• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.common.initializer import initializer
21from mindspore.common.parameter import Parameter
22from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
23from mindspore.ops import operations as P
24
25context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
26
27init()
28rank = get_rank()
29size = get_group_size()
30x = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
31
32
33class Net(nn.Cell):
34    def __init__(self):
35        super(Net, self).__init__()
36        self.all_gather = P.AllGather(group=NCCL_WORLD_COMM_GROUP)
37        self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
38
39    def construct(self):
40        return self.all_gather(self.x)
41
42
43def test_AllGather():
44    all_gather = Net()
45    output = all_gather()
46
47    expect = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (0 + 1)
48    for i in range(size - 1):
49        tmp = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 2)
50        expect = np.concatenate((expect, tmp))
51    diff = np.absolute(output.asnumpy() - expect)
52    error = np.ones(shape=expect.shape) * 1.0e-5
53    assert np.all(diff < error)
54    assert output.shape == expect.shape
55