• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81 
lockdep_enabled(void)82 static __always_inline bool lockdep_enabled(void)
83 {
84 	if (!debug_locks)
85 		return false;
86 
87 	if (this_cpu_read(lockdep_recursion))
88 		return false;
89 
90 	if (current->lockdep_recursion)
91 		return false;
92 
93 	return true;
94 }
95 
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106 
lockdep_lock(void)107 static inline void lockdep_lock(void)
108 {
109 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110 
111 	__this_cpu_inc(lockdep_recursion);
112 	arch_spin_lock(&__lock);
113 	__owner = current;
114 }
115 
lockdep_unlock(void)116 static inline void lockdep_unlock(void)
117 {
118 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119 
120 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 		return;
122 
123 	__owner = NULL;
124 	arch_spin_unlock(&__lock);
125 	__this_cpu_dec(lockdep_recursion);
126 }
127 
lockdep_assert_locked(void)128 static inline bool lockdep_assert_locked(void)
129 {
130 	return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132 
133 static struct task_struct *lockdep_selftest_task_struct;
134 
135 
graph_lock(void)136 static int graph_lock(void)
137 {
138 	lockdep_lock();
139 	/*
140 	 * Make sure that if another CPU detected a bug while
141 	 * walking the graph we dont change it (while the other
142 	 * CPU is busy printing out stuff with the graph lock
143 	 * dropped already)
144 	 */
145 	if (!debug_locks) {
146 		lockdep_unlock();
147 		return 0;
148 	}
149 	return 1;
150 }
151 
graph_unlock(void)152 static inline void graph_unlock(void)
153 {
154 	lockdep_unlock();
155 }
156 
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
debug_locks_off_graph_unlock(void)161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 	int ret = debug_locks_off();
164 
165 	lockdep_unlock();
166 
167 	return ret;
168 }
169 
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173 
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190 
hlock_class(struct held_lock * hlock)191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193 	unsigned int class_idx = hlock->class_idx;
194 
195 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196 	barrier();
197 
198 	if (!test_bit(class_idx, lock_classes_in_use)) {
199 		/*
200 		 * Someone passed in garbage, we give up.
201 		 */
202 		DEBUG_LOCKS_WARN_ON(1);
203 		return NULL;
204 	}
205 
206 	/*
207 	 * At this point, if the passed hlock->class_idx is still garbage,
208 	 * we just have to live with it
209 	 */
210 	return lock_classes + class_idx;
211 }
212 
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215 
lockstat_clock(void)216 static inline u64 lockstat_clock(void)
217 {
218 	return local_clock();
219 }
220 
lock_point(unsigned long points[],unsigned long ip)221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223 	int i;
224 
225 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
226 		if (points[i] == 0) {
227 			points[i] = ip;
228 			break;
229 		}
230 		if (points[i] == ip)
231 			break;
232 	}
233 
234 	return i;
235 }
236 
lock_time_inc(struct lock_time * lt,u64 time)237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239 	if (time > lt->max)
240 		lt->max = time;
241 
242 	if (time < lt->min || !lt->nr)
243 		lt->min = time;
244 
245 	lt->total += time;
246 	lt->nr++;
247 }
248 
lock_time_add(struct lock_time * src,struct lock_time * dst)249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251 	if (!src->nr)
252 		return;
253 
254 	if (src->max > dst->max)
255 		dst->max = src->max;
256 
257 	if (src->min < dst->min || !dst->nr)
258 		dst->min = src->min;
259 
260 	dst->total += src->total;
261 	dst->nr += src->nr;
262 }
263 
lock_stats(struct lock_class * class)264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266 	struct lock_class_stats stats;
267 	int cpu, i;
268 
269 	memset(&stats, 0, sizeof(struct lock_class_stats));
270 	for_each_possible_cpu(cpu) {
271 		struct lock_class_stats *pcs =
272 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273 
274 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275 			stats.contention_point[i] += pcs->contention_point[i];
276 
277 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278 			stats.contending_point[i] += pcs->contending_point[i];
279 
280 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282 
283 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285 
286 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287 			stats.bounces[i] += pcs->bounces[i];
288 	}
289 
290 	return stats;
291 }
292 
clear_lock_stats(struct lock_class * class)293 void clear_lock_stats(struct lock_class *class)
294 {
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		struct lock_class_stats *cpu_stats =
299 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300 
301 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302 	}
303 	memset(class->contention_point, 0, sizeof(class->contention_point));
304 	memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306 
get_lock_stats(struct lock_class * class)307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311 
lock_release_holdtime(struct held_lock * hlock)312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314 	struct lock_class_stats *stats;
315 	u64 holdtime;
316 
317 	if (!lock_stat)
318 		return;
319 
320 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
321 
322 	stats = get_lock_stats(hlock_class(hlock));
323 	if (hlock->read)
324 		lock_time_inc(&stats->read_holdtime, holdtime);
325 	else
326 		lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
lock_release_holdtime(struct held_lock * hlock)329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333 
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342 
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *	are about to be freed.
348  */
349 struct pending_free {
350 	struct list_head zapped;
351 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353 
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366 	struct rcu_head		rcu_head;
367 	int			index;
368 	int			scheduled;
369 	struct pending_free	pf[2];
370 } delayed_free;
371 
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
379 
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381 
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
390 
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392 
393 /*
394  * the id of held_lock
395  */
hlock_id(struct held_lock * hlock)396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399 
400 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402 
chain_hlock_class_idx(u16 hlock_id)403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407 
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
iterate_chain_key(u64 key,u32 idx)414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416 	u32 k0 = key, k1 = key >> 32;
417 
418 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419 
420 	return k0 | (u64)k1 << 32;
421 }
422 
lockdep_init_task(struct task_struct * task)423 void lockdep_init_task(struct task_struct *task)
424 {
425 	task->lockdep_depth = 0; /* no locks held yet */
426 	task->curr_chain_key = INITIAL_CHAIN_KEY;
427 	task->lockdep_recursion = 0;
428 }
429 
lockdep_recursion_inc(void)430 static __always_inline void lockdep_recursion_inc(void)
431 {
432 	__this_cpu_inc(lockdep_recursion);
433 }
434 
lockdep_recursion_finish(void)435 static __always_inline void lockdep_recursion_finish(void)
436 {
437 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438 		__this_cpu_write(lockdep_recursion, 0);
439 }
440 
lockdep_set_selftest_task(struct task_struct * task)441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443 	lockdep_selftest_task_struct = task;
444 }
445 
446 /*
447  * Debugging switches:
448  */
449 
450 #define VERBOSE			0
451 #define VERY_VERBOSE		0
452 
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE	1
455 # define SOFTIRQ_VERBOSE	1
456 #else
457 # define HARDIRQ_VERBOSE	0
458 # define SOFTIRQ_VERBOSE	0
459 #endif
460 
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
class_filter(struct lock_class * class)465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468 	/* Example */
469 	if (class->name_version == 1 &&
470 			!strcmp(class->name, "lockname"))
471 		return 1;
472 	if (class->name_version == 1 &&
473 			!strcmp(class->name, "&struct->lockfield"))
474 		return 1;
475 #endif
476 	/* Filter everything else. 1 would be to allow everything else */
477 	return 0;
478 }
479 #endif
480 
verbose(struct lock_class * class)481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484 	return class_filter(class);
485 #endif
486 	return 0;
487 }
488 
print_lockdep_off(const char * bug_msg)489 static void print_lockdep_off(const char *bug_msg)
490 {
491 	printk(KERN_DEBUG "%s\n", bug_msg);
492 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497 
498 unsigned long nr_stack_trace_entries;
499 
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry:	Entry in a stack_trace_hash[] list.
504  * @hash:	jhash() of @entries.
505  * @nr_entries:	Number of entries in @entries.
506  * @entries:	Actual stack backtrace.
507  */
508 struct lock_trace {
509 	struct hlist_node	hash_entry;
510 	u32			hash;
511 	u32			nr_entries;
512 	unsigned long		entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS				\
515 	(sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525 		memcmp(t1->entries, t2->entries,
526 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528 
save_trace(void)529 static struct lock_trace *save_trace(void)
530 {
531 	struct lock_trace *trace, *t2;
532 	struct hlist_head *hash_head;
533 	u32 hash;
534 	int max_entries;
535 
536 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538 
539 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541 		LOCK_TRACE_SIZE_IN_LONGS;
542 
543 	if (max_entries <= 0) {
544 		if (!debug_locks_off_graph_unlock())
545 			return NULL;
546 
547 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548 		dump_stack();
549 
550 		return NULL;
551 	}
552 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553 
554 	hash = jhash(trace->entries, trace->nr_entries *
555 		     sizeof(trace->entries[0]), 0);
556 	trace->hash = hash;
557 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558 	hlist_for_each_entry(t2, hash_head, hash_entry) {
559 		if (traces_identical(trace, t2))
560 			return t2;
561 	}
562 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563 	hlist_add_head(&trace->hash_entry, hash_head);
564 
565 	return trace;
566 }
567 
568 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)569 u64 lockdep_stack_trace_count(void)
570 {
571 	struct lock_trace *trace;
572 	u64 c = 0;
573 	int i;
574 
575 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577 			c++;
578 		}
579 	}
580 
581 	return c;
582 }
583 
584 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)585 u64 lockdep_stack_hash_count(void)
586 {
587 	u64 c = 0;
588 	int i;
589 
590 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591 		if (!hlist_empty(&stack_trace_hash[i]))
592 			c++;
593 
594 	return c;
595 }
596 #endif
597 
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602 
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609 
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614 
615 #define __USAGE(__STATE)						\
616 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
617 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
618 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620 
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626 	[LOCK_USED] = "INITIAL USE",
627 	[LOCK_USED_READ] = "INITIAL READ USE",
628 	/* abused as string storage for verify_lock_unused() */
629 	[LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632 
__get_key_name(const struct lockdep_subclass_key * key,char * str)633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637 
lock_flag(enum lock_usage_bit bit)638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640 	return 1UL << bit;
641 }
642 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645 	/*
646 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
647 	 * irq context), which is the safest usage category.
648 	 */
649 	char c = '.';
650 
651 	/*
652 	 * The order of the following usage checks matters, which will
653 	 * result in the outcome character as follows:
654 	 *
655 	 * - '+': irq is enabled and not in irq context
656 	 * - '-': in irq context and irq is disabled
657 	 * - '?': in irq context and irq is enabled
658 	 */
659 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660 		c = '+';
661 		if (class->usage_mask & lock_flag(bit))
662 			c = '?';
663 	} else if (class->usage_mask & lock_flag(bit))
664 		c = '-';
665 
666 	return c;
667 }
668 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671 	int i = 0;
672 
673 #define LOCKDEP_STATE(__STATE) 						\
674 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678 
679 	usage[i] = '\0';
680 }
681 
__print_lock_name(struct lock_class * class)682 static void __print_lock_name(struct lock_class *class)
683 {
684 	char str[KSYM_NAME_LEN];
685 	const char *name;
686 
687 	name = class->name;
688 	if (!name) {
689 		name = __get_key_name(class->key, str);
690 		printk(KERN_CONT "%s", name);
691 	} else {
692 		printk(KERN_CONT "%s", name);
693 		if (class->name_version > 1)
694 			printk(KERN_CONT "#%d", class->name_version);
695 		if (class->subclass)
696 			printk(KERN_CONT "/%d", class->subclass);
697 	}
698 }
699 
print_lock_name(struct lock_class * class)700 static void print_lock_name(struct lock_class *class)
701 {
702 	char usage[LOCK_USAGE_CHARS];
703 
704 	get_usage_chars(class, usage);
705 
706 	printk(KERN_CONT " (");
707 	__print_lock_name(class);
708 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
709 			class->wait_type_outer ?: class->wait_type_inner,
710 			class->wait_type_inner);
711 }
712 
print_lockdep_cache(struct lockdep_map * lock)713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715 	const char *name;
716 	char str[KSYM_NAME_LEN];
717 
718 	name = lock->name;
719 	if (!name)
720 		name = __get_key_name(lock->key->subkeys, str);
721 
722 	printk(KERN_CONT "%s", name);
723 }
724 
print_lock(struct held_lock * hlock)725 static void print_lock(struct held_lock *hlock)
726 {
727 	/*
728 	 * We can be called locklessly through debug_show_all_locks() so be
729 	 * extra careful, the hlock might have been released and cleared.
730 	 *
731 	 * If this indeed happens, lets pretend it does not hurt to continue
732 	 * to print the lock unless the hlock class_idx does not point to a
733 	 * registered class. The rationale here is: since we don't attempt
734 	 * to distinguish whether we are in this situation, if it just
735 	 * happened we can't count on class_idx to tell either.
736 	 */
737 	struct lock_class *lock = hlock_class(hlock);
738 
739 	if (!lock) {
740 		printk(KERN_CONT "<RELEASED>\n");
741 		return;
742 	}
743 
744 	printk(KERN_CONT "%px", hlock->instance);
745 	print_lock_name(lock);
746 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748 
lockdep_print_held_locks(struct task_struct * p)749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751 	int i, depth = READ_ONCE(p->lockdep_depth);
752 
753 	if (!depth)
754 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755 	else
756 		printk("%d lock%s held by %s/%d:\n", depth,
757 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758 	/*
759 	 * It's not reliable to print a task's held locks if it's not sleeping
760 	 * and it's not the current task.
761 	 */
762 	if (p->state == TASK_RUNNING && p != current)
763 		return;
764 	for (i = 0; i < depth; i++) {
765 		printk(" #%d: ", i);
766 		print_lock(p->held_locks + i);
767 	}
768 }
769 
print_kernel_ident(void)770 static void print_kernel_ident(void)
771 {
772 	printk("%s %.*s %s\n", init_utsname()->release,
773 		(int)strcspn(init_utsname()->version, " "),
774 		init_utsname()->version,
775 		print_tainted());
776 }
777 
very_verbose(struct lock_class * class)778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781 	return class_filter(class);
782 #endif
783 	return 0;
784 }
785 
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
static_obj(const void * obj)790 static int static_obj(const void *obj)
791 {
792 	unsigned long start = (unsigned long) &_stext,
793 		      end   = (unsigned long) &_end,
794 		      addr  = (unsigned long) obj;
795 
796 	if (arch_is_kernel_initmem_freed(addr))
797 		return 0;
798 
799 	/*
800 	 * static variable?
801 	 */
802 	if ((addr >= start) && (addr < end))
803 		return 1;
804 
805 	if (arch_is_kernel_data(addr))
806 		return 1;
807 
808 	/*
809 	 * in-kernel percpu var?
810 	 */
811 	if (is_kernel_percpu_address(addr))
812 		return 1;
813 
814 	/*
815 	 * module static or percpu var?
816 	 */
817 	return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820 
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
count_matching_names(struct lock_class * new_class)826 static int count_matching_names(struct lock_class *new_class)
827 {
828 	struct lock_class *class;
829 	int count = 0;
830 
831 	if (!new_class->name)
832 		return 0;
833 
834 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
835 		if (new_class->key - new_class->subclass == class->key)
836 			return class->name_version;
837 		if (class->name && !strcmp(class->name, new_class->name))
838 			count = max(count, class->name_version);
839 	}
840 
841 	return count + 1;
842 }
843 
844 /* used from NMI context -- must be lockless */
845 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848 	struct lockdep_subclass_key *key;
849 	struct hlist_head *hash_head;
850 	struct lock_class *class;
851 
852 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853 		instrumentation_begin();
854 		debug_locks_off();
855 		printk(KERN_ERR
856 			"BUG: looking up invalid subclass: %u\n", subclass);
857 		printk(KERN_ERR
858 			"turning off the locking correctness validator.\n");
859 		dump_stack();
860 		instrumentation_end();
861 		return NULL;
862 	}
863 
864 	/*
865 	 * If it is not initialised then it has never been locked,
866 	 * so it won't be present in the hash table.
867 	 */
868 	if (unlikely(!lock->key))
869 		return NULL;
870 
871 	/*
872 	 * NOTE: the class-key must be unique. For dynamic locks, a static
873 	 * lock_class_key variable is passed in through the mutex_init()
874 	 * (or spin_lock_init()) call - which acts as the key. For static
875 	 * locks we use the lock object itself as the key.
876 	 */
877 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
878 			sizeof(struct lockdep_map));
879 
880 	key = lock->key->subkeys + subclass;
881 
882 	hash_head = classhashentry(key);
883 
884 	/*
885 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
886 	 */
887 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
888 		return NULL;
889 
890 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
891 		if (class->key == key) {
892 			/*
893 			 * Huh! same key, different name? Did someone trample
894 			 * on some memory? We're most confused.
895 			 */
896 			WARN_ON_ONCE(class->name != lock->name &&
897 				     lock->key != &__lockdep_no_validate__);
898 			return class;
899 		}
900 	}
901 
902 	return NULL;
903 }
904 
905 /*
906  * Static locks do not have their class-keys yet - for them the key is
907  * the lock object itself. If the lock is in the per cpu area, the
908  * canonical address of the lock (per cpu offset removed) is used.
909  */
assign_lock_key(struct lockdep_map * lock)910 static bool assign_lock_key(struct lockdep_map *lock)
911 {
912 	unsigned long can_addr, addr = (unsigned long)lock;
913 
914 #ifdef __KERNEL__
915 	/*
916 	 * lockdep_free_key_range() assumes that struct lock_class_key
917 	 * objects do not overlap. Since we use the address of lock
918 	 * objects as class key for static objects, check whether the
919 	 * size of lock_class_key objects does not exceed the size of
920 	 * the smallest lock object.
921 	 */
922 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
923 #endif
924 
925 	if (__is_kernel_percpu_address(addr, &can_addr))
926 		lock->key = (void *)can_addr;
927 	else if (__is_module_percpu_address(addr, &can_addr))
928 		lock->key = (void *)can_addr;
929 	else if (static_obj(lock))
930 		lock->key = (void *)lock;
931 	else {
932 		/* Debug-check: all keys must be persistent! */
933 		debug_locks_off();
934 		pr_err("INFO: trying to register non-static key.\n");
935 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
936 		pr_err("you didn't initialize this object before use?\n");
937 		pr_err("turning off the locking correctness validator.\n");
938 		dump_stack();
939 		return false;
940 	}
941 
942 	return true;
943 }
944 
945 #ifdef CONFIG_DEBUG_LOCKDEP
946 
947 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)948 static bool in_list(struct list_head *e, struct list_head *h)
949 {
950 	struct list_head *f;
951 
952 	list_for_each(f, h) {
953 		if (e == f)
954 			return true;
955 	}
956 
957 	return false;
958 }
959 
960 /*
961  * Check whether entry @e occurs in any of the locks_after or locks_before
962  * lists.
963  */
in_any_class_list(struct list_head * e)964 static bool in_any_class_list(struct list_head *e)
965 {
966 	struct lock_class *class;
967 	int i;
968 
969 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
970 		class = &lock_classes[i];
971 		if (in_list(e, &class->locks_after) ||
972 		    in_list(e, &class->locks_before))
973 			return true;
974 	}
975 	return false;
976 }
977 
class_lock_list_valid(struct lock_class * c,struct list_head * h)978 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
979 {
980 	struct lock_list *e;
981 
982 	list_for_each_entry(e, h, entry) {
983 		if (e->links_to != c) {
984 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
985 			       c->name ? : "(?)",
986 			       (unsigned long)(e - list_entries),
987 			       e->links_to && e->links_to->name ?
988 			       e->links_to->name : "(?)",
989 			       e->class && e->class->name ? e->class->name :
990 			       "(?)");
991 			return false;
992 		}
993 	}
994 	return true;
995 }
996 
997 #ifdef CONFIG_PROVE_LOCKING
998 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
999 #endif
1000 
check_lock_chain_key(struct lock_chain * chain)1001 static bool check_lock_chain_key(struct lock_chain *chain)
1002 {
1003 #ifdef CONFIG_PROVE_LOCKING
1004 	u64 chain_key = INITIAL_CHAIN_KEY;
1005 	int i;
1006 
1007 	for (i = chain->base; i < chain->base + chain->depth; i++)
1008 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1009 	/*
1010 	 * The 'unsigned long long' casts avoid that a compiler warning
1011 	 * is reported when building tools/lib/lockdep.
