>> GetOutputTensorNamesChar(); 215 MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name); 216 std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name); 217 218 std::shared_ptr<ModelImpl> impl_; 219 }; 220 221 MSTensor Model::GetInputByTensorName(const std::string &tensor_name) { 222 return GetInputByTensorName(StringToChar(tensor_name)); 223 } 224 225 std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); } 226 227 MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) { 228 return GetOutputByTensorName(StringToChar(tensor_name)); 229 } 230 231 std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) { 232 return GetOutputsByNodeName(StringToChar(node_name)); 233 } 234 } // namespace mindspore 235 #endif // MINDSPORE_INCLUDE_API_MODEL_H 236