1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63 enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72 enum sh_cmt_model model;
73
74 unsigned int channels_mask;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
92
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
98
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112 struct platform_device *pdev;
113
114 const struct sh_cmt_info *info;
115
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
124 unsigned int hw_channels;
125
126 bool has_clockevent;
127 bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
sh_cmt_read16(void __iomem * base,unsigned long offs)158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 return ioread16(base + (offs << 1));
161 }
162
sh_cmt_read32(void __iomem * base,unsigned long offs)163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 return ioread32(base + (offs << 2));
166 }
167
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 iowrite16(value, base + (offs << 1));
171 }
172
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
201 .channels_mask = 0x3f,
202 .width = 32,
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
209 },
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
224 .width = 32,
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
231 },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240 if (ch->iostart)
241 return ch->cmt->info->read_control(ch->iostart, 0);
242 else
243 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281 u32 v1, v2, v3;
282 u32 o1, o2;
283
284 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 do {
288 o2 = o1;
289 v1 = sh_cmt_read_cmcnt(ch);
290 v2 = sh_cmt_read_cmcnt(ch);
291 v3 = sh_cmt_read_cmcnt(ch);
292 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296 *has_wrapped = o1;
297 return v2;
298 }
299
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302 unsigned long flags;
303 u32 value;
304
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 value = sh_cmt_read_cmstr(ch);
308
309 if (start)
310 value |= 1 << ch->timer_bit;
311 else
312 value &= ~(1 << ch->timer_bit);
313
314 sh_cmt_write_cmstr(ch, value);
315 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317
sh_cmt_enable(struct sh_cmt_channel * ch)318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320 int k, ret;
321
322 pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325 /* enable clock */
326 ret = clk_enable(ch->cmt->clk);
327 if (ret) {
328 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 ch->index);
330 goto err0;
331 }
332
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch, 0);
335
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch->cmt->info->width == 16) {
338 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 SH_CMT16_CMCSR_CKS512);
340 } else {
341 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 SH_CMT32_CMCSR_CMTOUT_IE |
343 SH_CMT32_CMCSR_CMR_IRQ |
344 SH_CMT32_CMCSR_CKS_RCLK8);
345 }
346
347 sh_cmt_write_cmcor(ch, 0xffffffff);
348 sh_cmt_write_cmcnt(ch, 0);
349
350 /*
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
356 *
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
360 */
361 for (k = 0; k < 100; k++) {
362 if (!sh_cmt_read_cmcnt(ch))
363 break;
364 udelay(1);
365 }
366
367 if (sh_cmt_read_cmcnt(ch)) {
368 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 ch->index);
370 ret = -ETIMEDOUT;
371 goto err1;
372 }
373
374 /* enable channel */
375 sh_cmt_start_stop_ch(ch, 1);
376 return 0;
377 err1:
378 /* stop clock */
379 clk_disable(ch->cmt->clk);
380
381 err0:
382 return ret;
383 }
384
sh_cmt_disable(struct sh_cmt_channel * ch)385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
386 {
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch, 0);
389
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch, 0);
392
393 /* stop clock */
394 clk_disable(ch->cmt->clk);
395
396 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 pm_runtime_put(&ch->cmt->pdev->dev);
398 }
399
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 int absolute)
409 {
410 u32 value = ch->next_match_value;
411 u32 new_match;
412 u32 delay = 0;
413 u32 now = 0;
414 u32 has_wrapped;
415
416 now = sh_cmt_get_counter(ch, &has_wrapped);
417 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419 if (has_wrapped) {
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
423 */
424 ch->flags |= FLAG_SKIPEVENT;
425 return;
426 }
427
428 if (absolute)
429 now = 0;
430
431 do {
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
434 */
435 new_match = now + value + delay;
436 if (new_match > ch->max_match_value)
437 new_match = ch->max_match_value;
438
439 sh_cmt_write_cmcor(ch, new_match);
440
441 now = sh_cmt_get_counter(ch, &has_wrapped);
442 if (has_wrapped && (new_match > ch->match_value)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
448 */
449 ch->flags |= FLAG_SKIPEVENT;
450 break;
451 }
452
453 if (has_wrapped) {
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
459 */
460 ch->match_value = new_match;
461 break;
462 }
463
464 /* be safe: verify hardware settings */
465 if (now < new_match) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
470 */
471 ch->match_value = new_match;
472 break;
473 }
474
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
480 */
481 if (delay)
482 delay <<= 1;
483 else
484 delay = 1;
485
486 if (!delay)
487 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 ch->index);
489
490 } while (delay);
491 }
492
