• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.ops import operations as P
22
23context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
24
25
26class DynamicGRUV2(nn.Cell):
27    def __init__(self):
28        super(DynamicGRUV2, self).__init__()
29        self.dynamic_gru = P.DynamicGRUV2()
30
31    def construct(self, x, weight_i, weight_h, bias_i, bias_h, init_h):
32        return self.dynamic_gru(x, weight_i, weight_h, bias_i, bias_h, None, init_h)
33
34
35@pytest.mark.level1
36@pytest.mark.env_onecard
37@pytest.mark.platform_arm_ascend_training
38@pytest.mark.platform_x86_ascend_training
39def test_dynamic_gru_v2():
40    x = Tensor(np.random.rand(2, 8, 64).astype(np.float16))
41    weight_i = Tensor(np.random.rand(64, 48).astype(np.float16))
42    weight_h = Tensor(np.random.rand(16, 48).astype(np.float16))
43    bias_i = Tensor(np.random.rand(48).astype(np.float16))
44    bias_h = Tensor(np.random.rand(48).astype(np.float16))
45    init_h = Tensor(np.random.rand(8, 16).astype(np.float16))
46    gru_net = DynamicGRUV2()
47    output = gru_net(x, weight_i, weight_h, bias_i, bias_h, init_h)
48    assert output[0].shape == (2, 8, 16)
49