1012 	 */
1013 	if (chain->chain_key != chain_key) {
1014 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1015 		       (unsigned long long)(chain - lock_chains),
1016 		       (unsigned long long)chain->chain_key,
1017 		       (unsigned long long)chain_key);
1018 		return false;
1019 	}
1020 #endif
1021 	return true;
1022 }
1023 
in_any_zapped_class_list(struct lock_class * class)1024 static bool in_any_zapped_class_list(struct lock_class *class)
1025 {
1026 	struct pending_free *pf;
1027 	int i;
1028 
1029 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1030 		if (in_list(&class->lock_entry, &pf->zapped))
1031 			return true;
1032 	}
1033 
1034 	return false;
1035 }
1036 
__check_data_structures(void)1037 static bool __check_data_structures(void)
1038 {
1039 	struct lock_class *class;
1040 	struct lock_chain *chain;
1041 	struct hlist_head *head;
1042 	struct lock_list *e;
1043 	int i;
1044 
1045 	/* Check whether all classes occur in a lock list. */
1046 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1047 		class = &lock_classes[i];
1048 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1049 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1050 		    !in_any_zapped_class_list(class)) {
1051 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1052 			       class, class->name ? : "(?)");
1053 			return false;
1054 		}
1055 	}
1056 
1057 	/* Check whether all classes have valid lock lists. */
1058 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1059 		class = &lock_classes[i];
1060 		if (!class_lock_list_valid(class, &class->locks_before))
1061 			return false;
1062 		if (!class_lock_list_valid(class, &class->locks_after))
1063 			return false;
1064 	}
1065 
1066 	/* Check the chain_key of all lock chains. */
1067 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1068 		head = chainhash_table + i;
1069 		hlist_for_each_entry_rcu(chain, head, entry) {
1070 			if (!check_lock_chain_key(chain))
1071 				return false;
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Check whether all list entries that are in use occur in a class
1077 	 * lock list.
1078 	 */
1079 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1080 		e = list_entries + i;
1081 		if (!in_any_class_list(&e->entry)) {
1082 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1083 			       (unsigned int)(e - list_entries),
1084 			       e->class->name ? : "(?)",
1085 			       e->links_to->name ? : "(?)");
1086 			return false;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Check whether all list entries that are not in use do not occur in
1092 	 * a class lock list.
1093 	 */
1094 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1095 		e = list_entries + i;
1096 		if (in_any_class_list(&e->entry)) {
1097 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1098 			       (unsigned int)(e - list_entries),
1099 			       e->class && e->class->name ? e->class->name :
1100 			       "(?)",
1101 			       e->links_to && e->links_to->name ?
1102 			       e->links_to->name : "(?)");
1103 			return false;
1104 		}
1105 	}
1106 
1107 	return true;
1108 }
1109 
1110 int check_consistency = 0;
1111 module_param(check_consistency, int, 0644);
1112 
check_data_structures(void)1113 static void check_data_structures(void)
1114 {
1115 	static bool once = false;
1116 
1117 	if (check_consistency && !once) {
1118 		if (!__check_data_structures()) {
1119 			once = true;
1120 			WARN_ON(once);
1121 		}
1122 	}
1123 }
1124 
1125 #else /* CONFIG_DEBUG_LOCKDEP */
1126 
check_data_structures(void)1127 static inline void check_data_structures(void) { }
1128 
1129 #endif /* CONFIG_DEBUG_LOCKDEP */
1130 
1131 static void init_chain_block_buckets(void);
1132 
1133 /*
1134  * Initialize the lock_classes[] array elements, the free_lock_classes list
1135  * and also the delayed_free structure.
1136  */
init_data_structures_once(void)1137 static void init_data_structures_once(void)
1138 {
1139 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1140 	int i;
1141 
1142 	if (likely(rcu_head_initialized))
1143 		return;
1144 
1145 	if (system_state >= SYSTEM_SCHEDULING) {
1146 		init_rcu_head(&delayed_free.rcu_head);
1147 		rcu_head_initialized = true;
1148 	}
1149 
1150 	if (ds_initialized)
1151 		return;
1152 
1153 	ds_initialized = true;
1154 
1155 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1156 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1157 
1158 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1159 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1160 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1161 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1162 	}
1163 	init_chain_block_buckets();
1164 }
1165 
keyhashentry(const struct lock_class_key * key)1166 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1167 {
1168 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1169 
1170 	return lock_keys_hash + hash;
1171 }
1172 
1173 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1174 void lockdep_register_key(struct lock_class_key *key)
1175 {
1176 	struct hlist_head *hash_head;
1177 	struct lock_class_key *k;
1178 	unsigned long flags;
1179 
1180 	if (WARN_ON_ONCE(static_obj(key)))
1181 		return;
1182 	hash_head = keyhashentry(key);
1183 
1184 	raw_local_irq_save(flags);
1185 	if (!graph_lock())
1186 		goto restore_irqs;
1187 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1188 		if (WARN_ON_ONCE(k == key))
1189 			goto out_unlock;
1190 	}
1191 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1192 out_unlock:
1193 	graph_unlock();
1194 restore_irqs:
1195 	raw_local_irq_restore(flags);
1196 }
1197 EXPORT_SYMBOL_GPL(lockdep_register_key);
1198 
1199 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1200 static bool is_dynamic_key(const struct lock_class_key *key)
1201 {
1202 	struct hlist_head *hash_head;
1203 	struct lock_class_key *k;
1204 	bool found = false;
1205 
1206 	if (WARN_ON_ONCE(static_obj(key)))
1207 		return false;
1208 
1209 	/*
1210 	 * If lock debugging is disabled lock_keys_hash[] may contain
1211 	 * pointers to memory that has already been freed. Avoid triggering
1212 	 * a use-after-free in that case by returning early.
1213 	 */
1214 	if (!debug_locks)
1215 		return true;
1216 
1217 	hash_head = keyhashentry(key);
1218 
1219 	rcu_read_lock();
1220 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1221 		if (k == key) {
1222 			found = true;
1223 			break;
1224 		}
1225 	}
1226 	rcu_read_unlock();
1227 
1228 	return found;
1229 }
1230 
1231 /*
1232  * Register a lock's class in the hash-table, if the class is not present
1233  * yet. Otherwise we look it up. We cache the result in the lock object
1234  * itself, so actual lookup of the hash should be once per lock object.
1235  */
1236 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1237 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1238 {
1239 	struct lockdep_subclass_key *key;
1240 	struct hlist_head *hash_head;
1241 	struct lock_class *class;
1242 
1243 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1244 
1245 	class = look_up_lock_class(lock, subclass);
1246 	if (likely(class))
1247 		goto out_set_class_cache;
1248 
1249 	if (!lock->key) {
1250 		if (!assign_lock_key(lock))
1251 			return NULL;
1252 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1253 		return NULL;
1254 	}
1255 
1256 	key = lock->key->subkeys + subclass;
1257 	hash_head = classhashentry(key);
1258 
1259 	if (!graph_lock()) {
1260 		return NULL;
1261 	}
1262 	/*
1263 	 * We have to do the hash-walk again, to avoid races
1264 	 * with another CPU:
1265 	 */
1266 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1267 		if (class->key == key)
1268 			goto out_unlock_set;
1269 	}
1270 
1271 	init_data_structures_once();
1272 
1273 	/* Allocate a new lock class and add it to the hash. */
1274 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1275 					 lock_entry);
1276 	if (!class) {
1277 		if (!debug_locks_off_graph_unlock()) {
1278 			return NULL;
1279 		}
1280 
1281 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1282 		dump_stack();
1283 		return NULL;
1284 	}
1285 	nr_lock_classes++;
1286 	__set_bit(class - lock_classes, lock_classes_in_use);
1287 	debug_atomic_inc(nr_unused_locks);
1288 	class->key = key;
1289 	class->name = lock->name;
1290 	class->subclass = subclass;
1291 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1292 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1293 	class->name_version = count_matching_names(class);
1294 	class->wait_type_inner = lock->wait_type_inner;
1295 	class->wait_type_outer = lock->wait_type_outer;
1296 	class->lock_type = lock->lock_type;
1297 	/*
1298 	 * We use RCU's safe list-add method to make
1299 	 * parallel walking of the hash-list safe:
1300 	 */
1301 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1302 	/*
1303 	 * Remove the class from the free list and add it to the global list
1304 	 * of classes.
1305 	 */
1306 	list_move_tail(&class->lock_entry, &all_lock_classes);
1307 
1308 	if (verbose(class)) {
1309 		graph_unlock();
1310 
1311 		printk("\nnew class %px: %s", class->key, class->name);
1312 		if (class->name_version > 1)
1313 			printk(KERN_CONT "#%d", class->name_version);
1314 		printk(KERN_CONT "\n");
1315 		dump_stack();
1316 
1317 		if (!graph_lock()) {
1318 			return NULL;
1319 		}
1320 	}
1321 out_unlock_set:
1322 	graph_unlock();
1323 
1324 out_set_class_cache:
1325 	if (!subclass || force)
1326 		lock->class_cache[0] = class;
1327 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1328 		lock->class_cache[subclass] = class;
1329 
1330 	/*
1331 	 * Hash collision, did we smoke some? We found a class with a matching
1332 	 * hash but the subclass -- which is hashed in -- didn't match.
1333 	 */
1334 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1335 		return NULL;
1336 
1337 	return class;
1338 }
1339 
1340 #ifdef CONFIG_PROVE_LOCKING
1341 /*
1342  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1343  * with NULL on failure)
1344  */
alloc_list_entry(void)1345 static struct lock_list *alloc_list_entry(void)
1346 {
1347 	int idx = find_first_zero_bit(list_entries_in_use,
1348 				      ARRAY_SIZE(list_entries));
1349 
1350 	if (idx >= ARRAY_SIZE(list_entries)) {
1351 		if (!debug_locks_off_graph_unlock())
1352 			return NULL;
1353 
1354 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1355 		dump_stack();
1356 		return NULL;
1357 	}
1358 	nr_list_entries++;
1359 	__set_bit(idx, list_entries_in_use);
1360 	return list_entries + idx;
1361 }
1362 
1363 /*
1364  * Add a new dependency to the head of the list:
1365  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,u16 distance,u8 dep,const struct lock_trace * trace)1366 static int add_lock_to_list(struct lock_class *this,
1367 			    struct lock_class *links_to, struct list_head *head,
1368 			    unsigned long ip, u16 distance, u8 dep,
1369 			    const struct lock_trace *trace)
1370 {
1371 	struct lock_list *entry;
1372 	/*
1373 	 * Lock not present yet - get a new dependency struct and
1374 	 * add it to the list:
1375 	 */
1376 	entry = alloc_list_entry();
1377 	if (!entry)
1378 		return 0;
1379 
1380 	entry->class = this;
1381 	entry->links_to = links_to;
1382 	entry->dep = dep;
1383 	entry->distance = distance;
1384 	entry->trace = trace;
1385 	/*
1386 	 * Both allocation and removal are done under the graph lock; but
1387 	 * iteration is under RCU-sched; see look_up_lock_class() and
1388 	 * lockdep_free_key_range().
1389 	 */
1390 	list_add_tail_rcu(&entry->entry, head);
1391 
1392 	return 1;
1393 }
1394 
1395 /*
1396  * For good efficiency of modular, we use power of 2
1397  */
1398 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1399 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1400 
1401 /*
1402  * The circular_queue and helpers are used to implement graph
1403  * breadth-first search (BFS) algorithm, by which we can determine
1404  * whether there is a path from a lock to another. In deadlock checks,
1405  * a path from the next lock to be acquired to a previous held lock
1406  * indicates that adding the <prev> -> <next> lock dependency will
1407  * produce a circle in the graph. Breadth-first search instead of
1408  * depth-first search is used in order to find the shortest (circular)
1409  * path.
1410  */
1411 struct circular_queue {
1412 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1413 	unsigned int  front, rear;
1414 };
1415 
1416 static struct circular_queue lock_cq;
1417 
1418 unsigned int max_bfs_queue_depth;
1419 
1420 static unsigned int lockdep_dependency_gen_id;
1421 
__cq_init(struct circular_queue * cq)1422 static inline void __cq_init(struct circular_queue *cq)
1423 {
1424 	cq->front = cq->rear = 0;
1425 	lockdep_dependency_gen_id++;
1426 }
1427 
__cq_empty(struct circular_queue * cq)1428 static inline int __cq_empty(struct circular_queue *cq)
1429 {
1430 	return (cq->front == cq->rear);
1431 }
1432 
__cq_full(struct circular_queue * cq)1433 static inline int __cq_full(struct circular_queue *cq)
1434 {
1435 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1436 }
1437 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1438 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1439 {
1440 	if (__cq_full(cq))
1441 		return -1;
1442 
1443 	cq->element[cq->rear] = elem;
1444 	cq->rear = (cq->rear + 1) & CQ_MASK;
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Dequeue an element from the circular_queue, return a lock_list if
1450  * the queue is not empty, or NULL if otherwise.
1451  */
__cq_dequeue(struct circular_queue * cq)1452 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1453 {
1454 	struct lock_list * lock;
1455 
1456 	if (__cq_empty(cq))
1457 		return NULL;
1458 
1459 	lock = cq->element[cq->front];
1460 	cq->front = (cq->front + 1) & CQ_MASK;
1461 
1462 	return lock;
1463 }
1464 
__cq_get_elem_count(struct circular_queue * cq)1465 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1466 {
1467 	return (cq->rear - cq->front) & CQ_MASK;
1468 }
1469 
mark_lock_accessed(struct lock_list * lock)1470 static inline void mark_lock_accessed(struct lock_list *lock)
1471 {
1472 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1473 }
1474 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1475 static inline void visit_lock_entry(struct lock_list *lock,
1476 				    struct lock_list *parent)
1477 {
1478 	lock->parent = parent;
1479 }
1480 
lock_accessed(struct lock_list * lock)1481 static inline unsigned long lock_accessed(struct lock_list *lock)
1482 {
1483 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1484 }
1485 
get_lock_parent(struct lock_list * child)1486 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1487 {
1488 	return child->parent;
1489 }
1490 
get_lock_depth(struct lock_list * child)1491 static inline int get_lock_depth(struct lock_list *child)
1492 {
1493 	int depth = 0;
1494 	struct lock_list *parent;
1495 
1496 	while ((parent = get_lock_parent(child))) {
1497 		child = parent;
1498 		depth++;
1499 	}
1500 	return depth;
1501 }
1502 
1503 /*
1504  * Return the forward or backward dependency list.
1505  *
1506  * @lock:   the lock_list to get its class's dependency list
1507  * @offset: the offset to struct lock_class to determine whether it is
1508  *          locks_after or locks_before
1509  */
get_dep_list(struct lock_list * lock,int offset)1510 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1511 {
1512 	void *lock_class = lock->class;
1513 
1514 	return lock_class + offset;
1515 }
1516 /*
1517  * Return values of a bfs search:
1518  *
1519  * BFS_E* indicates an error
1520  * BFS_R* indicates a result (match or not)
1521  *
1522  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1523  *
1524  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1525  *
1526  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1527  *             *@target_entry.
1528  *
1529  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1530  *               _unchanged_.
1531  */
1532 enum bfs_result {
1533 	BFS_EINVALIDNODE = -2,
1534 	BFS_EQUEUEFULL = -1,
1535 	BFS_RMATCH = 0,
1536 	BFS_RNOMATCH = 1,
1537 };
1538 
1539 /*
1540  * bfs_result < 0 means error
1541  */
bfs_error(enum bfs_result res)1542 static inline bool bfs_error(enum bfs_result res)
1543 {
1544 	return res < 0;
1545 }
1546 
1547 /*
1548  * DEP_*_BIT in lock_list::dep
1549  *
1550  * For dependency @prev -> @next:
1551  *
1552  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1553  *       (->read == 2)
1554  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1555  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1556  *   EN: @prev is exclusive locker and @next is non-recursive locker
1557  *
1558  * Note that we define the value of DEP_*_BITs so that:
1559  *   bit0 is prev->read == 0
1560  *   bit1 is next->read != 2
1561  */
1562 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1563 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1564 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1565 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1566 
1567 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1568 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1569 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1570 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1571 
1572 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1573 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1574 {
1575 	return (prev->read == 0) + ((next->read != 2) << 1);
1576 }
1577 
calc_dep(struct held_lock * prev,struct held_lock * next)1578 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1579 {
1580 	return 1U << __calc_dep_bit(prev, next);
1581 }
1582 
1583 /*
1584  * calculate the dep_bit for backwards edges. We care about whether @prev is
1585  * shared and whether @next is recursive.
1586  */
1587 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1588 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1589 {
1590 	return (next->read != 2) + ((prev->read == 0) << 1);
1591 }
1592 
calc_depb(struct held_lock * prev,struct held_lock * next)1593 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1594 {
1595 	return 1U << __calc_dep_bitb(prev, next);
1596 }
1597 
1598 /*
1599  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1600  * search.
1601  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1602 static inline void __bfs_init_root(struct lock_list *lock,
1603 				   struct lock_class *class)
1604 {
1605 	lock->class = class;
1606 	lock->parent = NULL;
1607 	lock->only_xr = 0;
1608 }
1609 
1610 /*
1611  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1612  * root for a BFS search.
1613  *
1614  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1615  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1616  * and -(S*)->.
1617  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1618 static inline void bfs_init_root(struct lock_list *lock,
1619 				 struct held_lock *hlock)
1620 {
1621 	__bfs_init_root(lock, hlock_class(hlock));
1622 	lock->only_xr = (hlock->read == 2);
1623 }
1624 
1625 /*
1626  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1627  *
1628  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1629  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1630  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1631  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1632 static inline void bfs_init_rootb(struct lock_list *lock,
1633 				  struct held_lock *hlock)
1634 {
1635 	__bfs_init_root(lock, hlock_class(hlock));
1636 	lock->only_xr = (hlock->read != 0);
1637 }
1638 
__bfs_next(struct lock_list * lock,int offset)1639 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1640 {
1641 	if (!lock || !lock->parent)
1642 		return NULL;
1643 
1644 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1645 				     &lock->entry, struct lock_list, entry);
1646 }
1647 
1648 /*
1649  * Breadth-First Search to find a strong path in the dependency graph.
1650  *
1651  * @source_entry: the source of the path we are searching for.
1652  * @data: data used for the second parameter of @match function
1653  * @match: match function for the search
1654  * @target_entry: pointer to the target of a matched path
1655  * @offset: the offset to struct lock_class to determine whether it is
1656  *          locks_after or locks_before
1657  *
1658  * We may have multiple edges (considering different kinds of dependencies,
1659  * e.g. ER and SN) between two nodes in the dependency graph. But
1660  * only the strong dependency path in the graph is relevant to deadlocks. A
1661  * strong dependency path is a dependency path that doesn't have two adjacent
1662  * dependencies as -(*R)-> -(S*)->, please see:
1663  *
1664  *         Documentation/locking/lockdep-design.rst
1665  *
1666  * for more explanation of the definition of strong dependency paths
1667  *
1668  * In __bfs(), we only traverse in the strong dependency path:
1669  *
1670  *     In lock_list::only_xr, we record whether the previous dependency only
1671  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1672  *     filter out any -(S*)-> in the current dependency and after that, the
1673  *     ->only_xr is set according to whether we only have -(*R)-> left.
1674  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1675 static enum bfs_result __bfs(struct lock_list *source_entry,
1676 			     void *data,
1677 			     bool (*match)(struct lock_list *entry, void *data),
1678 			     struct lock_list **target_entry,
1679 			     int offset)
1680 {
1681 	struct circular_queue *cq = &lock_cq;
1682 	struct lock_list *lock = NULL;
1683 	struct lock_list *entry;
1684 	struct list_head *head;
1685 	unsigned int cq_depth;
1686 	bool first;
1687 
1688 	lockdep_assert_locked();
1689 
1690 	__cq_init(cq);
1691 	__cq_enqueue(cq, source_entry);
1692 
1693 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1694 		if (!lock->class)
1695 			return BFS_EINVALIDNODE;
1696 
1697 		/*
1698 		 * Step 1: check whether we already finish on this one.
1699 		 *
1700 		 * If we have visited all the dependencies from this @lock to
1701 		 * others (iow, if we have visited all lock_list entries in
1702 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1703 		 * and visit all the dependencies in the list and mark this
1704 		 * list accessed.
1705 		 */
1706 		if (lock_accessed(lock))
1707 			continue;
1708 		else
1709 			mark_lock_accessed(lock);
1710 
1711 		/*
1712 		 * Step 2: check whether prev dependency and this form a strong
1713 		 *         dependency path.
1714 		 */
1715 		if (lock->parent) { /* Parent exists, check prev dependency */
1716 			u8 dep = lock->dep;
1717 			bool prev_only_xr = lock->parent->only_xr;
1718 
1719 			/*
1720 			 * Mask out all -(S*)-> if we only have *R in previous
1721 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1722 			 * dependency.
1723 			 */
1724 			if (prev_only_xr)
1725 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1726 
1727 			/* If nothing left, we skip */
1728 			if (!dep)
1729 				continue;
1730 
1731 			/* If there are only -(*R)-> left, set that for the next step */
1732 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1733 		}
1734 
1735 		/*
1736 		 * Step 3: we haven't visited this and there is a strong
1737 		 *         dependency path to this, so check with @match.
1738 		 */
1739 		if (match(lock, data)) {
1740 			*target_entry = lock;
1741 			return BFS_RMATCH;
1742 		}
1743 
1744 		/*
1745 		 * Step 4: if not match, expand the path by adding the
1746 		 *         forward or backwards dependencis in the search
1747 		 *
1748 		 */
1749 		first = true;
1750 		head = get_dep_list(lock, offset);
1751 		list_for_each_entry_rcu(entry, head, entry) {
1752 			visit_lock_entry(entry, lock);
1753 
1754 			/*
1755 			 * Note we only enqueue the first of the list into the
1756 			 * queue, because we can always find a sibling
1757 			 * dependency from one (see __bfs_next()), as a result
1758 			 * the space of queue is saved.
