1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" test implicit conversion """ 16import numpy as np 17 18from mindspore import Tensor 19 20 21def test_float_tensor_and_int_add(): 22 x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) 23 y = 2 24 ret_actual = x + y 25 ret_expect = Tensor(np.array([[2.1, 2.2, 2.3], [2.4, 2.5, 2.6]], dtype=np.float32)) 26 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 27 28 29def test_bool_tensor_and_float_add(): 30 x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_)) 31 y = 3.3 32 ret_actual = x + y 33 ret_expect = Tensor(np.array([[4.3, 3.3], [3.3, 4.3]], dtype=np.float32)) 34 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 35 36 37def test_bool_tensor_and_int_add(): 38 x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_)) 39 y = 3 40 ret_actual = x + y 41 ret_expect = Tensor(np.array([[4, 3], [3, 4]], dtype=np.int32)) 42 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 43 44 45def test_bool_and_int_tensor_add(): 46 x = True 47 y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) 48 ret_actual = x + y 49 ret_expect = Tensor(np.array([[2, 3, 4], [5, 6, 7]], dtype=np.int32)) 50 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 51 52 53def test_float_tensor_and_int_tensor_add(): 54 x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) 55 y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) 56 ret_actual = x + y 57 ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)) 58 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 59 60 61def test_float_tensor_and_float_tensor_add(): 62 x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float64)) 63 y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32)) 64 ret_actual = x + y 65 ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float64)) 66 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 67 68 69def test_int_tensor_and_int_tensor_add(): 70 x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)) 71 y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) 72 ret_actual = x + y 73 ret_expect = Tensor(np.array([[2, 4, 6], [8, 10, 12]], dtype=np.int32)) 74 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 75 76 77def test_float_tensor_and_bool_tensors_add(): 78 x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) 79 y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_)) 80 ret_actual = x + y 81 ret_expect = Tensor(np.array([[1.1, 1.2, 1.3], [0.4, 0.5, 0.6]], dtype=np.float32)) 82 assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() 83