• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include <algorithm>
17 #include <cstdlib>
18 #include <new>
19 
20 #include "nn_tensor.h"
21 #include "validation.h"
22 #include "transform.h"
23 #include "common/log.h"
24 #include "mindir.h"
25 #include "mindir_types.h"
26 
27 namespace OHOS {
28 namespace NeuralNetworkRuntime {
29 const uint32_t SUPPORT_NUM_BIT = 8; // Currently support 8-bit quantization only
30 const uint32_t INVALID_NUM_BIT = 0;
31 
DestroyLiteGraphTensor(void * tensor)32 void DestroyLiteGraphTensor(void* tensor)
33 {
34     mindspore::lite::MindIR_Tensor_Destroy(&tensor);
35 }
36 
~NNTensor()37 NNTensor::~NNTensor()
38 {
39     if (m_buffer != nullptr) {
40         delete [] reinterpret_cast<char*>(m_buffer);
41     }
42 }
43 
NNTensor(NNTensor && tensor)44 NNTensor::NNTensor(NNTensor&& tensor) noexcept
45 {
46     *this = std::move(tensor);
47 }
48 
operator =(NNTensor && tensor)49 NNTensor& NNTensor::operator=(NNTensor&& tensor) noexcept
50 {
51     if (this == &tensor) {
52         return *this;
53     }
54 
55     m_type = tensor.m_type;
56     m_dataType = tensor.m_dataType;
57     m_format = tensor.m_format;
58     m_name = std::move(tensor.m_name);
59     m_dimensions = std::move(tensor.m_dimensions);
60     m_quantParams = std::move(tensor.m_quantParams);
61     m_elementCount = tensor.m_elementCount;
62     m_isDynamicShape = tensor.m_isDynamicShape;
63     m_isOpParameter = tensor.m_isOpParameter;
64     m_buffer = tensor.m_buffer;
65     m_bufferLength = tensor.m_bufferLength;
66     m_dataLength = tensor.m_dataLength;
67 
68     tensor.m_buffer = nullptr;
69     tensor.m_bufferLength = 0;
70     tensor.m_dataLength = 0;
71 
72     return *this;
73 }
74 
Build(OH_NN_DataType dataType,const std::vector<int32_t> & dimensions,const std::vector<QuantParam> & quantParam,OH_NN_TensorType type)75 OH_NN_ReturnCode NNTensor::Build(OH_NN_DataType dataType,
76                                  const std::vector<int32_t>& dimensions,
77                                  const std::vector<QuantParam>& quantParam,
78                                  OH_NN_TensorType type)
79 {
80     m_type = type;
81 
82     if (!Validation::ValidateTensorDataType(dataType)) {
83         LOGE("Build failed, passed invalid data type.");
84         return OH_NN_INVALID_PARAMETER;
85     }
86     m_dataType = dataType;
87 
88     OH_NN_ReturnCode ret = ParseDimensions(dimensions);
89     if (ret != OH_NN_SUCCESS) {
90         LOGE("Build failed, passed invalid dimensions.");
91         return ret;
92     }
93 
94     ret = ParseQuantParams(quantParam);
95     if (ret != OH_NN_SUCCESS) {
96         LOGE("Build failed, please check quantParam.");
97         return ret;
98     }
99 
100     return OH_NN_SUCCESS;
101 }
102 
BuildFromOHNNTensor(const OH_NN_Tensor & nnTensor)103 OH_NN_ReturnCode NNTensor::BuildFromOHNNTensor(const OH_NN_Tensor& nnTensor)
104 {
105     m_type = nnTensor.type;
106 
107     if (!Validation::ValidateTensorDataType(nnTensor.dataType)) {
108         LOGE("BuildFromOHNNTensor failed, passed invalid data type: %d.", nnTensor.dataType);
109         return OH_NN_INVALID_PARAMETER;
110     }
111     m_dataType = nnTensor.dataType;
112 
113     if (!Validation::ValidateTensorType(nnTensor.type)) {
114         LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor type: %d.", nnTensor.type);
115         return OH_NN_INVALID_PARAMETER;
116     }
117 
118     OH_NN_ReturnCode ret = ParseDimensions(nnTensor);
119     if (ret != OH_NN_SUCCESS) {
120         LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor dimensions.");
121         return ret;
122     }
123 
124     ret = ParseQuantParams(nnTensor.quantParam);
125     if (ret != OH_NN_SUCCESS) {
126         LOGE("BuildFromOHNNTensor failed, please check quantParam in nnTensor.");
127         return ret;
128     }
129 
130     return OH_NN_SUCCESS;
131 }
132 
ParseDimensions(const std::vector<int32_t> & dimensions)133 OH_NN_ReturnCode NNTensor::ParseDimensions(const std::vector<int32_t>& dimensions)
134 {
135     // Temporary variable to check overflow.