1759 			 */
1760 			if (!first)
1761 				continue;
1762 
1763 			first = false;
1764 
1765 			if (__cq_enqueue(cq, entry))
1766 				return BFS_EQUEUEFULL;
1767 
1768 			cq_depth = __cq_get_elem_count(cq);
1769 			if (max_bfs_queue_depth < cq_depth)
1770 				max_bfs_queue_depth = cq_depth;
1771 		}
1772 	}
1773 
1774 	return BFS_RNOMATCH;
1775 }
1776 
1777 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1778 __bfs_forwards(struct lock_list *src_entry,
1779 	       void *data,
1780 	       bool (*match)(struct lock_list *entry, void *data),
1781 	       struct lock_list **target_entry)
1782 {
1783 	return __bfs(src_entry, data, match, target_entry,
1784 		     offsetof(struct lock_class, locks_after));
1785 
1786 }
1787 
1788 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1789 __bfs_backwards(struct lock_list *src_entry,
1790 		void *data,
1791 		bool (*match)(struct lock_list *entry, void *data),
1792 		struct lock_list **target_entry)
1793 {
1794 	return __bfs(src_entry, data, match, target_entry,
1795 		     offsetof(struct lock_class, locks_before));
1796 
1797 }
1798 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1799 static void print_lock_trace(const struct lock_trace *trace,
1800 			     unsigned int spaces)
1801 {
1802 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1803 }
1804 
1805 /*
1806  * Print a dependency chain entry (this is only done when a deadlock
1807  * has been detected):
1808  */
1809 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1810 print_circular_bug_entry(struct lock_list *target, int depth)
1811 {
1812 	if (debug_locks_silent)
1813 		return;
1814 	printk("\n-> #%u", depth);
1815 	print_lock_name(target->class);
1816 	printk(KERN_CONT ":\n");
1817 	print_lock_trace(target->trace, 6);
1818 }
1819 
1820 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1821 print_circular_lock_scenario(struct held_lock *src,
1822 			     struct held_lock *tgt,
1823 			     struct lock_list *prt)
1824 {
1825 	struct lock_class *source = hlock_class(src);
1826 	struct lock_class *target = hlock_class(tgt);
1827 	struct lock_class *parent = prt->class;
1828 
1829 	/*
1830 	 * A direct locking problem where unsafe_class lock is taken
1831 	 * directly by safe_class lock, then all we need to show
1832 	 * is the deadlock scenario, as it is obvious that the
1833 	 * unsafe lock is taken under the safe lock.
1834 	 *
1835 	 * But if there is a chain instead, where the safe lock takes
1836 	 * an intermediate lock (middle_class) where this lock is
1837 	 * not the same as the safe lock, then the lock chain is
1838 	 * used to describe the problem. Otherwise we would need
1839 	 * to show a different CPU case for each link in the chain
1840 	 * from the safe_class lock to the unsafe_class lock.
1841 	 */
1842 	if (parent != source) {
1843 		printk("Chain exists of:\n  ");
1844 		__print_lock_name(source);
1845 		printk(KERN_CONT " --> ");
1846 		__print_lock_name(parent);
1847 		printk(KERN_CONT " --> ");
1848 		__print_lock_name(target);
1849 		printk(KERN_CONT "\n\n");
1850 	}
1851 
1852 	printk(" Possible unsafe locking scenario:\n\n");
1853 	printk("       CPU0                    CPU1\n");
1854 	printk("       ----                    ----\n");
1855 	printk("  lock(");
1856 	__print_lock_name(target);
1857 	printk(KERN_CONT ");\n");
1858 	printk("                               lock(");
1859 	__print_lock_name(parent);
1860 	printk(KERN_CONT ");\n");
1861 	printk("                               lock(");
1862 	__print_lock_name(target);
1863 	printk(KERN_CONT ");\n");
1864 	printk("  lock(");
1865 	__print_lock_name(source);
1866 	printk(KERN_CONT ");\n");
1867 	printk("\n *** DEADLOCK ***\n\n");
1868 }
1869 
1870 /*
1871  * When a circular dependency is detected, print the
1872  * header first:
1873  */
1874 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1875 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1876 			struct held_lock *check_src,
1877 			struct held_lock *check_tgt)
1878 {
1879 	struct task_struct *curr = current;
1880 
1881 	if (debug_locks_silent)
1882 		return;
1883 
1884 	pr_warn("\n");
1885 	pr_warn("======================================================\n");
1886 	pr_warn("WARNING: possible circular locking dependency detected\n");
1887 	print_kernel_ident();
1888 	pr_warn("------------------------------------------------------\n");
1889 	pr_warn("%s/%d is trying to acquire lock:\n",
1890 		curr->comm, task_pid_nr(curr));
1891 	print_lock(check_src);
1892 
1893 	pr_warn("\nbut task is already holding lock:\n");
1894 
1895 	print_lock(check_tgt);
1896 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1897 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1898 
1899 	print_circular_bug_entry(entry, depth);
1900 }
1901 
1902 /*
1903  * We are about to add A -> B into the dependency graph, and in __bfs() a
1904  * strong dependency path A -> .. -> B is found: hlock_class equals
1905  * entry->class.
1906  *
1907  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1908  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1909  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1910  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1911  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1912  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1913  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1914  *
1915  * We need to make sure both the start and the end of A -> .. -> B is not
1916  * weaker than A -> B. For the start part, please see the comment in
1917  * check_redundant(). For the end part, we need:
1918  *
1919  * Either
1920  *
1921  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1922  *
1923  * or
1924  *
1925  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1926  *
1927  */
hlock_equal(struct lock_list * entry,void * data)1928 static inline bool hlock_equal(struct lock_list *entry, void *data)
1929 {
1930 	struct held_lock *hlock = (struct held_lock *)data;
1931 
1932 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1933 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1934 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1935 }
1936 
1937 /*
1938  * We are about to add B -> A into the dependency graph, and in __bfs() a
1939  * strong dependency path A -> .. -> B is found: hlock_class equals
1940  * entry->class.
1941  *
1942  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1943  * dependency cycle, that means:
1944  *
1945  * Either
1946  *
1947  *     a) B -> A is -(E*)->
1948  *
1949  * or
1950  *
1951  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1952  *
1953  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1954  */
hlock_conflict(struct lock_list * entry,void * data)1955 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1956 {
1957 	struct held_lock *hlock = (struct held_lock *)data;
1958 
1959 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1960 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1961 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1962 }
1963 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1964 static noinline void print_circular_bug(struct lock_list *this,
1965 				struct lock_list *target,
1966 				struct held_lock *check_src,
1967 				struct held_lock *check_tgt)
1968 {
1969 	struct task_struct *curr = current;
1970 	struct lock_list *parent;
1971 	struct lock_list *first_parent;
1972 	int depth;
1973 
1974 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1975 		return;
1976 
1977 	this->trace = save_trace();
1978 	if (!this->trace)
1979 		return;
1980 
1981 	depth = get_lock_depth(target);
1982 
1983 	print_circular_bug_header(target, depth, check_src, check_tgt);
1984 
1985 	parent = get_lock_parent(target);
1986 	first_parent = parent;
1987 
1988 	while (parent) {
1989 		print_circular_bug_entry(parent, --depth);
1990 		parent = get_lock_parent(parent);
1991 	}
1992 
1993 	printk("\nother info that might help us debug this:\n\n");
1994 	print_circular_lock_scenario(check_src, check_tgt,
1995 				     first_parent);
1996 
1997 	lockdep_print_held_locks(curr);
1998 
1999 	printk("\nstack backtrace:\n");
2000 	dump_stack();
2001 }
2002 
print_bfs_bug(int ret)2003 static noinline void print_bfs_bug(int ret)
2004 {
2005 	if (!debug_locks_off_graph_unlock())
2006 		return;
2007 
2008 	/*
2009 	 * Breadth-first-search failed, graph got corrupted?
2010 	 */
2011 	WARN(1, "lockdep bfs error:%d\n", ret);
2012 }
2013 
noop_count(struct lock_list * entry,void * data)2014 static bool noop_count(struct lock_list *entry, void *data)
2015 {
2016 	(*(unsigned long *)data)++;
2017 	return false;
2018 }
2019 
__lockdep_count_forward_deps(struct lock_list * this)2020 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2021 {
2022 	unsigned long  count = 0;
2023 	struct lock_list *target_entry;
2024 
2025 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2026 
2027 	return count;
2028 }
lockdep_count_forward_deps(struct lock_class * class)2029 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2030 {
2031 	unsigned long ret, flags;
2032 	struct lock_list this;
2033 
2034 	__bfs_init_root(&this, class);
2035 
2036 	raw_local_irq_save(flags);
2037 	lockdep_lock();
2038 	ret = __lockdep_count_forward_deps(&this);
2039 	lockdep_unlock();
2040 	raw_local_irq_restore(flags);
2041 
2042 	return ret;
2043 }
2044 
__lockdep_count_backward_deps(struct lock_list * this)2045 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2046 {
2047 	unsigned long  count = 0;
2048 	struct lock_list *target_entry;
2049 
2050 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2051 
2052 	return count;
2053 }
2054 
lockdep_count_backward_deps(struct lock_class * class)2055 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2056 {
2057 	unsigned long ret, flags;
2058 	struct lock_list this;
2059 
2060 	__bfs_init_root(&this, class);
2061 
2062 	raw_local_irq_save(flags);
2063 	lockdep_lock();
2064 	ret = __lockdep_count_backward_deps(&this);
2065 	lockdep_unlock();
2066 	raw_local_irq_restore(flags);
2067 
2068 	return ret;
2069 }
2070 
2071 /*
2072  * Check that the dependency graph starting at <src> can lead to
2073  * <target> or not.
2074  */
2075 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2076 check_path(struct held_lock *target, struct lock_list *src_entry,
2077 	   bool (*match)(struct lock_list *entry, void *data),
2078 	   struct lock_list **target_entry)
2079 {
2080 	enum bfs_result ret;
2081 
2082 	ret = __bfs_forwards(src_entry, target, match, target_entry);
2083 
2084 	if (unlikely(bfs_error(ret)))
2085 		print_bfs_bug(ret);
2086 
2087 	return ret;
2088 }
2089 
2090 /*
2091  * Prove that the dependency graph starting at <src> can not
2092  * lead to <target>. If it can, there is a circle when adding
2093  * <target> -> <src> dependency.
2094  *
2095  * Print an error and return BFS_RMATCH if it does.
2096  */
2097 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2098 check_noncircular(struct held_lock *src, struct held_lock *target,
2099 		  struct lock_trace **const trace)
2100 {
2101 	enum bfs_result ret;
2102 	struct lock_list *target_entry;
2103 	struct lock_list src_entry;
2104 
2105 	bfs_init_root(&src_entry, src);
2106 
2107 	debug_atomic_inc(nr_cyclic_checks);
2108 
2109 	ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2110 
2111 	if (unlikely(ret == BFS_RMATCH)) {
2112 		if (!*trace) {
2113 			/*
2114 			 * If save_trace fails here, the printing might
2115 			 * trigger a WARN but because of the !nr_entries it
2116 			 * should not do bad things.
2117 			 */
2118 			*trace = save_trace();
2119 		}
2120 
2121 		print_circular_bug(&src_entry, target_entry, src, target);
2122 	}
2123 
2124 	return ret;
2125 }
2126 
2127 #ifdef CONFIG_LOCKDEP_SMALL
2128 /*
2129  * Check that the dependency graph starting at <src> can lead to
2130  * <target> or not. If it can, <src> -> <target> dependency is already
2131  * in the graph.
2132  *
2133  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2134  * any error appears in the bfs search.
2135  */
2136 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2137 check_redundant(struct held_lock *src, struct held_lock *target)
2138 {
2139 	enum bfs_result ret;
2140 	struct lock_list *target_entry;
2141 	struct lock_list src_entry;
2142 
2143 	bfs_init_root(&src_entry, src);
2144 	/*
2145 	 * Special setup for check_redundant().
2146 	 *
2147 	 * To report redundant, we need to find a strong dependency path that
2148 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2149 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2150 	 * we achieve this by setting the initial node's ->only_xr to true in
2151 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2152 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2153 	 */
2154 	src_entry.only_xr = src->read == 0;
2155 
2156 	debug_atomic_inc(nr_redundant_checks);
2157 
2158 	ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2159 
2160 	if (ret == BFS_RMATCH)
2161 		debug_atomic_inc(nr_redundant);
2162 
2163 	return ret;
2164 }
2165 #endif
2166 
2167 #ifdef CONFIG_TRACE_IRQFLAGS
2168 
2169 /*
2170  * Forwards and backwards subgraph searching, for the purposes of
2171  * proving that two subgraphs can be connected by a new dependency
2172  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2173  *
2174  * A irq safe->unsafe deadlock happens with the following conditions:
2175  *
2176  * 1) We have a strong dependency path A -> ... -> B
2177  *
2178  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2179  *    irq can create a new dependency B -> A (consider the case that a holder
2180  *    of B gets interrupted by an irq whose handler will try to acquire A).
2181  *
2182  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2183  *    strong circle:
2184  *
2185  *      For the usage bits of B:
2186  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2187  *           ENABLED_IRQ usage suffices.
2188  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2189  *           ENABLED_IRQ_*_READ usage suffices.
2190  *
2191  *      For the usage bits of A:
2192  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2193  *           USED_IN_IRQ usage suffices.
2194  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2195  *           USED_IN_IRQ_*_READ usage suffices.
2196  */
2197 
2198 /*
2199  * There is a strong dependency path in the dependency graph: A -> B, and now
2200  * we need to decide which usage bit of A should be accumulated to detect
2201  * safe->unsafe bugs.
2202  *
2203  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2204  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2205  *
2206  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2207  * path, any usage of A should be considered. Otherwise, we should only
2208  * consider _READ usage.
2209  */
usage_accumulate(struct lock_list * entry,void * mask)2210 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2211 {
2212 	if (!entry->only_xr)
2213 		*(unsigned long *)mask |= entry->class->usage_mask;
2214 	else /* Mask out _READ usage bits */
2215 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2216 
2217 	return false;
2218 }
2219 
2220 /*
2221  * There is a strong dependency path in the dependency graph: A -> B, and now
2222  * we need to decide which usage bit of B conflicts with the usage bits of A,
2223  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2224  *
2225  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2226  * path, any usage of B should be considered. Otherwise, we should only
2227  * consider _READ usage.
2228  */
usage_match(struct lock_list * entry,void * mask)2229 static inline bool usage_match(struct lock_list *entry, void *mask)
2230 {
2231 	if (!entry->only_xr)
2232 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2233 	else /* Mask out _READ usage bits */
2234 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2235 }
2236 
2237 /*
2238  * Find a node in the forwards-direction dependency sub-graph starting
2239  * at @root->class that matches @bit.
2240  *
2241  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2242  * into *@target_entry.
2243  */
2244 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2245 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2246 			struct lock_list **target_entry)
2247 {
2248 	enum bfs_result result;
2249 
2250 	debug_atomic_inc(nr_find_usage_forwards_checks);
2251 
2252 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2253 
2254 	return result;
2255 }
2256 
2257 /*
2258  * Find a node in the backwards-direction dependency sub-graph starting
2259  * at @root->class that matches @bit.
2260  */
2261 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2262 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2263 			struct lock_list **target_entry)
2264 {
2265 	enum bfs_result result;
2266 
2267 	debug_atomic_inc(nr_find_usage_backwards_checks);
2268 
2269 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2270 
2271 	return result;
2272 }
2273 
print_lock_class_header(struct lock_class * class,int depth)2274 static void print_lock_class_header(struct lock_class *class, int depth)
2275 {
2276 	int bit;
2277 
2278 	printk("%*s->", depth, "");
2279 	print_lock_name(class);
2280 #ifdef CONFIG_DEBUG_LOCKDEP
2281 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2282 #endif
2283 	printk(KERN_CONT " {\n");
2284 
2285 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2286 		if (class->usage_mask & (1 << bit)) {
2287 			int len = depth;
2288 
2289 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2290 			len += printk(KERN_CONT " at:\n");
2291 			print_lock_trace(class->usage_traces[bit], len);
2292 		}
2293 	}
2294 	printk("%*s }\n", depth, "");
2295 
2296 	printk("%*s ... key      at: [<%px>] %pS\n",
2297 		depth, "", class->key, class->key);
2298 }
2299 
2300 /*
2301  * Dependency path printing:
2302  *
2303  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2304  * printing out each lock in the dependency path will help on understanding how
2305  * the deadlock could happen. Here are some details about dependency path
2306  * printing:
2307  *
2308  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2309  * 	for a lock dependency A -> B, there are two lock_lists:
2310  *
2311  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2312  * 		->links_to is A. In this case, we can say the lock_list is
2313  * 		"A -> B" (forwards case).
2314  *
2315  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2316  * 		and ->links_to is B. In this case, we can say the lock_list is
2317  * 		"B <- A" (bacwards case).
2318  *
2319  * 	The ->trace of both a) and b) point to the call trace where B was
2320  * 	acquired with A held.
2321  *
2322  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2323  * 	represent a certain lock dependency, it only provides an initial entry
2324  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2325  * 	->class is A, as a result BFS will search all dependencies starting with
2326  * 	A, e.g. A -> B or A -> C.
2327  *
2328  * 	The notation of a forwards helper lock_list is like "-> A", which means
2329  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2330  * 	or A -> C.
2331  *
2332  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2333  * 	we should search the backwards dependencies ending with "B", e.g.
2334  * 	B <- A or B <- C.
2335  */
2336 
2337 /*
2338  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2339  *
2340  * We have a lock dependency path as follow:
2341  *
2342  *    @root                                                                 @leaf
2343  *      |                                                                     |
2344  *      V                                                                     V
2345  *	          ->parent                                   ->parent
2346  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2347  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2348  *
2349  * , so it's natural that we start from @leaf and print every ->class and
2350  * ->trace until we reach the @root.
2351  */
2352 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2353 print_shortest_lock_dependencies(struct lock_list *leaf,
2354 				 struct lock_list *root)
2355 {
2356 	struct lock_list *entry = leaf;
2357 	int depth;
2358 
2359 	/*compute depth from generated tree by BFS*/
2360 	depth = get_lock_depth(leaf);
2361 
2362 	do {
2363 		print_lock_class_header(entry->class, depth);
2364 		printk("%*s ... acquired at:\n", depth, "");
2365 		print_lock_trace(entry->trace, 2);
2366 		printk("\n");
2367 
2368 		if (depth == 0 && (entry != root)) {
2369 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2370 			break;
2371 		}
2372 
2373 		entry = get_lock_parent(entry);
2374 		depth--;
2375 	} while (entry && (depth >= 0));
2376 }
2377 
2378 /*
2379  * printk the shortest lock dependencies from @leaf to @root.
2380  *
2381  * We have a lock dependency path (from a backwards search) as follow:
2382  *
2383  *    @leaf                                                                 @root
2384  *      |                                                                     |
2385  *      V                                                                     V
2386  *	          ->parent                                   ->parent
2387  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2388  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2389  *
2390  * , so when we iterate from @leaf to @root, we actually print the lock
2391  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2392  *
2393  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2394  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2395  * trace of L1 in the dependency path, which is alright, because most of the
2396  * time we can figure out where L1 is held from the call trace of L2.
2397  */
2398 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2399 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2400 					   struct lock_list *root)
2401 {
2402 	struct lock_list *entry = leaf;
2403 	const struct lock_trace *trace = NULL;
2404 	int depth;
2405 
2406 	/*compute depth from generated tree by BFS*/
2407 	depth = get_lock_depth(leaf);
2408 
2409 	do {
2410 		print_lock_class_header(entry->class, depth);
2411 		if (trace) {
2412 			printk("%*s ... acquired at:\n", depth, "");
2413 			print_lock_trace(trace, 2);
2414 			printk("\n");
2415 		}
2416 
2417 		/*
2418 		 * Record the pointer to the trace for the next lock_list
2419 		 * entry, see the comments for the function.
2420 		 */
2421 		trace = entry->trace;
2422 
2423 		if (depth == 0 && (entry != root)) {
2424 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2425 			break;
2426 		}
2427 
2428 		entry = get_lock_parent(entry);
2429 		depth--;
2430 	} while (entry && (depth >= 0));
2431 }
2432 
2433 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2434 print_irq_lock_scenario(struct lock_list *safe_entry,
2435 			struct lock_list *unsafe_entry,
2436 			struct lock_class *prev_class,
2437 			struct lock_class *next_class)
2438 {
2439 	struct lock_class *safe_class = safe_entry->class;
2440 	struct lock_class *unsafe_class = unsafe_entry->class;
2441 	struct lock_class *middle_class = prev_class;
2442 
2443 	if (middle_class == safe_class)
2444 		middle_class = next_class;
2445 
2446 	/*
2447 	 * A direct locking problem where unsafe_class lock is taken
2448 	 * directly by safe_class lock, then all we need to show
2449 	 * is the deadlock scenario, as it is obvious that the
2450 	 * unsafe lock is taken under the safe lock.