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495 if (delta > ch->max_match_value)
496 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 ch->index);
498
499 ch->next_match_value = delta;
500 sh_cmt_clock_event_program_verify(ch, 0);
501 }
502
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505 unsigned long flags;
506
507 raw_spin_lock_irqsave(&ch->lock, flags);
508 __sh_cmt_set_next(ch, delta);
509 raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511
sh_cmt_interrupt(int irq,void * dev_id)512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514 struct sh_cmt_channel *ch = dev_id;
515
516 /* clear flags */
517 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 ch->cmt->info->clear_bits);
519
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
523 */
524 if (ch->flags & FLAG_CLOCKSOURCE)
525 ch->total_cycles += ch->match_value + 1;
526
527 if (!(ch->flags & FLAG_REPROGRAM))
528 ch->next_match_value = ch->max_match_value;
529
530 ch->flags |= FLAG_IRQCONTEXT;
531
532 if (ch->flags & FLAG_CLOCKEVENT) {
533 if (!(ch->flags & FLAG_SKIPEVENT)) {
534 if (clockevent_state_oneshot(&ch->ced)) {
535 ch->next_match_value = ch->max_match_value;
536 ch->flags |= FLAG_REPROGRAM;
537 }
538
539 ch->ced.event_handler(&ch->ced);
540 }
541 }
542
543 ch->flags &= ~FLAG_SKIPEVENT;
544
545 if (ch->flags & FLAG_REPROGRAM) {
546 ch->flags &= ~FLAG_REPROGRAM;
547 sh_cmt_clock_event_program_verify(ch, 1);
548
549 if (ch->flags & FLAG_CLOCKEVENT)
550 if ((clockevent_state_shutdown(&ch->ced))
551 || (ch->match_value == ch->next_match_value))
552 ch->flags &= ~FLAG_REPROGRAM;
553 }
554
555 ch->flags &= ~FLAG_IRQCONTEXT;
556
557 return IRQ_HANDLED;
558 }
559
sh_cmt_start(struct sh_cmt_channel * ch,unsigned long flag)560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562 int ret = 0;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&ch->lock, flags);
566
567 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 ret = sh_cmt_enable(ch);
569
570 if (ret)
571 goto out;
572 ch->flags |= flag;
573
574 /* setup timeout if no clockevent */
575 if (ch->cmt->num_channels == 1 &&
576 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
577 __sh_cmt_set_next(ch, ch->max_match_value);
578 out:
579 raw_spin_unlock_irqrestore(&ch->lock, flags);
580
581 return ret;
582 }
583
sh_cmt_stop(struct sh_cmt_channel * ch,unsigned long flag)584 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
585 {
586 unsigned long flags;
587 unsigned long f;
588
589 raw_spin_lock_irqsave(&ch->lock, flags);
590
591 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
592 ch->flags &= ~flag;
593
594 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
595 sh_cmt_disable(ch);
596
597 /* adjust the timeout to maximum if only clocksource left */
598 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
599 __sh_cmt_set_next(ch, ch->max_match_value);
600
601 raw_spin_unlock_irqrestore(&ch->lock, flags);
602 }
603
cs_to_sh_cmt(struct clocksource * cs)604 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
605 {
606 return container_of(cs, struct sh_cmt_channel, cs);
607 }
608
sh_cmt_clocksource_read(struct clocksource * cs)609 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
610 {
611 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
612 u32 has_wrapped;
613
614 if (ch->cmt->num_channels == 1) {
615 unsigned long flags;
616 u64 value;
617 u32 raw;
618
619 raw_spin_lock_irqsave(&ch->lock, flags);
620 value = ch->total_cycles;
621 raw = sh_cmt_get_counter(ch, &has_wrapped);
622
623 if (unlikely(has_wrapped))
624 raw += ch->match_value + 1;
625 raw_spin_unlock_irqrestore(&ch->lock, flags);
626
627 return value + raw;
628 }
629
630 return sh_cmt_get_counter(ch, &has_wrapped);
631 }
632
sh_cmt_clocksource_enable(struct clocksource * cs)633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635 int ret;
636 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637
638 WARN_ON(ch->cs_enabled);
639
640 ch->total_cycles = 0;
641
642 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 if (!ret)
644 ch->cs_enabled = true;
645
646 return ret;
647 }
648
sh_cmt_clocksource_disable(struct clocksource * cs)649 static void sh_cmt_clocksource_disable(struct clocksource *cs)
650 {
651 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652
653 WARN_ON(!ch->cs_enabled);
654
655 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
656 ch->cs_enabled = false;
657 }
658
sh_cmt_clocksource_suspend(struct clocksource * cs)659 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
660 {
661 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
662
663 if (!ch->cs_enabled)
664 return;
665
666 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
667 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
668 }
669
sh_cmt_clocksource_resume(struct clocksource * cs)670 static void sh_cmt_clocksource_resume(struct clocksource *cs)
671 {
672 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
673
674 if (!ch->cs_enabled)
675 return;
676
677 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
678 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
679 }
680
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)681 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
682 const char *name)
683 {
684 struct clocksource *cs = &ch->cs;
685
686 cs->name = name;
687 cs->rating = 125;
688 cs->read = sh_cmt_clocksource_read;
689 cs->enable = sh_cmt_clocksource_enable;
690 cs->disable = sh_cmt_clocksource_disable;