136     uint64_t absoluteDim {0};
137     uint64_t elementCount {1};
138     uint64_t dataLength {static_cast<uint64_t>(GetTypeSize(m_dataType))};
139     m_isDynamicShape = false;
140     for (int32_t dim : dimensions) {
141         if (dim < -1 || dim == 0) {
142             LOGE("ParseDimension failed, dimension of OH_NN_Tensor cannot be 0 or less than -1, receive %d.", dim);
143             return OH_NN_INVALID_PARAMETER;
144         }
145 
146         m_isDynamicShape = m_isDynamicShape || (dim == -1);
147         absoluteDim = static_cast<uint64_t>(abs(dim));
148         elementCount *= absoluteDim;
149         dataLength *= absoluteDim;
150 
151         if (dataLength > UINT32_MAX) {
152             LOGE("ParseDimension failed, expected data length of tensor exceed limit %u.", UINT32_MAX);
153             return OH_NN_INVALID_PARAMETER;
154         }
155     }
156 
157     if (m_isDynamicShape) {
158         // If tensor has dynamic shape, m_elementCount and m_dataLength take 0.
159         m_elementCount = 0;
160         m_dataLength = 0;
161     } else {
162         m_elementCount = static_cast<uint32_t>(elementCount);
163         m_dataLength = static_cast<size_t>(dataLength);
164     }
165 
166     m_dimensions = std::move(dimensions);
167     return OH_NN_SUCCESS;
168 }
169 
ParseDimensions(const OH_NN_Tensor & nnTensor)170 OH_NN_ReturnCode NNTensor::ParseDimensions(const OH_NN_Tensor& nnTensor)
171 {
172     OH_NN_ReturnCode ret = Validation::ValidateArray(nnTensor.dimensions, nnTensor.dimensionCount);
173     if (ret != OH_NN_SUCCESS) {
174         LOGE("BuildFromOHNNTensor failed, please check dimension and dimensionCount in NNTensor.");
175         return ret;
176     }
177     std::vector<int32_t> dimensions = ConstructVectorFromArray(nnTensor.dimensions, nnTensor.dimensionCount);
178 
179     ret = ParseDimensions(dimensions);
180     if (ret != OH_NN_SUCCESS) {
181         LOGE("BuildFromOHNNTensor failed, passed invalid dimension info.");
182         return ret;
183     }
184 
185     return OH_NN_SUCCESS;
186 }
187 
ParseQuantParams(const OH_NN_QuantParam * quantParam)188 OH_NN_ReturnCode NNTensor::ParseQuantParams(const OH_NN_QuantParam* quantParam)
189 {
190     if (quantParam == nullptr) {
191         return OH_NN_SUCCESS;
192     }
193 
194     if ((quantParam->numBits == nullptr) || (quantParam->scale == nullptr) || (quantParam->zeroPoint == nullptr)) {
195         LOGE("ParseQuantParams failed, scale or zeroPoint is nullptr.");
196         return OH_NN_INVALID_PARAMETER;
197     }
198 
199     std::vector<QuantParam> tmpQuantParam;
200     uint32_t numBits{0};
201     double scale{0.0};
202     int32_t zeroPoint{0};
203     for (uint32_t i = 0; i < quantParam->quantCount; i++) {
204         numBits = quantParam->numBits[i];
205         scale = quantParam->scale[i];
206         zeroPoint = quantParam->zeroPoint[i];
207         tmpQuantParam.emplace_back((QuantParam){numBits, scale, zeroPoint});
208     }
209 
210     OH_NN_ReturnCode ret = ParseQuantParams(tmpQuantParam);
211     if (ret != OH_NN_SUCCESS) {
212         LOGE("ParseQuantParams failed, please numBits in NNTensor.");
213         return ret;
214     }
215 
216     return OH_NN_SUCCESS;
217 }
218 