2451 	 *
2452 	 * But if there is a chain instead, where the safe lock takes
2453 	 * an intermediate lock (middle_class) where this lock is
2454 	 * not the same as the safe lock, then the lock chain is
2455 	 * used to describe the problem. Otherwise we would need
2456 	 * to show a different CPU case for each link in the chain
2457 	 * from the safe_class lock to the unsafe_class lock.
2458 	 */
2459 	if (middle_class != unsafe_class) {
2460 		printk("Chain exists of:\n  ");
2461 		__print_lock_name(safe_class);
2462 		printk(KERN_CONT " --> ");
2463 		__print_lock_name(middle_class);
2464 		printk(KERN_CONT " --> ");
2465 		__print_lock_name(unsafe_class);
2466 		printk(KERN_CONT "\n\n");
2467 	}
2468 
2469 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2470 	printk("       CPU0                    CPU1\n");
2471 	printk("       ----                    ----\n");
2472 	printk("  lock(");
2473 	__print_lock_name(unsafe_class);
2474 	printk(KERN_CONT ");\n");
2475 	printk("                               local_irq_disable();\n");
2476 	printk("                               lock(");
2477 	__print_lock_name(safe_class);
2478 	printk(KERN_CONT ");\n");
2479 	printk("                               lock(");
2480 	__print_lock_name(middle_class);
2481 	printk(KERN_CONT ");\n");
2482 	printk("  <Interrupt>\n");
2483 	printk("    lock(");
2484 	__print_lock_name(safe_class);
2485 	printk(KERN_CONT ");\n");
2486 	printk("\n *** DEADLOCK ***\n\n");
2487 }
2488 
2489 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2490 print_bad_irq_dependency(struct task_struct *curr,
2491 			 struct lock_list *prev_root,
2492 			 struct lock_list *next_root,
2493 			 struct lock_list *backwards_entry,
2494 			 struct lock_list *forwards_entry,
2495 			 struct held_lock *prev,
2496 			 struct held_lock *next,
2497 			 enum lock_usage_bit bit1,
2498 			 enum lock_usage_bit bit2,
2499 			 const char *irqclass)
2500 {
2501 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2502 		return;
2503 
2504 	pr_warn("\n");
2505 	pr_warn("=====================================================\n");
2506 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2507 		irqclass, irqclass);
2508 	print_kernel_ident();
2509 	pr_warn("-----------------------------------------------------\n");
2510 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2511 		curr->comm, task_pid_nr(curr),
2512 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2513 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2514 		lockdep_hardirqs_enabled(),
2515 		curr->softirqs_enabled);
2516 	print_lock(next);
2517 
2518 	pr_warn("\nand this task is already holding:\n");
2519 	print_lock(prev);
2520 	pr_warn("which would create a new lock dependency:\n");
2521 	print_lock_name(hlock_class(prev));
2522 	pr_cont(" ->");
2523 	print_lock_name(hlock_class(next));
2524 	pr_cont("\n");
2525 
2526 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2527 		irqclass);
2528 	print_lock_name(backwards_entry->class);
2529 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2530 
2531 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2532 
2533 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2534 	print_lock_name(forwards_entry->class);
2535 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2536 	pr_warn("...");
2537 
2538 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2539 
2540 	pr_warn("\nother info that might help us debug this:\n\n");
2541 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2542 				hlock_class(prev), hlock_class(next));
2543 
2544 	lockdep_print_held_locks(curr);
2545 
2546 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2547 	prev_root->trace = save_trace();
2548 	if (!prev_root->trace)
2549 		return;
2550 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2551 
2552 	pr_warn("\nthe dependencies between the lock to be acquired");
2553 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2554 	next_root->trace = save_trace();
2555 	if (!next_root->trace)
2556 		return;
2557 	print_shortest_lock_dependencies(forwards_entry, next_root);
2558 
2559 	pr_warn("\nstack backtrace:\n");
2560 	dump_stack();
2561 }
2562 
2563 static const char *state_names[] = {
2564 #define LOCKDEP_STATE(__STATE) \
2565 	__stringify(__STATE),
2566 #include "lockdep_states.h"
2567 #undef LOCKDEP_STATE
2568 };
2569 
2570 static const char *state_rnames[] = {
2571 #define LOCKDEP_STATE(__STATE) \
2572 	__stringify(__STATE)"-READ",
2573 #include "lockdep_states.h"
2574 #undef LOCKDEP_STATE
2575 };
2576 
state_name(enum lock_usage_bit bit)2577 static inline const char *state_name(enum lock_usage_bit bit)
2578 {
2579 	if (bit & LOCK_USAGE_READ_MASK)
2580 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2581 	else
2582 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2583 }
2584 
2585 /*
2586  * The bit number is encoded like:
2587  *
2588  *  bit0: 0 exclusive, 1 read lock
2589  *  bit1: 0 used in irq, 1 irq enabled
2590  *  bit2-n: state
2591  */
exclusive_bit(int new_bit)2592 static int exclusive_bit(int new_bit)
2593 {
2594 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2595 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2596 
2597 	/*
2598 	 * keep state, bit flip the direction and strip read.
2599 	 */
2600 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2601 }
2602 
2603 /*
2604  * Observe that when given a bitmask where each bitnr is encoded as above, a
2605  * right shift of the mask transforms the individual bitnrs as -1 and
2606  * conversely, a left shift transforms into +1 for the individual bitnrs.
2607  *
2608  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2609  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2610  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2611  *
2612  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2613  *
2614  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2615  * all bits set) and recompose with bitnr1 flipped.
2616  */
invert_dir_mask(unsigned long mask)2617 static unsigned long invert_dir_mask(unsigned long mask)
2618 {
2619 	unsigned long excl = 0;
2620 
2621 	/* Invert dir */
2622 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2623 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2624 
2625 	return excl;
2626 }
2627 
2628 /*
2629  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2630  * usage may cause deadlock too, for example:
2631  *
2632  * P1				P2
2633  * <irq disabled>
2634  * write_lock(l1);		<irq enabled>
2635  *				read_lock(l2);
2636  * write_lock(l2);
2637  * 				<in irq>
2638  * 				read_lock(l1);
2639  *
2640  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2641  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2642  * deadlock.
2643  *
2644  * In fact, all of the following cases may cause deadlocks:
2645  *
2646  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2647  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2648  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2649  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2650  *
2651  * As a result, to calculate the "exclusive mask", first we invert the
2652  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2653  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2654  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2655  */
exclusive_mask(unsigned long mask)2656 static unsigned long exclusive_mask(unsigned long mask)
2657 {
2658 	unsigned long excl = invert_dir_mask(mask);
2659 
2660 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2661 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2662 
2663 	return excl;
2664 }
2665 
2666 /*
2667  * Retrieve the _possible_ original mask to which @mask is
2668  * exclusive. Ie: this is the opposite of exclusive_mask().
2669  * Note that 2 possible original bits can match an exclusive
2670  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2671  * cleared. So both are returned for each exclusive bit.
2672  */
original_mask(unsigned long mask)2673 static unsigned long original_mask(unsigned long mask)
2674 {
2675 	unsigned long excl = invert_dir_mask(mask);
2676 
2677 	/* Include read in existing usages */
2678 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2679 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2680 
2681 	return excl;
2682 }
2683 
2684 /*
2685  * Find the first pair of bit match between an original
2686  * usage mask and an exclusive usage mask.
2687  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2688 static int find_exclusive_match(unsigned long mask,
2689 				unsigned long excl_mask,
2690 				enum lock_usage_bit *bitp,
2691 				enum lock_usage_bit *excl_bitp)
2692 {
2693 	int bit, excl, excl_read;
2694 
2695 	for_each_set_bit(bit, &mask, LOCK_USED) {
2696 		/*
2697 		 * exclusive_bit() strips the read bit, however,
2698 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2699 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2700 		 */
2701 		excl = exclusive_bit(bit);
2702 		excl_read = excl | LOCK_USAGE_READ_MASK;
2703 		if (excl_mask & lock_flag(excl)) {
2704 			*bitp = bit;
2705 			*excl_bitp = excl;
2706 			return 0;
2707 		} else if (excl_mask & lock_flag(excl_read)) {
2708 			*bitp = bit;
2709 			*excl_bitp = excl_read;
2710 			return 0;
2711 		}
2712 	}
2713 	return -1;
2714 }
2715 
2716 /*
2717  * Prove that the new dependency does not connect a hardirq-safe(-read)
2718  * lock with a hardirq-unsafe lock - to achieve this we search
2719  * the backwards-subgraph starting at <prev>, and the
2720  * forwards-subgraph starting at <next>:
2721  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2722 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2723 			   struct held_lock *next)
2724 {
2725 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2726 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2727 	struct lock_list *target_entry1;
2728 	struct lock_list *target_entry;
2729 	struct lock_list this, that;
2730 	enum bfs_result ret;
2731 
2732 	/*
2733 	 * Step 1: gather all hard/soft IRQs usages backward in an
2734 	 * accumulated usage mask.
2735 	 */
2736 	bfs_init_rootb(&this, prev);
2737 
2738 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2739 	if (bfs_error(ret)) {
2740 		print_bfs_bug(ret);
2741 		return 0;
2742 	}
2743 
2744 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2745 	if (!usage_mask)
2746 		return 1;
2747 
2748 	/*
2749 	 * Step 2: find exclusive uses forward that match the previous
2750 	 * backward accumulated mask.
2751 	 */
2752 	forward_mask = exclusive_mask(usage_mask);
2753 
2754 	bfs_init_root(&that, next);
2755 
2756 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2757 	if (bfs_error(ret)) {
2758 		print_bfs_bug(ret);
2759 		return 0;
2760 	}
2761 	if (ret == BFS_RNOMATCH)
2762 		return 1;
2763 
2764 	/*
2765 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2766 	 * list whose usage mask matches the exclusive usage mask from the
2767 	 * lock found on the forward list.
2768 	 *
2769 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2770 	 * the follow case:
2771 	 *
2772 	 * When trying to add A -> B to the graph, we find that there is a
2773 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2774 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2775 	 * invert bits of M's usage_mask, we will find another lock N that is
2776 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2777 	 * cause a inversion deadlock.
2778 	 */
2779 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2780 
2781 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2782 	if (bfs_error(ret)) {
2783 		print_bfs_bug(ret);
2784 		return 0;
2785 	}
2786 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2787 		return 1;
2788 
2789 	/*
2790 	 * Step 4: narrow down to a pair of incompatible usage bits
2791 	 * and report it.
2792 	 */
2793 	ret = find_exclusive_match(target_entry->class->usage_mask,
2794 				   target_entry1->class->usage_mask,
2795 				   &backward_bit, &forward_bit);
2796 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2797 		return 1;
2798 
2799 	print_bad_irq_dependency(curr, &this, &that,
2800 				 target_entry, target_entry1,
2801 				 prev, next,
2802 				 backward_bit, forward_bit,
2803 				 state_name(backward_bit));
2804 
2805 	return 0;
2806 }
2807 
2808 #else
2809 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2810 static inline int check_irq_usage(struct task_struct *curr,
2811 				  struct held_lock *prev, struct held_lock *next)
2812 {
2813 	return 1;
2814 }
2815 #endif /* CONFIG_TRACE_IRQFLAGS */
2816 
inc_chains(int irq_context)2817 static void inc_chains(int irq_context)
2818 {
2819 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2820 		nr_hardirq_chains++;
2821 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2822 		nr_softirq_chains++;
2823 	else
2824 		nr_process_chains++;
2825 }
2826 
dec_chains(int irq_context)2827 static void dec_chains(int irq_context)
2828 {
2829 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2830 		nr_hardirq_chains--;
2831 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2832 		nr_softirq_chains--;
2833 	else
2834 		nr_process_chains--;
2835 }
2836 
2837 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2838 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2839 {
2840 	struct lock_class *next = hlock_class(nxt);
2841 	struct lock_class *prev = hlock_class(prv);
2842 
2843 	printk(" Possible unsafe locking scenario:\n\n");
2844 	printk("       CPU0\n");
2845 	printk("       ----\n");
2846 	printk("  lock(");
2847 	__print_lock_name(prev);
2848 	printk(KERN_CONT ");\n");
2849 	printk("  lock(");
2850 	__print_lock_name(next);
2851 	printk(KERN_CONT ");\n");
2852 	printk("\n *** DEADLOCK ***\n\n");
2853 	printk(" May be due to missing lock nesting notation\n\n");
2854 }
2855 
2856 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2857 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2858 		   struct held_lock *next)
2859 {
2860 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2861 		return;
2862 
2863 	pr_warn("\n");
2864 	pr_warn("============================================\n");
2865 	pr_warn("WARNING: possible recursive locking detected\n");
2866 	print_kernel_ident();
2867 	pr_warn("--------------------------------------------\n");
2868 	pr_warn("%s/%d is trying to acquire lock:\n",
2869 		curr->comm, task_pid_nr(curr));
2870 	print_lock(next);
2871 	pr_warn("\nbut task is already holding lock:\n");
2872 	print_lock(prev);
2873 
2874 	pr_warn("\nother info that might help us debug this:\n");
2875 	print_deadlock_scenario(next, prev);
2876 	lockdep_print_held_locks(curr);
2877 
2878 	pr_warn("\nstack backtrace:\n");
2879 	dump_stack();
2880 }
2881 
2882 /*
2883  * Check whether we are holding such a class already.
2884  *
2885  * (Note that this has to be done separately, because the graph cannot
2886  * detect such classes of deadlocks.)
2887  *
2888  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2889  * lock class is held but nest_lock is also held, i.e. we rely on the
2890  * nest_lock to avoid the deadlock.
2891  */
2892 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2893 check_deadlock(struct task_struct *curr, struct held_lock *next)
2894 {
2895 	struct held_lock *prev;
2896 	struct held_lock *nest = NULL;
2897 	int i;
2898 
2899 	for (i = 0; i < curr->lockdep_depth; i++) {
2900 		prev = curr->held_locks + i;
2901 
2902 		if (prev->instance == next->nest_lock)
2903 			nest = prev;
2904 
2905 		if (hlock_class(prev) != hlock_class(next))
2906 			continue;
2907 
2908 		/*
2909 		 * Allow read-after-read recursion of the same
2910 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2911 		 */
2912 		if ((next->read == 2) && prev->read)
2913 			continue;
2914 
2915 		/*
2916 		 * We're holding the nest_lock, which serializes this lock's
2917 		 * nesting behaviour.
2918 		 */
2919 		if (nest)
2920 			return 2;
2921 
2922 		print_deadlock_bug(curr, prev, next);
2923 		return 0;
2924 	}
2925 	return 1;
2926 }
2927 
2928 /*
2929  * There was a chain-cache miss, and we are about to add a new dependency
2930  * to a previous lock. We validate the following rules:
2931  *
2932  *  - would the adding of the <prev> -> <next> dependency create a
2933  *    circular dependency in the graph? [== circular deadlock]
2934  *
2935  *  - does the new prev->next dependency connect any hardirq-safe lock
2936  *    (in the full backwards-subgraph starting at <prev>) with any
2937  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2938  *    <next>)? [== illegal lock inversion with hardirq contexts]
2939  *
2940  *  - does the new prev->next dependency connect any softirq-safe lock
2941  *    (in the full backwards-subgraph starting at <prev>) with any
2942  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2943  *    <next>)? [== illegal lock inversion with softirq contexts]
2944  *
2945  * any of these scenarios could lead to a deadlock.
2946  *
2947  * Then if all the validations pass, we add the forwards and backwards
2948  * dependency.
2949  */
2950 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)2951 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2952 	       struct held_lock *next, u16 distance,
2953 	       struct lock_trace **const trace)
2954 {
2955 	struct lock_list *entry;
2956 	enum bfs_result ret;
2957 
2958 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2959 		/*
2960 		 * The warning statements below may trigger a use-after-free
2961 		 * of the class name. It is better to trigger a use-after free
2962 		 * and to have the class name most of the time instead of not
2963 		 * having the class name available.
2964 		 */
2965 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2966 			  "Detected use-after-free of lock class %px/%s\n",
2967 			  hlock_class(prev),
2968 			  hlock_class(prev)->name);
2969 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2970 			  "Detected use-after-free of lock class %px/%s\n",
2971 			  hlock_class(next),
2972 			  hlock_class(next)->name);
2973 		return 2;
2974 	}
2975 
2976 	/*
2977 	 * Prove that the new <prev> -> <next> dependency would not
2978 	 * create a circular dependency in the graph. (We do this by
2979 	 * a breadth-first search into the graph starting at <next>,
2980 	 * and check whether we can reach <prev>.)
2981 	 *
2982 	 * The search is limited by the size of the circular queue (i.e.,
2983 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2984 	 * in the graph whose neighbours are to be checked.
2985 	 */
2986 	ret = check_noncircular(next, prev, trace);
2987 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2988 		return 0;
2989 
2990 	if (!check_irq_usage(curr, prev, next))
2991 		return 0;
2992 
2993 	/*
2994 	 * Is the <prev> -> <next> dependency already present?
2995 	 *
2996 	 * (this may occur even though this is a new chain: consider
2997 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2998 	 *  chains - the second one will be new, but L1 already has
2999 	 *  L2 added to its dependency list, due to the first chain.)
3000 	 */
3001 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3002 		if (entry->class == hlock_class(next)) {
3003 			if (distance == 1)
3004 				entry->distance = 1;
3005 			entry->dep |= calc_dep(prev, next);
3006 
3007 			/*
3008 			 * Also, update the reverse dependency in @next's
3009 			 * ->locks_before list.
3010 			 *
3011 			 *  Here we reuse @entry as the cursor, which is fine
3012 			 *  because we won't go to the next iteration of the
3013 			 *  outer loop:
3014 			 *
3015 			 *  For normal cases, we return in the inner loop.
3016 			 *
3017 			 *  If we fail to return, we have inconsistency, i.e.
3018 			 *  <prev>::locks_after contains <next> while
3019 			 *  <next>::locks_before doesn't contain <prev>. In
3020 			 *  that case, we return after the inner and indicate
3021 			 *  something is wrong.
3022 			 */
3023 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3024 				if (entry->class == hlock_class(prev)) {
3025 					if (distance == 1)
3026 						entry->distance = 1;
3027 					entry->dep |= calc_depb(prev, next);
3028 					return 1;
3029 				}
3030 			}
3031 
3032 			/* <prev> is not found in <next>::locks_before */
3033 			return 0;
3034 		}
3035 	}
3036 
3037 #ifdef CONFIG_LOCKDEP_SMALL
3038 	/*
3039 	 * Is the <prev> -> <next> link redundant?
3040 	 */
3041 	ret = check_redundant(prev, next);
3042 	if (bfs_error(ret))
3043 		return 0;
3044 	else if (ret == BFS_RMATCH)
3045 		return 2;
3046 #endif
3047 
3048 	if (!*trace) {
3049 		*trace = save_trace();
3050 		if (!*trace)
3051 			return 0;
3052 	}
3053 
3054 	/*
3055 	 * Ok, all validations passed, add the new lock
3056 	 * to the previous lock's dependency list:
3057 	 */
3058 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3059 			       &hlock_class(prev)->locks_after,
3060 			       next->acquire_ip, distance,
3061 			       calc_dep(prev, next),
3062 			       *trace);
3063 
3064 	if (!ret)
3065 		return 0;
3066 
3067 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3068 			       &hlock_class(next)->locks_before,
3069 			       next->acquire_ip, distance,
3070 			       calc_depb(prev, next),
3071 			       *trace);
3072 	if (!ret)
3073 		return 0;
3074 
3075 	return 2;
3076 }
3077 
3078 /*
3079  * Add the dependency to all directly-previous locks that are 'relevant'.
3080  * The ones that are relevant are (in increasing distance from curr):
3081  * all consecutive trylock entries and the final non-trylock entry - or
3082  * the end of this context's lock-chain - whichever comes first.
3083  */
3084 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3085 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3086 {
3087 	struct lock_trace *trace = NULL;
3088 	int depth = curr->lockdep_depth;
3089 	struct held_lock *hlock;
3090 
3091 	/*
3092 	 * Debugging checks.
3093 	 *
3094 	 * Depth must not be zero for a non-head lock:
3095 	 */
3096 	if (!depth)
3097 		goto out_bug;
3098 	/*
3099 	 * At least two relevant locks must exist for this
3100 	 * to be a head:
3101 	 */
3102 	if (curr->held_locks[depth].irq_context !=
3103 			curr->held_locks[depth-1].irq_context)
3104 		goto out_bug;
3105 
3106 	for (;;) {
3107 		u16 distance = curr->lockdep_depth - depth + 1;
3108 		hlock = curr->held_locks + depth - 1;
3109 
3110 		if (hlock->check) {
3111 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3112 			if (!ret)
3113 				return 0;
3114 
3115 			/*
3116 			 * Stop after the first non-trylock entry,
3117 			 * as non-trylock entries have added their
3118 			 * own direct dependencies already, so this
3119 			 * lock is connected to them indirectly:
3120 			 */
3121 			if (!hlock->trylock)
3122 				break;
3123 		}
3124 
3125 		depth--;
3126 		/*
3127 		 * End of lock-stack?
