• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.common.api import ms_function
21from mindspore.ops import operations as P
22
23context.set_context(device_target="Ascend")
24
25
26class Net(nn.Cell):
27    def __init__(self, is_grad=False):
28        super(Net, self).__init__()
29        self.SparseSoftmaxCrossEntropyWithLogits = P.SparseSoftmaxCrossEntropyWithLogits(is_grad=is_grad)
30
31    @ms_function
32    def construct(self, features, labels):
33        return self.SparseSoftmaxCrossEntropyWithLogits(features, labels)
34
35
36def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype):
37    num_class = logits_shape[1]
38    labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
39    logits = np.random.rand(*logits_shape).astype(logits_dtype)
40    features = logits
41    features_reshape = np.reshape(features, [-1, num_class])
42    labels_reshape = np.reshape(labels, [-1])
43    batch_dim = 0
44    class_dim = 1
45    batch_size = features_reshape.shape[batch_dim]
46    e = np.exp(features_reshape - np.reshape(np.amax(features_reshape, axis=class_dim), [batch_size, 1]))
47    probs = e / np.reshape(np.sum(e, axis=class_dim), [batch_size, 1])
48    labels_mat = np.zeros_like(probs).astype(probs.dtype)
49    labels_mat[np.arange(batch_size), labels_reshape] = 1.0
50    bp = (probs - labels_mat)
51    loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1)
52    bp_res = np.reshape(bp, features.shape)
53    loss_res = np.reshape(loss, labels.shape)
54    loss_res = np.sum(loss_res, axis=0) / loss_res.shape[0]
55    return labels, logits, loss_res, bp_res
56
57
58def test_net():
59    '''Compare Numpy with MS type is float32'''
60    labels_shape = (32,)
61    logits_shape = [32, 1001]
62    labels, logits, loss_np, _ = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
63    expect = loss_np
64    SparseSoftmaxCrossEntropyWithLogits = Net()
65    loss_me = SparseSoftmaxCrossEntropyWithLogits(Tensor(logits), Tensor(labels))
66#   assert
67    assert np.allclose(expect.flatten(), loss_me.asnumpy().flatten(), 0.01, 0.01)
68    print(loss_me.asnumpy().flatten())
69    print("-------------------------")
70    print(expect)
71
72
73test_net()
74