ParseQuantParams(const std::vector<QuantParam> & quantParams)219 OH_NN_ReturnCode NNTensor::ParseQuantParams(const std::vector<QuantParam>& quantParams)
220 {
221     for (const QuantParam& param : quantParams) {
222         // Only support 8-bit quantization in NNR version 1.0
223         if ((param.numBits != SUPPORT_NUM_BIT) || (param.numBits == INVALID_NUM_BIT)) {
224             LOGE("ParseQuantParams failed, get invalid numBits %d.", param.numBits);
225             return OH_NN_INVALID_PARAMETER;
226         }
227     }
228 
229     m_quantParams = quantParams;
230     return OH_NN_SUCCESS;
231 }
232 
IdentifyOpParameter()233 void NNTensor::IdentifyOpParameter()
234 {
235     m_isOpParameter = true;
236 }
237 
SetName(const std::string & name)238 void NNTensor::SetName(const std::string& name)
239 {
240     m_name = name;
241 }
242 
243 // Buffer set inside NNTensor will be released during deconstruction, make sure the buffer won't be released twice.
SetBuffer(const void * buffer,size_t length)244 void NNTensor::SetBuffer(const void* buffer, size_t length)
245 {
246     // copy pointer instead of memory copying
247     m_buffer = const_cast<void*>(buffer);
248     m_bufferLength = length;
249 }
250 
SetDimensions(const std::vector<int32_t> & dimensions)251 OH_NN_ReturnCode NNTensor::SetDimensions(const std::vector<int32_t>& dimensions)
252 {
253     size_t expectedDimensionCount = m_dimensions.size();
254     size_t dimensionCount = dimensions.size();
255     if (dimensionCount != expectedDimensionCount) {
256         LOGE("Passed dimensions have different dimension counts from NNTensor, expected %zu, but passed %zu.",
257              expectedDimensionCount, dimensionCount);
258         return OH_NN_INVALID_PARAMETER;
259     }
260 
261     auto ret = ParseDimensions(dimensions);
262     if (ret != OH_NN_SUCCESS) {
263         LOGE("SetDimemsions failed, passed invalid dimension info.");
264         return ret;
265     }
266 
267     m_dimensions = dimensions;
268     return OH_NN_SUCCESS;
269 }
270 
GetType() const271 OH_NN_TensorType NNTensor::GetType() const
272 {
273     return m_type;
274 }
275 
GetName() const276 std::string NNTensor::GetName() const
277 {
278     return m_name;
279 }
280 
GetBuffer() const281 void* NNTensor::GetBuffer() const
282 {
283     return m_buffer;
284 }
285 
GetBufferLength() const286 size_t NNTensor::GetBufferLength() const
287 {
288     return m_bufferLength;
289 }
290 
GetDataLength() const291 size_t NNTensor::GetDataLength() const
292 {
293     return m_dataLength;
294 }
295 
GetDataType() const296 OH_NN_DataType NNTensor::GetDataType() const
297 {
298     return m_dataType;
299 }
300 
GetElementCount() const301 uint32_t NNTensor::GetElementCount() const
302 {
303     return m_elementCount;
304 }
305 
GetDimensions() const306 std::vector<int32_t> NNTensor::GetDimensions() const
307 {
308     return m_dimensions;
309 }
310 
GetFormat() const311 OH_NN_Format NNTensor::GetFormat() const
312 {
313     return m_format;
314 }
315 
GetQuantParam() const316 std::vector<QuantParam> NNTensor::GetQuantParam() const
317 {
318     return m_quantParams;
319 }
320 
ConvertToLiteGraphTensor() const321 LiteGraphTensorPtr NNTensor::ConvertToLiteGraphTensor() const
322 {