3128 		 */
3129 		if (!depth)
3130 			break;
3131 		/*
3132 		 * Stop the search if we cross into another context:
3133 		 */
3134 		if (curr->held_locks[depth].irq_context !=
3135 				curr->held_locks[depth-1].irq_context)
3136 			break;
3137 	}
3138 	return 1;
3139 out_bug:
3140 	if (!debug_locks_off_graph_unlock())
3141 		return 0;
3142 
3143 	/*
3144 	 * Clearly we all shouldn't be here, but since we made it we
3145 	 * can reliable say we messed up our state. See the above two
3146 	 * gotos for reasons why we could possibly end up here.
3147 	 */
3148 	WARN_ON(1);
3149 
3150 	return 0;
3151 }
3152 
3153 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3154 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3155 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3156 unsigned long nr_zapped_lock_chains;
3157 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3158 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3159 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3160 
3161 /*
3162  * The first 2 chain_hlocks entries in the chain block in the bucket
3163  * list contains the following meta data:
3164  *
3165  *   entry[0]:
3166  *     Bit    15 - always set to 1 (it is not a class index)
3167  *     Bits 0-14 - upper 15 bits of the next block index
3168  *   entry[1]    - lower 16 bits of next block index
3169  *
3170  * A next block index of all 1 bits means it is the end of the list.
3171  *
3172  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3173  * the chain block size:
3174  *
3175  *   entry[2] - upper 16 bits of the chain block size
3176  *   entry[3] - lower 16 bits of the chain block size
3177  */
3178 #define MAX_CHAIN_BUCKETS	16
3179 #define CHAIN_BLK_FLAG		(1U << 15)
3180 #define CHAIN_BLK_LIST_END	0xFFFFU
3181 
3182 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3183 
size_to_bucket(int size)3184 static inline int size_to_bucket(int size)
3185 {
3186 	if (size > MAX_CHAIN_BUCKETS)
3187 		return 0;
3188 
3189 	return size - 1;
3190 }
3191 
3192 /*
3193  * Iterate all the chain blocks in a bucket.
3194  */
3195 #define for_each_chain_block(bucket, prev, curr)		\
3196 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3197 	     (curr) >= 0;					\
3198 	     (prev) = (curr), (curr) = chain_block_next(curr))
3199 
3200 /*
3201  * next block or -1
3202  */
chain_block_next(int offset)3203 static inline int chain_block_next(int offset)
3204 {
3205 	int next = chain_hlocks[offset];
3206 
3207 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3208 
3209 	if (next == CHAIN_BLK_LIST_END)
3210 		return -1;
3211 
3212 	next &= ~CHAIN_BLK_FLAG;
3213 	next <<= 16;
3214 	next |= chain_hlocks[offset + 1];
3215 
3216 	return next;
3217 }
3218 
3219 /*
3220  * bucket-0 only
3221  */
chain_block_size(int offset)3222 static inline int chain_block_size(int offset)
3223 {
3224 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3225 }
3226 
init_chain_block(int offset,int next,int bucket,int size)3227 static inline void init_chain_block(int offset, int next, int bucket, int size)
3228 {
3229 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3230 	chain_hlocks[offset + 1] = (u16)next;
3231 
3232 	if (size && !bucket) {
3233 		chain_hlocks[offset + 2] = size >> 16;
3234 		chain_hlocks[offset + 3] = (u16)size;
3235 	}
3236 }
3237 
add_chain_block(int offset,int size)3238 static inline void add_chain_block(int offset, int size)
3239 {
3240 	int bucket = size_to_bucket(size);
3241 	int next = chain_block_buckets[bucket];
3242 	int prev, curr;
3243 
3244 	if (unlikely(size < 2)) {
3245 		/*
3246 		 * We can't store single entries on the freelist. Leak them.
3247 		 *
3248 		 * One possible way out would be to uniquely mark them, other
3249 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3250 		 * the block before it is re-added.
3251 		 */
3252 		if (size)
3253 			nr_lost_chain_hlocks++;
3254 		return;
3255 	}
3256 
3257 	nr_free_chain_hlocks += size;
3258 	if (!bucket) {
3259 		nr_large_chain_blocks++;
3260 
3261 		/*
3262 		 * Variable sized, sort large to small.
3263 		 */
3264 		for_each_chain_block(0, prev, curr) {
3265 			if (size >= chain_block_size(curr))
3266 				break;
3267 		}
3268 		init_chain_block(offset, curr, 0, size);
3269 		if (prev < 0)
3270 			chain_block_buckets[0] = offset;
3271 		else
3272 			init_chain_block(prev, offset, 0, 0);
3273 		return;
3274 	}
3275 	/*
3276 	 * Fixed size, add to head.
3277 	 */
3278 	init_chain_block(offset, next, bucket, size);
3279 	chain_block_buckets[bucket] = offset;
3280 }
3281 
3282 /*
3283  * Only the first block in the list can be deleted.
3284  *
3285  * For the variable size bucket[0], the first block (the largest one) is
3286  * returned, broken up and put back into the pool. So if a chain block of
3287  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3288  * queued up after the primordial chain block and never be used until the
3289  * hlock entries in the primordial chain block is almost used up. That
3290  * causes fragmentation and reduce allocation efficiency. That can be
3291  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3292  */
del_chain_block(int bucket,int size,int next)3293 static inline void del_chain_block(int bucket, int size, int next)
3294 {
3295 	nr_free_chain_hlocks -= size;
3296 	chain_block_buckets[bucket] = next;
3297 
3298 	if (!bucket)
3299 		nr_large_chain_blocks--;
3300 }
3301 
init_chain_block_buckets(void)3302 static void init_chain_block_buckets(void)
3303 {
3304 	int i;
3305 
3306 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3307 		chain_block_buckets[i] = -1;
3308 
3309 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3310 }
3311 
3312 /*
3313  * Return offset of a chain block of the right size or -1 if not found.
3314  *
3315  * Fairly simple worst-fit allocator with the addition of a number of size
3316  * specific free lists.
3317  */
alloc_chain_hlocks(int req)3318 static int alloc_chain_hlocks(int req)
3319 {
3320 	int bucket, curr, size;
3321 
3322 	/*
3323 	 * We rely on the MSB to act as an escape bit to denote freelist
3324 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3325 	 */
3326 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3327 
3328 	init_data_structures_once();
3329 
3330 	if (nr_free_chain_hlocks < req)
3331 		return -1;
3332 
3333 	/*
3334 	 * We require a minimum of 2 (u16) entries to encode a freelist
3335 	 * 'pointer'.
3336 	 */
3337 	req = max(req, 2);
3338 	bucket = size_to_bucket(req);
3339 	curr = chain_block_buckets[bucket];
3340 
3341 	if (bucket) {
3342 		if (curr >= 0) {
3343 			del_chain_block(bucket, req, chain_block_next(curr));
3344 			return curr;
3345 		}
3346 		/* Try bucket 0 */
3347 		curr = chain_block_buckets[0];
3348 	}
3349 
3350 	/*
3351 	 * The variable sized freelist is sorted by size; the first entry is
3352 	 * the largest. Use it if it fits.
3353 	 */
3354 	if (curr >= 0) {
3355 		size = chain_block_size(curr);
3356 		if (likely(size >= req)) {
3357 			del_chain_block(0, size, chain_block_next(curr));
3358 			add_chain_block(curr + req, size - req);
3359 			return curr;
3360 		}
3361 	}
3362 
3363 	/*
3364 	 * Last resort, split a block in a larger sized bucket.
3365 	 */
3366 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3367 		bucket = size_to_bucket(size);
3368 		curr = chain_block_buckets[bucket];
3369 		if (curr < 0)
3370 			continue;
3371 
3372 		del_chain_block(bucket, size, chain_block_next(curr));
3373 		add_chain_block(curr + req, size - req);
3374 		return curr;
3375 	}
3376 
3377 	return -1;
3378 }
3379 
free_chain_hlocks(int base,int size)3380 static inline void free_chain_hlocks(int base, int size)
3381 {
3382 	add_chain_block(base, max(size, 2));
3383 }
3384 
lock_chain_get_class(struct lock_chain * chain,int i)3385 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3386 {
3387 	u16 chain_hlock = chain_hlocks[chain->base + i];
3388 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3389 
3390 	return lock_classes + class_idx - 1;
3391 }
3392 
3393 /*
3394  * Returns the index of the first held_lock of the current chain
3395  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3396 static inline int get_first_held_lock(struct task_struct *curr,
3397 					struct held_lock *hlock)
3398 {
3399 	int i;
3400 	struct held_lock *hlock_curr;
3401 
3402 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3403 		hlock_curr = curr->held_locks + i;
3404 		if (hlock_curr->irq_context != hlock->irq_context)
3405 			break;
3406 
3407 	}
3408 
3409 	return ++i;
3410 }
3411 
3412 #ifdef CONFIG_DEBUG_LOCKDEP
3413 /*
3414  * Returns the next chain_key iteration
3415  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3416 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3417 {
3418 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3419 
3420 	printk(" hlock_id:%d -> chain_key:%016Lx",
3421 		(unsigned int)hlock_id,
3422 		(unsigned long long)new_chain_key);
3423 	return new_chain_key;
3424 }
3425 
3426 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3427 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3428 {
3429 	struct held_lock *hlock;
3430 	u64 chain_key = INITIAL_CHAIN_KEY;
3431 	int depth = curr->lockdep_depth;
3432 	int i = get_first_held_lock(curr, hlock_next);
3433 
3434 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3435 		hlock_next->irq_context);
3436 	for (; i < depth; i++) {
3437 		hlock = curr->held_locks + i;
3438 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3439 
3440 		print_lock(hlock);
3441 	}
3442 
3443 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3444 	print_lock(hlock_next);
3445 }
3446 
print_chain_keys_chain(struct lock_chain * chain)3447 static void print_chain_keys_chain(struct lock_chain *chain)
3448 {
3449 	int i;
3450 	u64 chain_key = INITIAL_CHAIN_KEY;
3451 	u16 hlock_id;
3452 
3453 	printk("depth: %u\n", chain->depth);
3454 	for (i = 0; i < chain->depth; i++) {
3455 		hlock_id = chain_hlocks[chain->base + i];
3456 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3457 
3458 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3459 		printk("\n");
3460 	}
3461 }
3462 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3463 static void print_collision(struct task_struct *curr,
3464 			struct held_lock *hlock_next,
3465 			struct lock_chain *chain)
3466 {
3467 	pr_warn("\n");
3468 	pr_warn("============================\n");
3469 	pr_warn("WARNING: chain_key collision\n");
3470 	print_kernel_ident();
3471 	pr_warn("----------------------------\n");
3472 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3473 	pr_warn("Hash chain already cached but the contents don't match!\n");
3474 
3475 	pr_warn("Held locks:");
3476 	print_chain_keys_held_locks(curr, hlock_next);
3477 
3478 	pr_warn("Locks in cached chain:");
3479 	print_chain_keys_chain(chain);
3480 
3481 	pr_warn("\nstack backtrace:\n");
3482 	dump_stack();
3483 }
3484 #endif
3485 
3486 /*
3487  * Checks whether the chain and the current held locks are consistent
3488  * in depth and also in content. If they are not it most likely means
3489  * that there was a collision during the calculation of the chain_key.
3490  * Returns: 0 not passed, 1 passed
3491  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3492 static int check_no_collision(struct task_struct *curr,
3493 			struct held_lock *hlock,
3494 			struct lock_chain *chain)
3495 {
3496 #ifdef CONFIG_DEBUG_LOCKDEP
3497 	int i, j, id;
3498 
3499 	i = get_first_held_lock(curr, hlock);
3500 
3501 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3502 		print_collision(curr, hlock, chain);
3503 		return 0;
3504 	}
3505 
3506 	for (j = 0; j < chain->depth - 1; j++, i++) {
3507 		id = hlock_id(&curr->held_locks[i]);
3508 
3509 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3510 			print_collision(curr, hlock, chain);
3511 			return 0;
3512 		}
3513 	}
3514 #endif
3515 	return 1;
3516 }
3517 
3518 /*
3519  * Given an index that is >= -1, return the index of the next lock chain.
3520  * Return -2 if there is no next lock chain.
3521  */
lockdep_next_lockchain(long i)3522 long lockdep_next_lockchain(long i)
3523 {
3524 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3525 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3526 }
3527 
lock_chain_count(void)3528 unsigned long lock_chain_count(void)
3529 {
3530 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3531 }
3532 
3533 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3534 static struct lock_chain *alloc_lock_chain(void)
3535 {
3536 	int idx = find_first_zero_bit(lock_chains_in_use,
3537 				      ARRAY_SIZE(lock_chains));
3538 
3539 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3540 		return NULL;
3541 	__set_bit(idx, lock_chains_in_use);
3542 	return lock_chains + idx;
3543 }
3544 
3545 /*
3546  * Adds a dependency chain into chain hashtable. And must be called with
3547  * graph_lock held.
3548  *
3549  * Return 0 if fail, and graph_lock is released.
3550  * Return 1 if succeed, with graph_lock held.
3551  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3552 static inline int add_chain_cache(struct task_struct *curr,
3553 				  struct held_lock *hlock,
3554 				  u64 chain_key)
3555 {
3556 	struct hlist_head *hash_head = chainhashentry(chain_key);
3557 	struct lock_chain *chain;
3558 	int i, j;
3559 
3560 	/*
3561 	 * The caller must hold the graph lock, ensure we've got IRQs
3562 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3563 	 * lockdep won't complain about its own locking errors.
3564 	 */
3565 	if (lockdep_assert_locked())
3566 		return 0;
3567 
3568 	chain = alloc_lock_chain();
3569 	if (!chain) {
3570 		if (!debug_locks_off_graph_unlock())
3571 			return 0;
3572 
3573 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3574 		dump_stack();
3575 		return 0;
3576 	}
3577 	chain->chain_key = chain_key;
3578 	chain->irq_context = hlock->irq_context;
3579 	i = get_first_held_lock(curr, hlock);
3580 	chain->depth = curr->lockdep_depth + 1 - i;
3581 
3582 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3583 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3584 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3585 
3586 	j = alloc_chain_hlocks(chain->depth);
3587 	if (j < 0) {
3588 		if (!debug_locks_off_graph_unlock())
3589 			return 0;
3590 
3591 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3592 		dump_stack();
3593 		return 0;
3594 	}
3595 
3596 	chain->base = j;
3597 	for (j = 0; j < chain->depth - 1; j++, i++) {
3598 		int lock_id = hlock_id(curr->held_locks + i);
3599 
3600 		chain_hlocks[chain->base + j] = lock_id;
3601 	}
3602 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3603 	hlist_add_head_rcu(&chain->entry, hash_head);
3604 	debug_atomic_inc(chain_lookup_misses);
3605 	inc_chains(chain->irq_context);
3606 
3607 	return 1;
3608 }
3609 
3610 /*
3611  * Look up a dependency chain. Must be called with either the graph lock or
3612  * the RCU read lock held.
3613  */
lookup_chain_cache(u64 chain_key)3614 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3615 {
3616 	struct hlist_head *hash_head = chainhashentry(chain_key);
3617 	struct lock_chain *chain;
3618 
3619 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3620 		if (READ_ONCE(chain->chain_key) == chain_key) {
3621 			debug_atomic_inc(chain_lookup_hits);
3622 			return chain;
3623 		}
3624 	}
3625 	return NULL;
3626 }
3627 
3628 /*
3629  * If the key is not present yet in dependency chain cache then
3630  * add it and return 1 - in this case the new dependency chain is
3631  * validated. If the key is already hashed, return 0.
3632  * (On return with 1 graph_lock is held.)
3633  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3634 static inline int lookup_chain_cache_add(struct task_struct *curr,
3635 					 struct held_lock *hlock,
3636 					 u64 chain_key)
3637 {
3638 	struct lock_class *class = hlock_class(hlock);
3639 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3640 
3641 	if (chain) {
3642 cache_hit:
3643 		if (!check_no_collision(curr, hlock, chain))
3644 			return 0;
3645 
3646 		if (very_verbose(class)) {
3647 			printk("\nhash chain already cached, key: "
3648 					"%016Lx tail class: [%px] %s\n",
3649 					(unsigned long long)chain_key,
3650 					class->key, class->name);
3651 		}
3652 
3653 		return 0;
3654 	}
3655 
3656 	if (very_verbose(class)) {
3657 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3658 			(unsigned long long)chain_key, class->key, class->name);
3659 	}
3660 
3661 	if (!graph_lock())
3662 		return 0;
3663 
3664 	/*
3665 	 * We have to walk the chain again locked - to avoid duplicates:
3666 	 */
3667 	chain = lookup_chain_cache(chain_key);
3668 	if (chain) {
3669 		graph_unlock();
3670 		goto cache_hit;
3671 	}
3672 
3673 	if (!add_chain_cache(curr, hlock, chain_key))
3674 		return 0;
3675 
3676 	return 1;
3677 }
3678 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3679 static int validate_chain(struct task_struct *curr,
3680 			  struct held_lock *hlock,
3681 			  int chain_head, u64 chain_key)
3682 {
3683 	/*
3684 	 * Trylock needs to maintain the stack of held locks, but it
3685 	 * does not add new dependencies, because trylock can be done
3686 	 * in any order.
3687 	 *
3688 	 * We look up the chain_key and do the O(N^2) check and update of
3689 	 * the dependencies only if this is a new dependency chain.
3690 	 * (If lookup_chain_cache_add() return with 1 it acquires
3691 	 * graph_lock for us)
3692 	 */
3693 	if (!hlock->trylock && hlock->check &&
3694 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3695 		/*
3696 		 * Check whether last held lock:
3697 		 *
3698 		 * - is irq-safe, if this lock is irq-unsafe
3699 		 * - is softirq-safe, if this lock is hardirq-unsafe
3700 		 *
3701 		 * And check whether the new lock's dependency graph
3702 		 * could lead back to the previous lock:
3703 		 *
3704 		 * - within the current held-lock stack
3705 		 * - across our accumulated lock dependency records
3706 		 *
3707 		 * any of these scenarios could lead to a deadlock.
3708 		 */
3709 		/*
3710 		 * The simple case: does the current hold the same lock
3711 		 * already?
3712 		 */
3713 		int ret = check_deadlock(curr, hlock);
3714 
3715 		if (!ret)
3716 			return 0;
3717 		/*
3718 		 * Add dependency only if this lock is not the head
3719 		 * of the chain, and if the new lock introduces no more
3720 		 * lock dependency (because we already hold a lock with the
3721 		 * same lock class) nor deadlock (because the nest_lock
3722 		 * serializes nesting locks), see the comments for
3723 		 * check_deadlock().
3724 		 */
3725 		if (!chain_head && ret != 2) {
3726 			if (!check_prevs_add(curr, hlock))
3727 				return 0;
3728 		}
3729 
3730 		graph_unlock();
3731 	} else {
3732 		/* after lookup_chain_cache_add(): */
3733 		if (unlikely(!debug_locks))
3734 			return 0;
3735 	}
3736 
3737 	return 1;
3738 }
3739 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3740 static inline int validate_chain(struct task_struct *curr,
3741 				 struct held_lock *hlock,
3742 				 int chain_head, u64 chain_key)
3743 {
3744 	return 1;
3745 }
3746 
init_chain_block_buckets(void)3747 static void init_chain_block_buckets(void)	{ }
3748 #endif /* CONFIG_PROVE_LOCKING */
3749 
3750 /*
3751  * We are building curr_chain_key incrementally, so double-check
3752  * it from scratch, to make sure that it's done correctly:
3753  */
check_chain_key(struct task_struct * curr)3754 static void check_chain_key(struct task_struct *curr)
3755 {
3756 #ifdef CONFIG_DEBUG_LOCKDEP
3757 	struct held_lock *hlock, *prev_hlock = NULL;
3758 	unsigned int i;
3759 	u64 chain_key = INITIAL_CHAIN_KEY;
3760 
3761 	for (i = 0; i < curr->lockdep_depth; i++) {
3762 		hlock = curr->held_locks + i;
3763 		if (chain_key != hlock->prev_chain_key) {
3764 			debug_locks_off();
3765 			/*
3766 			 * We got mighty confused, our chain keys don't match
3767 			 * with what we expect, someone trample on our task state?
3768 			 */
3769 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3770 				curr->lockdep_depth, i,
3771 				(unsigned long long)chain_key,
3772 				(unsigned long long)hlock->prev_chain_key);
3773 			return;
3774 		}
3775 
3776 		/*
3777 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3778 		 * it registered lock class index?