691 cs->suspend = sh_cmt_clocksource_suspend;
692 cs->resume = sh_cmt_clocksource_resume;
693 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
694 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
695
696 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
697 ch->index);
698
699 clocksource_register_hz(cs, ch->cmt->rate);
700 return 0;
701 }
702
ced_to_sh_cmt(struct clock_event_device * ced)703 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
704 {
705 return container_of(ced, struct sh_cmt_channel, ced);
706 }
707
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)708 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
709 {
710 sh_cmt_start(ch, FLAG_CLOCKEVENT);
711
712 if (periodic)
713 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
714 else
715 sh_cmt_set_next(ch, ch->max_match_value);
716 }
717
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)718 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
719 {
720 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
721
722 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
723 return 0;
724 }
725
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)726 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
727 int periodic)
728 {
729 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
730
731 /* deal with old setting first */
732 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
733 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
734
735 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
736 ch->index, periodic ? "periodic" : "oneshot");
737 sh_cmt_clock_event_start(ch, periodic);
738 return 0;
739 }
740
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)741 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
742 {
743 return sh_cmt_clock_event_set_state(ced, 0);
744 }
745
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)746 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
747 {
748 return sh_cmt_clock_event_set_state(ced, 1);
749 }
750
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)751 static int sh_cmt_clock_event_next(unsigned long delta,
752 struct clock_event_device *ced)
753 {
754 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
755
756 BUG_ON(!clockevent_state_oneshot(ced));
757 if (likely(ch->flags & FLAG_IRQCONTEXT))
758 ch->next_match_value = delta - 1;
759 else
760 sh_cmt_set_next(ch, delta - 1);
761
762 return 0;
763 }
764
sh_cmt_clock_event_suspend(struct clock_event_device * ced)765 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
766 {
767 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
768
769 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
770 clk_unprepare(ch->cmt->clk);
771 }
772
sh_cmt_clock_event_resume(struct clock_event_device * ced)773 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
774 {
775 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
776
777 clk_prepare(ch->cmt->clk);
778 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
779 }
780
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)781 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
782 const char *name)
783 {
784 struct clock_event_device *ced = &ch->ced;
785 int irq;
786 int ret;
787
788 irq = platform_get_irq(ch->cmt->pdev, ch->index);
789 if (irq < 0)
790 return irq;
791
792 ret = request_irq(irq, sh_cmt_interrupt,
793 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
794 dev_name(&ch->cmt->pdev->dev), ch);
795 if (ret) {
796 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
797 ch->index, irq);
798 return ret;
799 }
800
801 ced->name = name;
802 ced->features = CLOCK_EVT_FEAT_PERIODIC;
803 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
804 ced->rating = 125;
805 ced->cpumask = cpu_possible_mask;
806 ced->set_next_event = sh_cmt_clock_event_next;
807 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
808 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
809 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
810 ced->suspend = sh_cmt_clock_event_suspend;
811 ced->resume = sh_cmt_clock_event_resume;
812
813 /* TODO: calculate good shift from rate and counter bit width */
814 ced->shift = 32;
815 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
816 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
817 ced->max_delta_ticks = ch->max_match_value;
818 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
819 ced->min_delta_ticks = 0x1f;
820
821 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822 ch->index);
823 clockevents_register_device(ced);
824
825 return 0;
826 }
827
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829 bool clockevent, bool clocksource)
830 {
831 int ret;
832
833 if (clockevent) {
834 ch->cmt->has_clockevent = true;
835 ret = sh_cmt_register_clockevent(ch, name);
836 if (ret < 0)
837 return ret;
838 }
839
840 if (clocksource) {
841 ch->cmt->has_clocksource = true;
842 sh_cmt_register_clocksource(ch, name);
843 }
844
845 return 0;
846 }
847
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849 unsigned int hwidx, bool clockevent,
850 bool clocksource, struct sh_cmt_device *cmt)
851 {
852 int ret;
853
854 /* Skip unused channels. */
855 if (!clockevent && !clocksource)
856 return 0;
857
858 ch->cmt = cmt;
859 ch->index = index;
860 ch->hwidx = hwidx;
861 ch->timer_bit = hwidx;
862
863 /*
864 * Compute the address of the channel control register block. For the
865 * timers with a per-channel start/stop register, compute its address
866 * as well.