323     mindspore::lite::DataType dataType = NNToMS::TransformDataType(m_dataType);
324     mindspore::lite::Format format = NNToMS::TransformFormat(m_format);
325     const uint8_t* buffer = static_cast<const uint8_t*>(m_buffer);
326     std::vector<uint8_t> data = ConstructVectorFromArray(buffer, m_dataLength);
327 
328     std::vector<mindspore::lite::QuantParam> quantParams;
329     mindspore::lite::QuantParam msQuantParam;
330     for (const QuantParam& param : m_quantParams) {
331         msQuantParam = {param.zeroPoint, param.scale, param.numBits};
332         quantParams.emplace_back(std::move(msQuantParam));
333     }
334 
335     mindspore::lite::TensorPtr tensor = mindspore::lite::MindIR_Tensor_Create(
336         m_name, dataType, m_dimensions, format, data, quantParams);
337     if (tensor == nullptr) {
338         LOGE("ConvertToLiteGraphTensor failed, please check attributes of NNTensor.");
339         return {nullptr, DestroyLiteGraphTensor};
340     }
341 
342     LiteGraphTensorPtr liteGraphTensor(tensor, DestroyLiteGraphTensor);
343     return liteGraphTensor;
344 }
345 
ConvertToIOTensor(IOTensor & tensor) const346 void NNTensor::ConvertToIOTensor(IOTensor& tensor) const
347 {
348     tensor.dataType = m_dataType;
349     tensor.format = m_format;
350     tensor.dimensions = m_dimensions;
351     tensor.data = const_cast<void*>(m_buffer);
352     tensor.length = m_bufferLength;
353 }
354 
IsDynamicShape() const355 bool NNTensor::IsDynamicShape() const
356 {
357     return m_isDynamicShape;
358 }
359 
IsQuantTensor() const360 bool NNTensor::IsQuantTensor() const
361 {
362     return (m_quantParams.size() > 0);
363 }
364 
IsScalar() const365 bool NNTensor::IsScalar() const
366 {
367     return (m_dimensions.empty());
368 }
369 
IsOpParameter() const370 bool NNTensor::IsOpParameter() const
371 {
372     return m_isOpParameter;
373 }
374 
CompareAttribute(const NNTensor & tensor) const375 bool NNTensor::CompareAttribute(const NNTensor& tensor) const
376 {
377     if (m_dataType != tensor.GetDataType()) {
378         LOGI("Tensors have different data type: %d and %d.", m_dataType, tensor.GetDataType());
379         return false;
380     }
381 
382     if (m_format != tensor.GetFormat()) {
383         LOGI("Tensors have different format: %d and %d.", m_format, tensor.GetFormat());
384         return false;
385     }
386 
387     const std::vector<int32_t> dimensions = tensor.GetDimensions();
388     if (m_dimensions.size() != dimensions.size()) {
389         LOGI("Tensors have differents dimension counts: %zu and %zu.", m_dimensions.size(), dimensions.size());
390         return false;
391     }
392 
393     for (auto i = 0; i < dimensions.size(); i++) {
394         if (m_dimensions[i] != -1 && m_dimensions[i] != dimensions[i]) {
395             LOGI("Tensors have different dimension: dimension index: %u, dimension value: %d and %d.",
396                  i, m_dimensions[i], dimensions[i]);
397             return false;
398         }
399     }
400 
401     if (m_type != tensor.GetType()) {
402         LOGI("Tensors have different type: %d and %d.", m_type, tensor.GetType());
403         return false;
404     }
405 
406     return true;
407 }
408 } // NeuralNetworkRuntime
409 } // OHOS