3779 		 */
3780 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3781 			return;
3782 
3783 		if (prev_hlock && (prev_hlock->irq_context !=
3784 							hlock->irq_context))
3785 			chain_key = INITIAL_CHAIN_KEY;
3786 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3787 		prev_hlock = hlock;
3788 	}
3789 	if (chain_key != curr->curr_chain_key) {
3790 		debug_locks_off();
3791 		/*
3792 		 * More smoking hash instead of calculating it, damn see these
3793 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3794 		 */
3795 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3796 			curr->lockdep_depth, i,
3797 			(unsigned long long)chain_key,
3798 			(unsigned long long)curr->curr_chain_key);
3799 	}
3800 #endif
3801 }
3802 
3803 #ifdef CONFIG_PROVE_LOCKING
3804 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3805 		     enum lock_usage_bit new_bit);
3806 
print_usage_bug_scenario(struct held_lock * lock)3807 static void print_usage_bug_scenario(struct held_lock *lock)
3808 {
3809 	struct lock_class *class = hlock_class(lock);
3810 
3811 	printk(" Possible unsafe locking scenario:\n\n");
3812 	printk("       CPU0\n");
3813 	printk("       ----\n");
3814 	printk("  lock(");
3815 	__print_lock_name(class);
3816 	printk(KERN_CONT ");\n");
3817 	printk("  <Interrupt>\n");
3818 	printk("    lock(");
3819 	__print_lock_name(class);
3820 	printk(KERN_CONT ");\n");
3821 	printk("\n *** DEADLOCK ***\n\n");
3822 }
3823 
3824 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3825 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3826 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3827 {
3828 	if (!debug_locks_off() || debug_locks_silent)
3829 		return;
3830 
3831 	pr_warn("\n");
3832 	pr_warn("================================\n");
3833 	pr_warn("WARNING: inconsistent lock state\n");
3834 	print_kernel_ident();
3835 	pr_warn("--------------------------------\n");
3836 
3837 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3838 		usage_str[prev_bit], usage_str[new_bit]);
3839 
3840 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3841 		curr->comm, task_pid_nr(curr),
3842 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3843 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3844 		lockdep_hardirqs_enabled(),
3845 		lockdep_softirqs_enabled(curr));
3846 	print_lock(this);
3847 
3848 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3849 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3850 
3851 	print_irqtrace_events(curr);
3852 	pr_warn("\nother info that might help us debug this:\n");
3853 	print_usage_bug_scenario(this);
3854 
3855 	lockdep_print_held_locks(curr);
3856 
3857 	pr_warn("\nstack backtrace:\n");
3858 	dump_stack();
3859 }
3860 
3861 /*
3862  * Print out an error if an invalid bit is set:
3863  */
3864 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3865 valid_state(struct task_struct *curr, struct held_lock *this,
3866 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3867 {
3868 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3869 		graph_unlock();
3870 		print_usage_bug(curr, this, bad_bit, new_bit);
3871 		return 0;
3872 	}
3873 	return 1;
3874 }
3875 
3876 
3877 /*
3878  * print irq inversion bug:
3879  */
3880 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3881 print_irq_inversion_bug(struct task_struct *curr,
3882 			struct lock_list *root, struct lock_list *other,
3883 			struct held_lock *this, int forwards,
3884 			const char *irqclass)
3885 {
3886 	struct lock_list *entry = other;
3887 	struct lock_list *middle = NULL;
3888 	int depth;
3889 
3890 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3891 		return;
3892 
3893 	pr_warn("\n");
3894 	pr_warn("========================================================\n");
3895 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3896 	print_kernel_ident();
3897 	pr_warn("--------------------------------------------------------\n");
3898 	pr_warn("%s/%d just changed the state of lock:\n",
3899 		curr->comm, task_pid_nr(curr));
3900 	print_lock(this);
3901 	if (forwards)
3902 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3903 	else
3904 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3905 	print_lock_name(other->class);
3906 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3907 
3908 	pr_warn("\nother info that might help us debug this:\n");
3909 
3910 	/* Find a middle lock (if one exists) */
3911 	depth = get_lock_depth(other);
3912 	do {
3913 		if (depth == 0 && (entry != root)) {
3914 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3915 			break;
3916 		}
3917 		middle = entry;
3918 		entry = get_lock_parent(entry);
3919 		depth--;
3920 	} while (entry && entry != root && (depth >= 0));
3921 	if (forwards)
3922 		print_irq_lock_scenario(root, other,
3923 			middle ? middle->class : root->class, other->class);
3924 	else
3925 		print_irq_lock_scenario(other, root,
3926 			middle ? middle->class : other->class, root->class);
3927 
3928 	lockdep_print_held_locks(curr);
3929 
3930 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3931 	root->trace = save_trace();
3932 	if (!root->trace)
3933 		return;
3934 	print_shortest_lock_dependencies(other, root);
3935 
3936 	pr_warn("\nstack backtrace:\n");
3937 	dump_stack();
3938 }
3939 
3940 /*
3941  * Prove that in the forwards-direction subgraph starting at <this>
3942  * there is no lock matching <mask>:
3943  */
3944 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3945 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3946 		     enum lock_usage_bit bit)
3947 {
3948 	enum bfs_result ret;
3949 	struct lock_list root;
3950 	struct lock_list *target_entry;
3951 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3952 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3953 
3954 	bfs_init_root(&root, this);
3955 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3956 	if (bfs_error(ret)) {
3957 		print_bfs_bug(ret);
3958 		return 0;
3959 	}
3960 	if (ret == BFS_RNOMATCH)
3961 		return 1;
3962 
3963 	/* Check whether write or read usage is the match */
3964 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3965 		print_irq_inversion_bug(curr, &root, target_entry,
3966 					this, 1, state_name(bit));
3967 	} else {
3968 		print_irq_inversion_bug(curr, &root, target_entry,
3969 					this, 1, state_name(read_bit));
3970 	}
3971 
3972 	return 0;
3973 }
3974 
3975 /*
3976  * Prove that in the backwards-direction subgraph starting at <this>
3977  * there is no lock matching <mask>:
3978  */
3979 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3980 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3981 		      enum lock_usage_bit bit)
3982 {
3983 	enum bfs_result ret;
3984 	struct lock_list root;
3985 	struct lock_list *target_entry;
3986 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3987 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3988 
3989 	bfs_init_rootb(&root, this);
3990 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3991 	if (bfs_error(ret)) {
3992 		print_bfs_bug(ret);
3993 		return 0;
3994 	}
3995 	if (ret == BFS_RNOMATCH)
3996 		return 1;
3997 
3998 	/* Check whether write or read usage is the match */
3999 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4000 		print_irq_inversion_bug(curr, &root, target_entry,
4001 					this, 0, state_name(bit));
4002 	} else {
4003 		print_irq_inversion_bug(curr, &root, target_entry,
4004 					this, 0, state_name(read_bit));
4005 	}
4006 
4007 	return 0;
4008 }
4009 
print_irqtrace_events(struct task_struct * curr)4010 void print_irqtrace_events(struct task_struct *curr)
4011 {
4012 	const struct irqtrace_events *trace = &curr->irqtrace;
4013 
4014 	printk("irq event stamp: %u\n", trace->irq_events);
4015 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4016 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4017 		(void *)trace->hardirq_enable_ip);
4018 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4019 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4020 		(void *)trace->hardirq_disable_ip);
4021 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4022 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4023 		(void *)trace->softirq_enable_ip);
4024 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4025 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4026 		(void *)trace->softirq_disable_ip);
4027 }
4028 
HARDIRQ_verbose(struct lock_class * class)4029 static int HARDIRQ_verbose(struct lock_class *class)
4030 {
4031 #if HARDIRQ_VERBOSE
4032 	return class_filter(class);
4033 #endif
4034 	return 0;
4035 }
4036 
SOFTIRQ_verbose(struct lock_class * class)4037 static int SOFTIRQ_verbose(struct lock_class *class)
4038 {
4039 #if SOFTIRQ_VERBOSE
4040 	return class_filter(class);
4041 #endif
4042 	return 0;
4043 }
4044 
4045 static int (*state_verbose_f[])(struct lock_class *class) = {
4046 #define LOCKDEP_STATE(__STATE) \
4047 	__STATE##_verbose,
4048 #include "lockdep_states.h"
4049 #undef LOCKDEP_STATE
4050 };
4051 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4052 static inline int state_verbose(enum lock_usage_bit bit,
4053 				struct lock_class *class)
4054 {
4055 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4056 }
4057 
4058 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4059 			     enum lock_usage_bit bit, const char *name);
4060 
4061 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4062 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4063 		enum lock_usage_bit new_bit)
4064 {
4065 	int excl_bit = exclusive_bit(new_bit);
4066 	int read = new_bit & LOCK_USAGE_READ_MASK;
4067 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4068 
4069 	/*
4070 	 * Validate that this particular lock does not have conflicting
4071 	 * usage states.
4072 	 */
4073 	if (!valid_state(curr, this, new_bit, excl_bit))
4074 		return 0;
4075 
4076 	/*
4077 	 * Check for read in write conflicts
4078 	 */
4079 	if (!read && !valid_state(curr, this, new_bit,
4080 				  excl_bit + LOCK_USAGE_READ_MASK))
4081 		return 0;
4082 
4083 
4084 	/*
4085 	 * Validate that the lock dependencies don't have conflicting usage
4086 	 * states.
4087 	 */
4088 	if (dir) {
4089 		/*
4090 		 * mark ENABLED has to look backwards -- to ensure no dependee
4091 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4092 		 */
4093 		if (!check_usage_backwards(curr, this, excl_bit))
4094 			return 0;
4095 	} else {
4096 		/*
4097 		 * mark USED_IN has to look forwards -- to ensure no dependency
4098 		 * has ENABLED state, which would allow recursion deadlocks.
4099 		 */
4100 		if (!check_usage_forwards(curr, this, excl_bit))
4101 			return 0;
4102 	}
4103 
4104 	if (state_verbose(new_bit, hlock_class(this)))
4105 		return 2;
4106 
4107 	return 1;
4108 }
4109 
4110 /*
4111  * Mark all held locks with a usage bit:
4112  */
4113 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4114 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4115 {
4116 	struct held_lock *hlock;
4117 	int i;
4118 
4119 	for (i = 0; i < curr->lockdep_depth; i++) {
4120 		enum lock_usage_bit hlock_bit = base_bit;
4121 		hlock = curr->held_locks + i;
4122 
4123 		if (hlock->read)
4124 			hlock_bit += LOCK_USAGE_READ_MASK;
4125 
4126 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4127 
4128 		if (!hlock->check)
4129 			continue;
4130 
4131 		if (!mark_lock(curr, hlock, hlock_bit))
4132 			return 0;
4133 	}
4134 
4135 	return 1;
4136 }
4137 
4138 /*
4139  * Hardirqs will be enabled:
4140  */
__trace_hardirqs_on_caller(void)4141 static void __trace_hardirqs_on_caller(void)
4142 {
4143 	struct task_struct *curr = current;
4144 
4145 	/*
4146 	 * We are going to turn hardirqs on, so set the
4147 	 * usage bit for all held locks:
4148 	 */
4149 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4150 		return;
4151 	/*
4152 	 * If we have softirqs enabled, then set the usage
4153 	 * bit for all held locks. (disabled hardirqs prevented
4154 	 * this bit from being set before)
4155 	 */
4156 	if (curr->softirqs_enabled)
4157 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4158 }
4159 
4160 /**
4161  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4162  * @ip:		Caller address
4163  *
4164  * Invoked before a possible transition to RCU idle from exit to user or
4165  * guest mode. This ensures that all RCU operations are done before RCU
4166  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4167  * invoked to set the final state.
4168  */
lockdep_hardirqs_on_prepare(unsigned long ip)4169 void lockdep_hardirqs_on_prepare(unsigned long ip)
4170 {
4171 	if (unlikely(!debug_locks))
4172 		return;
4173 
4174 	/*
4175 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4176 	 */
4177 	if (unlikely(in_nmi()))
4178 		return;
4179 
4180 	if (unlikely(this_cpu_read(lockdep_recursion)))
4181 		return;
4182 
4183 	if (unlikely(lockdep_hardirqs_enabled())) {
4184 		/*
4185 		 * Neither irq nor preemption are disabled here
4186 		 * so this is racy by nature but losing one hit
4187 		 * in a stat is not a big deal.
4188 		 */
4189 		__debug_atomic_inc(redundant_hardirqs_on);
4190 		return;
4191 	}
4192 
4193 	/*
4194 	 * We're enabling irqs and according to our state above irqs weren't
4195 	 * already enabled, yet we find the hardware thinks they are in fact
4196 	 * enabled.. someone messed up their IRQ state tracing.
4197 	 */
4198 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4199 		return;
4200 
4201 	/*
4202 	 * See the fine text that goes along with this variable definition.
4203 	 */
4204 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4205 		return;
4206 
4207 	/*
4208 	 * Can't allow enabling interrupts while in an interrupt handler,
4209 	 * that's general bad form and such. Recursion, limited stack etc..
4210 	 */
4211 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4212 		return;
4213 
4214 	current->hardirq_chain_key = current->curr_chain_key;
4215 
4216 	lockdep_recursion_inc();
4217 	__trace_hardirqs_on_caller();
4218 	lockdep_recursion_finish();
4219 }
4220 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4221 
lockdep_hardirqs_on(unsigned long ip)4222 void noinstr lockdep_hardirqs_on(unsigned long ip)
4223 {
4224 	struct irqtrace_events *trace = &current->irqtrace;
4225 
4226 	if (unlikely(!debug_locks))
4227 		return;
4228 
4229 	/*
4230 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4231 	 * tracking state and hardware state are out of sync.
4232 	 *
4233 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4234 	 * and not rely on hardware state like normal interrupts.
4235 	 */
4236 	if (unlikely(in_nmi())) {
4237 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4238 			return;
4239 
4240 		/*
4241 		 * Skip:
4242 		 *  - recursion check, because NMI can hit lockdep;
4243 		 *  - hardware state check, because above;
4244 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4245 		 */
4246 		goto skip_checks;
4247 	}
4248 
4249 	if (unlikely(this_cpu_read(lockdep_recursion)))
4250 		return;
4251 
4252 	if (lockdep_hardirqs_enabled()) {
4253 		/*
4254 		 * Neither irq nor preemption are disabled here
4255 		 * so this is racy by nature but losing one hit
4256 		 * in a stat is not a big deal.
4257 		 */
4258 		__debug_atomic_inc(redundant_hardirqs_on);
4259 		return;
4260 	}
4261 
4262 	/*
4263 	 * We're enabling irqs and according to our state above irqs weren't
4264 	 * already enabled, yet we find the hardware thinks they are in fact
4265 	 * enabled.. someone messed up their IRQ state tracing.
4266 	 */
4267 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4268 		return;
4269 
4270 	/*
4271 	 * Ensure the lock stack remained unchanged between
4272 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4273 	 */
4274 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4275 			    current->curr_chain_key);
4276 
4277 skip_checks:
4278 	/* we'll do an OFF -> ON transition: */
4279 	__this_cpu_write(hardirqs_enabled, 1);
4280 	trace->hardirq_enable_ip = ip;
4281 	trace->hardirq_enable_event = ++trace->irq_events;
4282 	debug_atomic_inc(hardirqs_on_events);
4283 }
4284 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4285 
4286 /*
4287  * Hardirqs were disabled:
4288  */
lockdep_hardirqs_off(unsigned long ip)4289 void noinstr lockdep_hardirqs_off(unsigned long ip)
4290 {
4291 	if (unlikely(!debug_locks))
4292 		return;
4293 
4294 	/*
4295 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4296 	 * they will restore the software state. This ensures the software
4297 	 * state is consistent inside NMIs as well.
4298 	 */
4299 	if (in_nmi()) {
4300 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301 			return;
4302 	} else if (__this_cpu_read(lockdep_recursion))
4303 		return;
4304 
4305 	/*
4306 	 * So we're supposed to get called after you mask local IRQs, but for
4307 	 * some reason the hardware doesn't quite think you did a proper job.
4308 	 */
4309 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4310 		return;
4311 
4312 	if (lockdep_hardirqs_enabled()) {
4313 		struct irqtrace_events *trace = &current->irqtrace;
4314 
4315 		/*
4316 		 * We have done an ON -> OFF transition:
4317 		 */
4318 		__this_cpu_write(hardirqs_enabled, 0);
4319 		trace->hardirq_disable_ip = ip;
4320 		trace->hardirq_disable_event = ++trace->irq_events;
4321 		debug_atomic_inc(hardirqs_off_events);
4322 	} else {
4323 		debug_atomic_inc(redundant_hardirqs_off);
4324 	}
4325 }
4326 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4327 
4328 /*
4329  * Softirqs will be enabled:
4330  */
lockdep_softirqs_on(unsigned long ip)4331 void lockdep_softirqs_on(unsigned long ip)
4332 {
4333 	struct irqtrace_events *trace = &current->irqtrace;
4334 
4335 	if (unlikely(!lockdep_enabled()))
4336 		return;
4337 
4338 	/*
4339 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4340 	 * funny state and nesting things.
4341 	 */
4342 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4343 		return;
4344 
4345 	if (current->softirqs_enabled) {
4346 		debug_atomic_inc(redundant_softirqs_on);
4347 		return;
4348 	}
4349 
4350 	lockdep_recursion_inc();
4351 	/*
4352 	 * We'll do an OFF -> ON transition:
4353 	 */
4354 	current->softirqs_enabled = 1;
4355 	trace->softirq_enable_ip = ip;
4356 	trace->softirq_enable_event = ++trace->irq_events;
4357 	debug_atomic_inc(softirqs_on_events);
4358 	/*
4359 	 * We are going to turn softirqs on, so set the
4360 	 * usage bit for all held locks, if hardirqs are
4361 	 * enabled too:
4362 	 */
4363 	if (lockdep_hardirqs_enabled())
4364 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4365 	lockdep_recursion_finish();
4366 }
4367 
4368 /*
4369  * Softirqs were disabled:
4370  */
lockdep_softirqs_off(unsigned long ip)4371 void lockdep_softirqs_off(unsigned long ip)
4372 {
4373 	if (unlikely(!lockdep_enabled()))
4374 		return;
4375 
4376 	/*
4377 	 * We fancy IRQs being disabled here, see softirq.c
4378 	 */
4379 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4380 		return;
4381 
4382 	if (current->softirqs_enabled) {
4383 		struct irqtrace_events *trace = &current->irqtrace;
4384 
4385 		/*
4386 		 * We have done an ON -> OFF transition:
4387 		 */
4388 		current->softirqs_enabled = 0;
4389 		trace->softirq_disable_ip = ip;
4390 		trace->softirq_disable_event = ++trace->irq_events;
4391 		debug_atomic_inc(softirqs_off_events);
4392 		/*
4393 		 * Whoops, we wanted softirqs off, so why aren't they?