867 */
868 switch (cmt->info->model) {
869 case SH_CMT_16BIT:
870 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871 break;
872 case SH_CMT_32BIT:
873 case SH_CMT_48BIT:
874 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875 break;
876 case SH_CMT0_RCAR_GEN2:
877 case SH_CMT1_RCAR_GEN2:
878 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
879 ch->ioctrl = ch->iostart + 0x10;
880 ch->timer_bit = 0;
881 break;
882 }
883
884 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
885 ch->max_match_value = ~0;
886 else
887 ch->max_match_value = (1 << cmt->info->width) - 1;
888
889 ch->match_value = ch->max_match_value;
890 raw_spin_lock_init(&ch->lock);
891
892 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
893 clockevent, clocksource);
894 if (ret) {
895 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
896 ch->index);
897 return ret;
898 }
899 ch->cs_enabled = false;
900
901 return 0;
902 }
903
sh_cmt_map_memory(struct sh_cmt_device * cmt)904 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
905 {
906 struct resource *mem;
907
908 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
909 if (!mem) {
910 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
911 return -ENXIO;
912 }
913
914 cmt->mapbase = ioremap(mem->start, resource_size(mem));
915 if (cmt->mapbase == NULL) {
916 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
917 return -ENXIO;
918 }
919
920 return 0;
921 }
922
923 static const struct platform_device_id sh_cmt_id_table[] = {
924 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
925 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
926 { }
927 };
928 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
929
930 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
931 {
932 /* deprecated, preserved for backward compatibility */
933 .compatible = "renesas,cmt-48",
934 .data = &sh_cmt_info[SH_CMT_48BIT]
935 },
936 {
937 /* deprecated, preserved for backward compatibility */
938 .compatible = "renesas,cmt-48-gen2",
939 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
940 },
941 {
942 .compatible = "renesas,r8a7740-cmt1",
943 .data = &sh_cmt_info[SH_CMT_48BIT]
944 },
945 {
946 .compatible = "renesas,sh73a0-cmt1",
947 .data = &sh_cmt_info[SH_CMT_48BIT]
948 },
949 {
950 .compatible = "renesas,rcar-gen2-cmt0",
951 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
952 },
953 {
954 .compatible = "renesas,rcar-gen2-cmt1",
955 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
956 },
957 {
958 .compatible = "renesas,rcar-gen3-cmt0",
959 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
960 },
961 {
962 .compatible = "renesas,rcar-gen3-cmt1",
963 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
964 },
965 { }
966 };
967 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
968
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)969 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
970 {
971 unsigned int mask;
972 unsigned int i;
973 int ret;
974
975 cmt->pdev = pdev;
976 raw_spin_lock_init(&cmt->lock);
977
978 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
979 cmt->info = of_device_get_match_data(&pdev->dev);
980 cmt->hw_channels = cmt->info->channels_mask;
981 } else if (pdev->dev.platform_data) {
982 struct sh_timer_config *cfg = pdev->dev.platform_data;
983 const struct platform_device_id *id = pdev->id_entry;
984
985 cmt->info = (const struct sh_cmt_info *)id->driver_data;
986 cmt->hw_channels = cfg->channels_mask;
987 } else {
988 dev_err(&cmt->pdev->dev, "missing platform data\n");
989 return -ENXIO;
990 }
991
992 /* Get hold of clock. */
993 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
994 if (IS_ERR(cmt->clk)) {
995 dev_err(&cmt->pdev->dev, "cannot get clock\n");
996 return PTR_ERR(cmt->clk);
997 }
998
999 ret = clk_prepare(cmt->clk);
1000 if (ret < 0)
1001 goto err_clk_put;
1002
1003 /* Determine clock rate. */
1004 ret = clk_enable(cmt->clk);
1005 if (ret < 0)
1006 goto err_clk_unprepare;
1007
1008 if (cmt->info->width == 16)
1009 cmt->rate = clk_get_rate(cmt->clk) / 512;
1010 else
1011 cmt->rate = clk_get_rate(cmt->clk) / 8;
1012
1013 clk_disable(cmt->clk);
1014
1015 /* Map the memory resource(s). */
1016 ret = sh_cmt_map_memory(cmt);
1017 if (ret < 0)
1018 goto err_clk_unprepare;
1019
1020 /* Allocate and setup the channels. */
1021 cmt->num_channels = hweight8(cmt->hw_channels);
1022 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1023 GFP_KERNEL);
1024 if (cmt->channels == NULL) {
1025 ret = -ENOMEM;
1026 goto err_unmap;
1027 }
1028
1029 /*
1030 * Use the first channel as a clock event device and the second channel
1031 * as a clock source. If only one channel is available use it for both.