4394 		 */
4395 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4396 	} else
4397 		debug_atomic_inc(redundant_softirqs_off);
4398 }
4399 
4400 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4401 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4402 {
4403 	if (!check)
4404 		goto lock_used;
4405 
4406 	/*
4407 	 * If non-trylock use in a hardirq or softirq context, then
4408 	 * mark the lock as used in these contexts:
4409 	 */
4410 	if (!hlock->trylock) {
4411 		if (hlock->read) {
4412 			if (lockdep_hardirq_context())
4413 				if (!mark_lock(curr, hlock,
4414 						LOCK_USED_IN_HARDIRQ_READ))
4415 					return 0;
4416 			if (curr->softirq_context)
4417 				if (!mark_lock(curr, hlock,
4418 						LOCK_USED_IN_SOFTIRQ_READ))
4419 					return 0;
4420 		} else {
4421 			if (lockdep_hardirq_context())
4422 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4423 					return 0;
4424 			if (curr->softirq_context)
4425 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4426 					return 0;
4427 		}
4428 	}
4429 	if (!hlock->hardirqs_off) {
4430 		if (hlock->read) {
4431 			if (!mark_lock(curr, hlock,
4432 					LOCK_ENABLED_HARDIRQ_READ))
4433 				return 0;
4434 			if (curr->softirqs_enabled)
4435 				if (!mark_lock(curr, hlock,
4436 						LOCK_ENABLED_SOFTIRQ_READ))
4437 					return 0;
4438 		} else {
4439 			if (!mark_lock(curr, hlock,
4440 					LOCK_ENABLED_HARDIRQ))
4441 				return 0;
4442 			if (curr->softirqs_enabled)
4443 				if (!mark_lock(curr, hlock,
4444 						LOCK_ENABLED_SOFTIRQ))
4445 					return 0;
4446 		}
4447 	}
4448 
4449 lock_used:
4450 	/* mark it as used: */
4451 	if (!mark_lock(curr, hlock, LOCK_USED))
4452 		return 0;
4453 
4454 	return 1;
4455 }
4456 
task_irq_context(struct task_struct * task)4457 static inline unsigned int task_irq_context(struct task_struct *task)
4458 {
4459 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4460 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4461 }
4462 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4463 static int separate_irq_context(struct task_struct *curr,
4464 		struct held_lock *hlock)
4465 {
4466 	unsigned int depth = curr->lockdep_depth;
4467 
4468 	/*
4469 	 * Keep track of points where we cross into an interrupt context:
4470 	 */
4471 	if (depth) {
4472 		struct held_lock *prev_hlock;
4473 
4474 		prev_hlock = curr->held_locks + depth-1;
4475 		/*
4476 		 * If we cross into another context, reset the
4477 		 * hash key (this also prevents the checking and the
4478 		 * adding of the dependency to 'prev'):
4479 		 */
4480 		if (prev_hlock->irq_context != hlock->irq_context)
4481 			return 1;
4482 	}
4483 	return 0;
4484 }
4485 
4486 /*
4487  * Mark a lock with a usage bit, and validate the state transition:
4488  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4489 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4490 			     enum lock_usage_bit new_bit)
4491 {
4492 	unsigned int new_mask, ret = 1;
4493 
4494 	if (new_bit >= LOCK_USAGE_STATES) {
4495 		DEBUG_LOCKS_WARN_ON(1);
4496 		return 0;
4497 	}
4498 
4499 	if (new_bit == LOCK_USED && this->read)
4500 		new_bit = LOCK_USED_READ;
4501 
4502 	new_mask = 1 << new_bit;
4503 
4504 	/*
4505 	 * If already set then do not dirty the cacheline,
4506 	 * nor do any checks:
4507 	 */
4508 	if (likely(hlock_class(this)->usage_mask & new_mask))
4509 		return 1;
4510 
4511 	if (!graph_lock())
4512 		return 0;
4513 	/*
4514 	 * Make sure we didn't race:
4515 	 */
4516 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4517 		goto unlock;
4518 
4519 	if (!hlock_class(this)->usage_mask)
4520 		debug_atomic_dec(nr_unused_locks);
4521 
4522 	hlock_class(this)->usage_mask |= new_mask;
4523 
4524 	if (new_bit < LOCK_TRACE_STATES) {
4525 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4526 			return 0;
4527 	}
4528 
4529 	if (new_bit < LOCK_USED) {
4530 		ret = mark_lock_irq(curr, this, new_bit);
4531 		if (!ret)
4532 			return 0;
4533 	}
4534 
4535 unlock:
4536 	graph_unlock();
4537 
4538 	/*
4539 	 * We must printk outside of the graph_lock:
4540 	 */
4541 	if (ret == 2) {
4542 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4543 		print_lock(this);
4544 		print_irqtrace_events(curr);
4545 		dump_stack();
4546 	}
4547 
4548 	return ret;
4549 }
4550 
task_wait_context(struct task_struct * curr)4551 static inline short task_wait_context(struct task_struct *curr)
4552 {
4553 	/*
4554 	 * Set appropriate wait type for the context; for IRQs we have to take
4555 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4556 	 */
4557 	if (lockdep_hardirq_context()) {
4558 		/*
4559 		 * Check if force_irqthreads will run us threaded.
4560 		 */
4561 		if (curr->hardirq_threaded || curr->irq_config)
4562 			return LD_WAIT_CONFIG;
4563 
4564 		return LD_WAIT_SPIN;
4565 	} else if (curr->softirq_context) {
4566 		/*
4567 		 * Softirqs are always threaded.
4568 		 */
4569 		return LD_WAIT_CONFIG;
4570 	}
4571 
4572 	return LD_WAIT_MAX;
4573 }
4574 
4575 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4576 print_lock_invalid_wait_context(struct task_struct *curr,
4577 				struct held_lock *hlock)
4578 {
4579 	short curr_inner;
4580 
4581 	if (!debug_locks_off())
4582 		return 0;
4583 	if (debug_locks_silent)
4584 		return 0;
4585 
4586 	pr_warn("\n");
4587 	pr_warn("=============================\n");
4588 	pr_warn("[ BUG: Invalid wait context ]\n");
4589 	print_kernel_ident();
4590 	pr_warn("-----------------------------\n");
4591 
4592 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4593 	print_lock(hlock);
4594 
4595 	pr_warn("other info that might help us debug this:\n");
4596 
4597 	curr_inner = task_wait_context(curr);
4598 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4599 
4600 	lockdep_print_held_locks(curr);
4601 
4602 	pr_warn("stack backtrace:\n");
4603 	dump_stack();
4604 
4605 	return 0;
4606 }
4607 
4608 /*
4609  * Verify the wait_type context.
4610  *
4611  * This check validates we takes locks in the right wait-type order; that is it
4612  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4613  * acquire spinlocks inside raw_spinlocks and the sort.
4614  *
4615  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4616  * can be taken from (pretty much) any context but also has constraints.
4617  * However when taken in a stricter environment the RCU lock does not loosen
4618  * the constraints.
4619  *
4620  * Therefore we must look for the strictest environment in the lock stack and
4621  * compare that to the lock we're trying to acquire.
4622  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4623 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4624 {
4625 	u8 next_inner = hlock_class(next)->wait_type_inner;
4626 	u8 next_outer = hlock_class(next)->wait_type_outer;
4627 	u8 curr_inner;
4628 	int depth;
4629 
4630 	if (!next_inner || next->trylock)
4631 		return 0;
4632 
4633 	if (!next_outer)
4634 		next_outer = next_inner;
4635 
4636 	/*
4637 	 * Find start of current irq_context..
4638 	 */
4639 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4640 		struct held_lock *prev = curr->held_locks + depth;
4641 		if (prev->irq_context != next->irq_context)
4642 			break;
4643 	}
4644 	depth++;
4645 
4646 	curr_inner = task_wait_context(curr);
4647 
4648 	for (; depth < curr->lockdep_depth; depth++) {
4649 		struct held_lock *prev = curr->held_locks + depth;
4650 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4651 
4652 		if (prev_inner) {
4653 			/*
4654 			 * We can have a bigger inner than a previous one
4655 			 * when outer is smaller than inner, as with RCU.
4656 			 *
4657 			 * Also due to trylocks.
4658 			 */
4659 			curr_inner = min(curr_inner, prev_inner);
4660 		}
4661 	}
4662 
4663 	if (next_outer > curr_inner)
4664 		return print_lock_invalid_wait_context(curr, next);
4665 
4666 	return 0;
4667 }
4668 
4669 #else /* CONFIG_PROVE_LOCKING */
4670 
4671 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4672 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4673 {
4674 	return 1;
4675 }
4676 
task_irq_context(struct task_struct * task)4677 static inline unsigned int task_irq_context(struct task_struct *task)
4678 {
4679 	return 0;
4680 }
4681 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4682 static inline int separate_irq_context(struct task_struct *curr,
4683 		struct held_lock *hlock)
4684 {
4685 	return 0;
4686 }
4687 
check_wait_context(struct task_struct * curr,struct held_lock * next)4688 static inline int check_wait_context(struct task_struct *curr,
4689 				     struct held_lock *next)
4690 {
4691 	return 0;
4692 }
4693 
4694 #endif /* CONFIG_PROVE_LOCKING */
4695 
4696 /*
4697  * Initialize a lock instance's lock-class mapping info:
4698  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4699 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4700 			    struct lock_class_key *key, int subclass,
4701 			    u8 inner, u8 outer, u8 lock_type)
4702 {
4703 	int i;
4704 
4705 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4706 		lock->class_cache[i] = NULL;
4707 
4708 #ifdef CONFIG_LOCK_STAT
4709 	lock->cpu = raw_smp_processor_id();
4710 #endif
4711 
4712 	/*
4713 	 * Can't be having no nameless bastards around this place!
4714 	 */
4715 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4716 		lock->name = "NULL";
4717 		return;
4718 	}
4719 
4720 	lock->name = name;
4721 
4722 	lock->wait_type_outer = outer;
4723 	lock->wait_type_inner = inner;
4724 	lock->lock_type = lock_type;
4725 
4726 	/*
4727 	 * No key, no joy, we need to hash something.
4728 	 */
4729 	if (DEBUG_LOCKS_WARN_ON(!key))
4730 		return;
4731 	/*
4732 	 * Sanity check, the lock-class key must either have been allocated
4733 	 * statically or must have been registered as a dynamic key.
4734 	 */
4735 	if (!static_obj(key) && !is_dynamic_key(key)) {
4736 		if (debug_locks)
4737 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4738 		DEBUG_LOCKS_WARN_ON(1);
4739 		return;
4740 	}
4741 	lock->key = key;
4742 
4743 	if (unlikely(!debug_locks))
4744 		return;
4745 
4746 	if (subclass) {
4747 		unsigned long flags;
4748 
4749 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4750 			return;
4751 
4752 		raw_local_irq_save(flags);
4753 		lockdep_recursion_inc();
4754 		register_lock_class(lock, subclass, 1);
4755 		lockdep_recursion_finish();
4756 		raw_local_irq_restore(flags);
4757 	}
4758 }
4759 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4760 
4761 struct lock_class_key __lockdep_no_validate__;
4762 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4763 
4764 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)4765 print_lock_nested_lock_not_held(struct task_struct *curr,
4766 				struct held_lock *hlock,
4767 				unsigned long ip)
4768 {
4769 	if (!debug_locks_off())
4770 		return;
4771 	if (debug_locks_silent)
4772 		return;
4773 
4774 	pr_warn("\n");
4775 	pr_warn("==================================\n");
4776 	pr_warn("WARNING: Nested lock was not taken\n");
4777 	print_kernel_ident();
4778 	pr_warn("----------------------------------\n");
4779 
4780 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4781 	print_lock(hlock);
4782 
4783 	pr_warn("\nbut this task is not holding:\n");
4784 	pr_warn("%s\n", hlock->nest_lock->name);
4785 
4786 	pr_warn("\nstack backtrace:\n");
4787 	dump_stack();
4788 
4789 	pr_warn("\nother info that might help us debug this:\n");
4790 	lockdep_print_held_locks(curr);
4791 
4792 	pr_warn("\nstack backtrace:\n");
4793 	dump_stack();
4794 }
4795 
4796 static int __lock_is_held(const struct lockdep_map *lock, int read);
4797 
4798 /*
4799  * This gets called for every mutex_lock*()/spin_lock*() operation.
4800  * We maintain the dependency maps and validate the locking attempt:
4801  *
4802  * The callers must make sure that IRQs are disabled before calling it,
4803  * otherwise we could get an interrupt which would want to take locks,
4804  * which would end up in lockdep again.
4805  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4806 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4807 			  int trylock, int read, int check, int hardirqs_off,
4808 			  struct lockdep_map *nest_lock, unsigned long ip,
4809 			  int references, int pin_count)
4810 {
4811 	struct task_struct *curr = current;
4812 	struct lock_class *class = NULL;
4813 	struct held_lock *hlock;
4814 	unsigned int depth;
4815 	int chain_head = 0;
4816 	int class_idx;
4817 	u64 chain_key;
4818 
4819 	if (unlikely(!debug_locks))
4820 		return 0;
4821 
4822 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4823 		check = 0;
4824 
4825 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4826 		class = lock->class_cache[subclass];
4827 	/*
4828 	 * Not cached?
4829 	 */
4830 	if (unlikely(!class)) {
4831 		class = register_lock_class(lock, subclass, 0);
4832 		if (!class)
4833 			return 0;
4834 	}
4835 
4836 	debug_class_ops_inc(class);
4837 
4838 	if (very_verbose(class)) {
4839 		printk("\nacquire class [%px] %s", class->key, class->name);
4840 		if (class->name_version > 1)
4841 			printk(KERN_CONT "#%d", class->name_version);
4842 		printk(KERN_CONT "\n");
4843 		dump_stack();
4844 	}
4845 
4846 	/*
4847 	 * Add the lock to the list of currently held locks.
4848 	 * (we dont increase the depth just yet, up until the
4849 	 * dependency checks are done)
4850 	 */
4851 	depth = curr->lockdep_depth;
4852 	/*
4853 	 * Ran out of static storage for our per-task lock stack again have we?
4854 	 */
4855 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4856 		return 0;
4857 
4858 	class_idx = class - lock_classes;
4859 
4860 	if (depth) { /* we're holding locks */
4861 		hlock = curr->held_locks + depth - 1;
4862 		if (hlock->class_idx == class_idx && nest_lock) {
4863 			if (!references)
4864 				references++;
4865 
4866 			if (!hlock->references)
4867 				hlock->references++;
4868 
4869 			hlock->references += references;
4870 
4871 			/* Overflow */
4872 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4873 				return 0;
4874 
4875 			return 2;
4876 		}
4877 	}
4878 
4879 	hlock = curr->held_locks + depth;
4880 	/*
4881 	 * Plain impossible, we just registered it and checked it weren't no
4882 	 * NULL like.. I bet this mushroom I ate was good!
4883 	 */
4884 	if (DEBUG_LOCKS_WARN_ON(!class))
4885 		return 0;
4886 	hlock->class_idx = class_idx;
4887 	hlock->acquire_ip = ip;
4888 	hlock->instance = lock;
4889 	hlock->nest_lock = nest_lock;
4890 	hlock->irq_context = task_irq_context(curr);
4891 	hlock->trylock = trylock;
4892 	hlock->read = read;
4893 	hlock->check = check;
4894 	hlock->hardirqs_off = !!hardirqs_off;
4895 	hlock->references = references;
4896 #ifdef CONFIG_LOCK_STAT
4897 	hlock->waittime_stamp = 0;
4898 	hlock->holdtime_stamp = lockstat_clock();
4899 #endif
4900 	hlock->pin_count = pin_count;
4901 
4902 	if (check_wait_context(curr, hlock))
4903 		return 0;
4904 
4905 	/* Initialize the lock usage bit */
4906 	if (!mark_usage(curr, hlock, check))
4907 		return 0;
4908 
4909 	/*
4910 	 * Calculate the chain hash: it's the combined hash of all the
4911 	 * lock keys along the dependency chain. We save the hash value
4912 	 * at every step so that we can get the current hash easily
4913 	 * after unlock. The chain hash is then used to cache dependency
4914 	 * results.
4915 	 *
4916 	 * The 'key ID' is what is the most compact key value to drive
4917 	 * the hash, not class->key.
4918 	 */
4919 	/*
4920 	 * Whoops, we did it again.. class_idx is invalid.
4921 	 */
4922 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4923 		return 0;
4924 
4925 	chain_key = curr->curr_chain_key;
4926 	if (!depth) {
4927 		/*
4928 		 * How can we have a chain hash when we ain't got no keys?!
4929 		 */
4930 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4931 			return 0;
4932 		chain_head = 1;
4933 	}
4934 
4935 	hlock->prev_chain_key = chain_key;
4936 	if (separate_irq_context(curr, hlock)) {
4937 		chain_key = INITIAL_CHAIN_KEY;
4938 		chain_head = 1;
4939 	}
4940 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4941 
4942 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4943 		print_lock_nested_lock_not_held(curr, hlock, ip);
4944 		return 0;
4945 	}
4946 
4947 	if (!debug_locks_silent) {
4948 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4949 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4950 	}
4951 
4952 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4953 		return 0;
4954 
4955 	curr->curr_chain_key = chain_key;
4956 	curr->lockdep_depth++;
4957 	check_chain_key(curr);
4958 #ifdef CONFIG_DEBUG_LOCKDEP
4959 	if (unlikely(!debug_locks))
4960 		return 0;
4961 #endif
4962 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4963 		debug_locks_off();
4964 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4965 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4966 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4967 
4968 		lockdep_print_held_locks(current);
4969 		debug_show_all_locks();
4970 		dump_stack();
4971 
4972 		return 0;
4973 	}
4974 
4975 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4976 		max_lockdep_depth = curr->lockdep_depth;
4977 
4978 	return 1;
4979 }
4980 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4981 static void print_unlock_imbalance_bug(struct task_struct *curr,
4982 				       struct lockdep_map *lock,
4983 				       unsigned long ip)
4984 {
4985 	if (!debug_locks_off())
4986 		return;
4987 	if (debug_locks_silent)
4988 		return;
4989 
4990 	pr_warn("\n");
4991 	pr_warn("=====================================\n");
4992 	pr_warn("WARNING: bad unlock balance detected!\n");
4993 	print_kernel_ident();
4994 	pr_warn("-------------------------------------\n");
4995 	pr_warn("%s/%d is trying to release lock (",
4996 		curr->comm, task_pid_nr(curr));
4997 	print_lockdep_cache(lock);
4998 	pr_cont(") at:\n");
4999 	print_ip_sym(KERN_WARNING, ip);
5000 	pr_warn("but there are no more locks to release!\n");
5001 	pr_warn("\nother info that might help us debug this:\n");
5002 	lockdep_print_held_locks(curr);
5003 
5004 	pr_warn("\nstack backtrace:\n");
5005 	dump_stack();
5006 }
5007 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5008 static noinstr int match_held_lock(const struct held_lock *hlock,
5009 				   const struct lockdep_map *lock)
5010 {
5011 	if (hlock->instance == lock)
5012 		return 1;
5013 
5014 	if (hlock->references) {
5015 		const struct lock_class *class = lock->class_cache[0];
5016 
5017 		if (!class)
5018 			class = look_up_lock_class(lock, 0);
5019 
5020 		/*
5021 		 * If look_up_lock_class() failed to find a class, we're trying
5022 		 * to test if we hold a lock that has never yet been acquired.
5023 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5024 		 * holding it either, so report failure.
5025 		 */
5026 		if (!class)
5027 			return 0;
5028 
5029 		/*
5030 		 * References, but not a lock we're actually ref-counting?
5031 		 * State got messed up, follow the sites that change ->references
5032 		 * and try to make sense of it.
5033 		 */
5034 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5035 			return 0;
5036 
5037 		if (hlock->class_idx == class - lock_classes)
5038 			return 1;
5039 	}
5040 
5041 	return 0;
5042 }
5043 
5044 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5045 static struct held_lock *find_held_lock(struct task_struct *curr,
5046 					struct lockdep_map *lock,
5047 					unsigned int depth, int *idx)
5048 {
5049 	struct held_lock *ret, *hlock, *prev_hlock;
5050 	int i;
5051 
5052 	i = depth - 1;
5053 	hlock = curr->held_locks + i;
5054 	ret = hlock;
5055 	if (match_held_lock(hlock, lock))
5056 		goto out;
5057 
5058 	ret = NULL;
5059 	for (i--, prev_hlock = hlock--;
5060 	     i >= 0;
5061 	     i--, prev_hlock = hlock--) {
5062 		/*
5063 		 * We must not cross into another context:
5064 		 */
5065 		if (prev_hlock->irq_context != hlock->irq_context) {
5066 			ret = NULL;
5067 			break;
5068 		}
5069 		if (match_held_lock(hlock, lock)) {
5070 			ret = hlock;
5071 			break;
5072 		}
5073 	}
5074 
5075 out:
5076 	*idx = i;
5077 	return ret;
5078 }
5079 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5080 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5081 				int idx, unsigned int *merged)
5082 {
5083 	struct held_lock *hlock;
5084 	int first_idx = idx;
5085 
5086 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5087 		return 0;
5088 
5089 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5090 		switch (__lock_acquire(hlock->instance,
5091 				    hlock_class(hlock)->subclass,
5092 				    hlock->trylock,
5093 				    hlock->read, hlock->check,
5094 				    hlock->hardirqs_off,
5095 				    hlock->nest_lock, hlock->acquire_ip,
5096 				    hlock->references, hlock->pin_count)) {
5097 		case 0:
5098 			return 1;
5099 		case 1:
5100 			break;
5101 		case 2:
5102 			*merged += (idx == first_idx);
5103 			break;
5104 		default:
5105 			WARN_ON(1);
5106 			return 0;
5107 		}
5108 	}
5109 	return 0;
5110 }
5111 
5112 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5113 __lock_set_class(struct lockdep_map *lock, const char *name,
5114 		 struct lock_class_key *key, unsigned int subclass,
5115 		 unsigned long ip)
5116 {
5117 	struct task_struct *curr = current;
5118 	unsigned int depth, merged = 0;
5119 	struct held_lock *hlock;
5120 	struct lock_class *class;
5121 	int i;
5122 
5123 	if (unlikely(!debug_locks))
5124 		return 0;
5125 
5126 	depth = curr->lockdep_depth;
5127 	/*
5128 	 * This function is about (re)setting the class of a held lock,
5129 	 * yet we're not actually holding any locks. Naughty user!
5130 	 */
5131 	if (DEBUG_LOCKS_WARN_ON(!depth))
5132 		return 0;
5133 
5134 	hlock = find_held_lock(curr, lock, depth, &i);
5135 	if (!hlock) {
5136 		print_unlock_imbalance_bug(curr, lock, ip);
5137 		return 0;
5138 	}
5139 
5140 	lockdep_init_map_waits(lock, name, key, 0,
5141 			       lock->wait_type_inner,
5142 			       lock->wait_type_outer);
5143 	class = register_lock_class(lock, subclass, 0);
5144 	hlock->class_idx = class - lock_classes;
5145 
5146 	curr->lockdep_depth = i;
5147 	curr->curr_chain_key = hlock->prev_chain_key;
5148 
5149 	if (reacquire_held_locks(curr, depth, i, &merged))
5150 		return 0;
5151 
5152 	/*
5153 	 * I took it apart and put it back together again, except now I have
5154 	 * these 'spare' parts.. where shall I put them.