1032 */
1033 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1034 unsigned int hwidx = ffs(mask) - 1;
1035 bool clocksource = i == 1 || cmt->num_channels == 1;
1036 bool clockevent = i == 0;
1037
1038 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1039 clockevent, clocksource, cmt);
1040 if (ret < 0)
1041 goto err_unmap;
1042
1043 mask &= ~(1 << hwidx);
1044 }
1045
1046 platform_set_drvdata(pdev, cmt);
1047
1048 return 0;
1049
1050 err_unmap:
1051 kfree(cmt->channels);
1052 iounmap(cmt->mapbase);
1053 err_clk_unprepare:
1054 clk_unprepare(cmt->clk);
1055 err_clk_put:
1056 clk_put(cmt->clk);
1057 return ret;
1058 }
1059
sh_cmt_probe(struct platform_device * pdev)1060 static int sh_cmt_probe(struct platform_device *pdev)
1061 {
1062 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1063 int ret;
1064
1065 if (!is_sh_early_platform_device(pdev)) {
1066 pm_runtime_set_active(&pdev->dev);
1067 pm_runtime_enable(&pdev->dev);
1068 }
1069
1070 if (cmt) {
1071 dev_info(&pdev->dev, "kept as earlytimer\n");
1072 goto out;
1073 }
1074
1075 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1076 if (cmt == NULL)
1077 return -ENOMEM;
1078
1079 ret = sh_cmt_setup(cmt, pdev);
1080 if (ret) {
1081 kfree(cmt);
1082 pm_runtime_idle(&pdev->dev);
1083 return ret;
1084 }
1085 if (is_sh_early_platform_device(pdev))
1086 return 0;
1087
1088 out:
1089 if (cmt->has_clockevent || cmt->has_clocksource)
1090 pm_runtime_irq_safe(&pdev->dev);
1091 else
1092 pm_runtime_idle(&pdev->dev);
1093
1094 return 0;
1095 }
1096
sh_cmt_remove(struct platform_device * pdev)1097 static int sh_cmt_remove(struct platform_device *pdev)
1098 {
1099 return -EBUSY; /* cannot unregister clockevent and clocksource */
1100 }
1101
1102 static struct platform_driver sh_cmt_device_driver = {
1103 .probe = sh_cmt_probe,
1104 .remove = sh_cmt_remove,
1105 .driver = {
1106 .name = "sh_cmt",
1107 .of_match_table = of_match_ptr(sh_cmt_of_table),
1108 },
1109 .id_table = sh_cmt_id_table,
1110 };
1111
sh_cmt_init(void)1112 static int __init sh_cmt_init(void)
1113 {
1114 return platform_driver_register(&sh_cmt_device_driver);
1115 }
1116
sh_cmt_exit(void)1117 static void __exit sh_cmt_exit(void)
1118 {
1119 platform_driver_unregister(&sh_cmt_device_driver);
1120 }
1121
1122 #ifdef CONFIG_SUPERH
1123 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1124 #endif
1125
1126 subsys_initcall(sh_cmt_init);
1127 module_exit(sh_cmt_exit);
1128
1129 MODULE_AUTHOR("Magnus Damm");
1130 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1131 MODULE_LICENSE("GPL v2");
1132