5155 	 */
5156 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5157 		return 0;
5158 	return 1;
5159 }
5160 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5161 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5162 {
5163 	struct task_struct *curr = current;
5164 	unsigned int depth, merged = 0;
5165 	struct held_lock *hlock;
5166 	int i;
5167 
5168 	if (unlikely(!debug_locks))
5169 		return 0;
5170 
5171 	depth = curr->lockdep_depth;
5172 	/*
5173 	 * This function is about (re)setting the class of a held lock,
5174 	 * yet we're not actually holding any locks. Naughty user!
5175 	 */
5176 	if (DEBUG_LOCKS_WARN_ON(!depth))
5177 		return 0;
5178 
5179 	hlock = find_held_lock(curr, lock, depth, &i);
5180 	if (!hlock) {
5181 		print_unlock_imbalance_bug(curr, lock, ip);
5182 		return 0;
5183 	}
5184 
5185 	curr->lockdep_depth = i;
5186 	curr->curr_chain_key = hlock->prev_chain_key;
5187 
5188 	WARN(hlock->read, "downgrading a read lock");
5189 	hlock->read = 1;
5190 	hlock->acquire_ip = ip;
5191 
5192 	if (reacquire_held_locks(curr, depth, i, &merged))
5193 		return 0;
5194 
5195 	/* Merging can't happen with unchanged classes.. */
5196 	if (DEBUG_LOCKS_WARN_ON(merged))
5197 		return 0;
5198 
5199 	/*
5200 	 * I took it apart and put it back together again, except now I have
5201 	 * these 'spare' parts.. where shall I put them.
5202 	 */
5203 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5204 		return 0;
5205 
5206 	return 1;
5207 }
5208 
5209 /*
5210  * Remove the lock from the list of currently held locks - this gets
5211  * called on mutex_unlock()/spin_unlock*() (or on a failed
5212  * mutex_lock_interruptible()).
5213  */
5214 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5215 __lock_release(struct lockdep_map *lock, unsigned long ip)
5216 {
5217 	struct task_struct *curr = current;
5218 	unsigned int depth, merged = 1;
5219 	struct held_lock *hlock;
5220 	int i;
5221 
5222 	if (unlikely(!debug_locks))
5223 		return 0;
5224 
5225 	depth = curr->lockdep_depth;
5226 	/*
5227 	 * So we're all set to release this lock.. wait what lock? We don't
5228 	 * own any locks, you've been drinking again?
5229 	 */
5230 	if (depth <= 0) {
5231 		print_unlock_imbalance_bug(curr, lock, ip);
5232 		return 0;
5233 	}
5234 
5235 	/*
5236 	 * Check whether the lock exists in the current stack
5237 	 * of held locks:
5238 	 */
5239 	hlock = find_held_lock(curr, lock, depth, &i);
5240 	if (!hlock) {
5241 		print_unlock_imbalance_bug(curr, lock, ip);
5242 		return 0;
5243 	}
5244 
5245 	if (hlock->instance == lock)
5246 		lock_release_holdtime(hlock);
5247 
5248 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5249 
5250 	if (hlock->references) {
5251 		hlock->references--;
5252 		if (hlock->references) {
5253 			/*
5254 			 * We had, and after removing one, still have
5255 			 * references, the current lock stack is still
5256 			 * valid. We're done!
5257 			 */
5258 			return 1;
5259 		}
5260 	}
5261 
5262 	/*
5263 	 * We have the right lock to unlock, 'hlock' points to it.
5264 	 * Now we remove it from the stack, and add back the other
5265 	 * entries (if any), recalculating the hash along the way:
5266 	 */
5267 
5268 	curr->lockdep_depth = i;
5269 	curr->curr_chain_key = hlock->prev_chain_key;
5270 
5271 	/*
5272 	 * The most likely case is when the unlock is on the innermost
5273 	 * lock. In this case, we are done!
5274 	 */
5275 	if (i == depth-1)
5276 		return 1;
5277 
5278 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5279 		return 0;
5280 
5281 	/*
5282 	 * We had N bottles of beer on the wall, we drank one, but now
5283 	 * there's not N-1 bottles of beer left on the wall...
5284 	 * Pouring two of the bottles together is acceptable.
5285 	 */
5286 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5287 
5288 	/*
5289 	 * Since reacquire_held_locks() would have called check_chain_key()
5290 	 * indirectly via __lock_acquire(), we don't need to do it again
5291 	 * on return.
5292 	 */
5293 	return 0;
5294 }
5295 
5296 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5297 int __lock_is_held(const struct lockdep_map *lock, int read)
5298 {
5299 	struct task_struct *curr = current;
5300 	int i;
5301 
5302 	for (i = 0; i < curr->lockdep_depth; i++) {
5303 		struct held_lock *hlock = curr->held_locks + i;
5304 
5305 		if (match_held_lock(hlock, lock)) {
5306 			if (read == -1 || !!hlock->read == read)
5307 				return 1;
5308 
5309 			return 0;
5310 		}
5311 	}
5312 
5313 	return 0;
5314 }
5315 
__lock_pin_lock(struct lockdep_map * lock)5316 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5317 {
5318 	struct pin_cookie cookie = NIL_COOKIE;
5319 	struct task_struct *curr = current;
5320 	int i;
5321 
5322 	if (unlikely(!debug_locks))
5323 		return cookie;
5324 
5325 	for (i = 0; i < curr->lockdep_depth; i++) {
5326 		struct held_lock *hlock = curr->held_locks + i;
5327 
5328 		if (match_held_lock(hlock, lock)) {
5329 			/*
5330 			 * Grab 16bits of randomness; this is sufficient to not
5331 			 * be guessable and still allows some pin nesting in
5332 			 * our u32 pin_count.
5333 			 */
5334 			cookie.val = 1 + (prandom_u32() >> 16);
5335 			hlock->pin_count += cookie.val;
5336 			return cookie;
5337 		}
5338 	}
5339 
5340 	WARN(1, "pinning an unheld lock\n");
5341 	return cookie;
5342 }
5343 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5344 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5345 {
5346 	struct task_struct *curr = current;
5347 	int i;
5348 
5349 	if (unlikely(!debug_locks))
5350 		return;
5351 
5352 	for (i = 0; i < curr->lockdep_depth; i++) {
5353 		struct held_lock *hlock = curr->held_locks + i;
5354 
5355 		if (match_held_lock(hlock, lock)) {
5356 			hlock->pin_count += cookie.val;
5357 			return;
5358 		}
5359 	}
5360 
5361 	WARN(1, "pinning an unheld lock\n");
5362 }
5363 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5364 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5365 {
5366 	struct task_struct *curr = current;
5367 	int i;
5368 
5369 	if (unlikely(!debug_locks))
5370 		return;
5371 
5372 	for (i = 0; i < curr->lockdep_depth; i++) {
5373 		struct held_lock *hlock = curr->held_locks + i;
5374 
5375 		if (match_held_lock(hlock, lock)) {
5376 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5377 				return;
5378 
5379 			hlock->pin_count -= cookie.val;
5380 
5381 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5382 				hlock->pin_count = 0;
5383 
5384 			return;
5385 		}
5386 	}
5387 
5388 	WARN(1, "unpinning an unheld lock\n");
5389 }
5390 
5391 /*
5392  * Check whether we follow the irq-flags state precisely:
5393  */
check_flags(unsigned long flags)5394 static noinstr void check_flags(unsigned long flags)
5395 {
5396 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5397 	if (!debug_locks)
5398 		return;
5399 
5400 	/* Get the warning out..  */
5401 	instrumentation_begin();
5402 
5403 	if (irqs_disabled_flags(flags)) {
5404 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5405 			printk("possible reason: unannotated irqs-off.\n");
5406 		}
5407 	} else {
5408 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5409 			printk("possible reason: unannotated irqs-on.\n");
5410 		}
5411 	}
5412 
5413 	/*
5414 	 * We dont accurately track softirq state in e.g.
5415 	 * hardirq contexts (such as on 4KSTACKS), so only
5416 	 * check if not in hardirq contexts:
5417 	 */
5418 	if (!hardirq_count()) {
5419 		if (softirq_count()) {
5420 			/* like the above, but with softirqs */
5421 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5422 		} else {
5423 			/* lick the above, does it taste good? */
5424 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5425 		}
5426 	}
5427 
5428 	if (!debug_locks)
5429 		print_irqtrace_events(current);
5430 
5431 	instrumentation_end();
5432 #endif
5433 }
5434 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5435 void lock_set_class(struct lockdep_map *lock, const char *name,
5436 		    struct lock_class_key *key, unsigned int subclass,
5437 		    unsigned long ip)
5438 {
5439 	unsigned long flags;
5440 
5441 	if (unlikely(!lockdep_enabled()))
5442 		return;
5443 
5444 	raw_local_irq_save(flags);
5445 	lockdep_recursion_inc();
5446 	check_flags(flags);
5447 	if (__lock_set_class(lock, name, key, subclass, ip))
5448 		check_chain_key(current);
5449 	lockdep_recursion_finish();
5450 	raw_local_irq_restore(flags);
5451 }
5452 EXPORT_SYMBOL_GPL(lock_set_class);
5453 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5454 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5455 {
5456 	unsigned long flags;
5457 
5458 	if (unlikely(!lockdep_enabled()))
5459 		return;
5460 
5461 	raw_local_irq_save(flags);
5462 	lockdep_recursion_inc();
5463 	check_flags(flags);
5464 	if (__lock_downgrade(lock, ip))
5465 		check_chain_key(current);
5466 	lockdep_recursion_finish();
5467 	raw_local_irq_restore(flags);
5468 }
5469 EXPORT_SYMBOL_GPL(lock_downgrade);
5470 
5471 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5472 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5473 {
5474 #ifdef CONFIG_PROVE_LOCKING
5475 	struct lock_class *class = look_up_lock_class(lock, subclass);
5476 	unsigned long mask = LOCKF_USED;
5477 
5478 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5479 	if (!class)
5480 		return;
5481 
5482 	/*
5483 	 * READ locks only conflict with USED, such that if we only ever use
5484 	 * READ locks, there is no deadlock possible -- RCU.
5485 	 */
5486 	if (!hlock->read)
5487 		mask |= LOCKF_USED_READ;
5488 
5489 	if (!(class->usage_mask & mask))
5490 		return;
5491 
5492 	hlock->class_idx = class - lock_classes;
5493 
5494 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5495 #endif
5496 }
5497 
lockdep_nmi(void)5498 static bool lockdep_nmi(void)
5499 {
5500 	if (raw_cpu_read(lockdep_recursion))
5501 		return false;
5502 
5503 	if (!in_nmi())
5504 		return false;
5505 
5506 	return true;
5507 }
5508 
5509 /*
5510  * read_lock() is recursive if:
5511  * 1. We force lockdep think this way in selftests or
5512  * 2. The implementation is not queued read/write lock or
5513  * 3. The locker is at an in_interrupt() context.
5514  */
read_lock_is_recursive(void)5515 bool read_lock_is_recursive(void)
5516 {
5517 	return force_read_lock_recursive ||
5518 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5519 	       in_interrupt();
5520 }
5521 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5522 
5523 /*
5524  * We are not always called with irqs disabled - do that here,
5525  * and also avoid lockdep recursion:
5526  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5527 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5528 			  int trylock, int read, int check,
5529 			  struct lockdep_map *nest_lock, unsigned long ip)
5530 {
5531 	unsigned long flags;
5532 
5533 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5534 
5535 	if (!debug_locks)
5536 		return;
5537 
5538 	if (unlikely(!lockdep_enabled())) {
5539 		/* XXX allow trylock from NMI ?!? */
5540 		if (lockdep_nmi() && !trylock) {
5541 			struct held_lock hlock;
5542 
5543 			hlock.acquire_ip = ip;
5544 			hlock.instance = lock;
5545 			hlock.nest_lock = nest_lock;
5546 			hlock.irq_context = 2; // XXX
5547 			hlock.trylock = trylock;
5548 			hlock.read = read;
5549 			hlock.check = check;
5550 			hlock.hardirqs_off = true;
5551 			hlock.references = 0;
5552 
5553 			verify_lock_unused(lock, &hlock, subclass);
5554 		}
5555 		return;
5556 	}
5557 
5558 	raw_local_irq_save(flags);
5559 	check_flags(flags);
5560 
5561 	lockdep_recursion_inc();
5562 	__lock_acquire(lock, subclass, trylock, read, check,
5563 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5564 	lockdep_recursion_finish();
5565 	raw_local_irq_restore(flags);
5566 }
5567 EXPORT_SYMBOL_GPL(lock_acquire);
5568 
lock_release(struct lockdep_map * lock,unsigned long ip)5569 void lock_release(struct lockdep_map *lock, unsigned long ip)
5570 {
5571 	unsigned long flags;
5572 
5573 	trace_lock_release(lock, ip);
5574 
5575 	if (unlikely(!lockdep_enabled()))
5576 		return;
5577 
5578 	raw_local_irq_save(flags);
5579 	check_flags(flags);
5580 
5581 	lockdep_recursion_inc();
5582 	if (__lock_release(lock, ip))
5583 		check_chain_key(current);
5584 	lockdep_recursion_finish();
5585 	raw_local_irq_restore(flags);
5586 }
5587 EXPORT_SYMBOL_GPL(lock_release);
5588 
lock_is_held_type(const struct lockdep_map * lock,int read)5589 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5590 {
5591 	unsigned long flags;
5592 	int ret = 0;
5593 
5594 	if (unlikely(!lockdep_enabled()))
5595 		return 1; /* avoid false negative lockdep_assert_held() */
5596 
5597 	raw_local_irq_save(flags);
5598 	check_flags(flags);
5599 
5600 	lockdep_recursion_inc();
5601 	ret = __lock_is_held(lock, read);
5602 	lockdep_recursion_finish();
5603 	raw_local_irq_restore(flags);
5604 
5605 	return ret;
5606 }
5607 EXPORT_SYMBOL_GPL(lock_is_held_type);
5608 NOKPROBE_SYMBOL(lock_is_held_type);
5609 
lock_pin_lock(struct lockdep_map * lock)5610 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5611 {
5612 	struct pin_cookie cookie = NIL_COOKIE;
5613 	unsigned long flags;
5614 
5615 	if (unlikely(!lockdep_enabled()))
5616 		return cookie;
5617 
5618 	raw_local_irq_save(flags);
5619 	check_flags(flags);
5620 
5621 	lockdep_recursion_inc();
5622 	cookie = __lock_pin_lock(lock);
5623 	lockdep_recursion_finish();
5624 	raw_local_irq_restore(flags);
5625 
5626 	return cookie;
5627 }
5628 EXPORT_SYMBOL_GPL(lock_pin_lock);
5629 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5630 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5631 {
5632 	unsigned long flags;
5633 
5634 	if (unlikely(!lockdep_enabled()))
5635 		return;
5636 
5637 	raw_local_irq_save(flags);
5638 	check_flags(flags);
5639 
5640 	lockdep_recursion_inc();
5641 	__lock_repin_lock(lock, cookie);
5642 	lockdep_recursion_finish();
5643 	raw_local_irq_restore(flags);
5644 }
5645 EXPORT_SYMBOL_GPL(lock_repin_lock);
5646 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5647 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5648 {
5649 	unsigned long flags;
5650 
5651 	if (unlikely(!lockdep_enabled()))
5652 		return;
5653 
5654 	raw_local_irq_save(flags);
5655 	check_flags(flags);
5656 
5657 	lockdep_recursion_inc();
5658 	__lock_unpin_lock(lock, cookie);
5659 	lockdep_recursion_finish();
5660 	raw_local_irq_restore(flags);
5661 }
5662 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5663 
5664 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5665 static void print_lock_contention_bug(struct task_struct *curr,
5666 				      struct lockdep_map *lock,
5667 				      unsigned long ip)
5668 {
5669 	if (!debug_locks_off())
5670 		return;
5671 	if (debug_locks_silent)
5672 		return;
5673 
5674 	pr_warn("\n");
5675 	pr_warn("=================================\n");
5676 	pr_warn("WARNING: bad contention detected!\n");
5677 	print_kernel_ident();
5678 	pr_warn("---------------------------------\n");
5679 	pr_warn("%s/%d is trying to contend lock (",
5680 		curr->comm, task_pid_nr(curr));
5681 	print_lockdep_cache(lock);
5682 	pr_cont(") at:\n");
5683 	print_ip_sym(KERN_WARNING, ip);
5684 	pr_warn("but there are no locks held!\n");
5685 	pr_warn("\nother info that might help us debug this:\n");
5686 	lockdep_print_held_locks(curr);
5687 
5688 	pr_warn("\nstack backtrace:\n");
5689 	dump_stack();
5690 }
5691 
5692 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5693 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5694 {
5695 	struct task_struct *curr = current;
5696 	struct held_lock *hlock;
5697 	struct lock_class_stats *stats;
5698 	unsigned int depth;
5699 	int i, contention_point, contending_point;
5700 
5701 	depth = curr->lockdep_depth;
5702 	/*
5703 	 * Whee, we contended on this lock, except it seems we're not
5704 	 * actually trying to acquire anything much at all..
5705 	 */
5706 	if (DEBUG_LOCKS_WARN_ON(!depth))
5707 		return;
5708 
5709 	hlock = find_held_lock(curr, lock, depth, &i);
5710 	if (!hlock) {
5711 		print_lock_contention_bug(curr, lock, ip);
5712 		return;
5713 	}
5714 
5715 	if (hlock->instance != lock)
5716 		return;
5717 
5718 	hlock->waittime_stamp = lockstat_clock();
5719 
5720 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5721 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5722 				      lock->ip);
5723 
5724 	stats = get_lock_stats(hlock_class(hlock));
5725 	if (contention_point < LOCKSTAT_POINTS)
5726 		stats->contention_point[contention_point]++;
5727 	if (contending_point < LOCKSTAT_POINTS)
5728 		stats->contending_point[contending_point]++;
5729 	if (lock->cpu != smp_processor_id())
5730 		stats->bounces[bounce_contended + !!hlock->read]++;
5731 }
5732 
5733 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5734 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5735 {
5736 	struct task_struct *curr = current;
5737 	struct held_lock *hlock;
5738 	struct lock_class_stats *stats;
5739 	unsigned int depth;
5740 	u64 now, waittime = 0;
5741 	int i, cpu;
5742 
5743 	depth = curr->lockdep_depth;
5744 	/*
5745 	 * Yay, we acquired ownership of this lock we didn't try to
5746 	 * acquire, how the heck did that happen?
5747 	 */
5748 	if (DEBUG_LOCKS_WARN_ON(!depth))
5749 		return;
5750 
5751 	hlock = find_held_lock(curr, lock, depth, &i);
5752 	if (!hlock) {
5753 		print_lock_contention_bug(curr, lock, _RET_IP_);
5754 		return;
5755 	}
5756 
5757 	if (hlock->instance != lock)
5758 		return;
5759 
5760 	cpu = smp_processor_id();
5761 	if (hlock->waittime_stamp) {
5762 		now = lockstat_clock();
5763 		waittime = now - hlock->waittime_stamp;
5764 		hlock->holdtime_stamp = now;
5765 	}
5766 
5767 	stats = get_lock_stats(hlock_class(hlock));
5768 	if (waittime) {
5769 		if (hlock->read)
5770 			lock_time_inc(&stats->read_waittime, waittime);
5771 		else
5772 			lock_time_inc(&stats->write_waittime, waittime);
5773 	}
5774 	if (lock->cpu != cpu)
5775 		stats->bounces[bounce_acquired + !!hlock->read]++;
5776 
5777 	lock->cpu = cpu;
5778 	lock->ip = ip;
5779 }
5780 
lock_contended(struct lockdep_map * lock,unsigned long ip)5781 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5782 {
5783 	unsigned long flags;
5784 
5785 	trace_lock_contended(lock, ip);
5786 
5787 	if (unlikely(!lock_stat || !lockdep_enabled()))
5788 		return;
5789 
5790 	raw_local_irq_save(flags);
5791 	check_flags(flags);
5792 	lockdep_recursion_inc();
5793 	__lock_contended(lock, ip);
5794 	lockdep_recursion_finish();
5795 	raw_local_irq_restore(flags);
5796 }
5797 EXPORT_SYMBOL_GPL(lock_contended);
5798 
lock_acquired(struct lockdep_map * lock,unsigned long ip)5799 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5800 {
5801 	unsigned long flags;
5802 
5803 	trace_lock_acquired(lock, ip);
5804 
5805 	if (unlikely(!lock_stat || !lockdep_enabled()))
5806 		return;
5807 
5808 	raw_local_irq_save(flags);
5809 	check_flags(flags);
5810 	lockdep_recursion_inc();
5811 	__lock_acquired(lock, ip);
5812 	lockdep_recursion_finish();
5813 	raw_local_irq_restore(flags);
5814 }
5815 EXPORT_SYMBOL_GPL(lock_acquired);
5816 #endif
5817 
5818 /*
5819  * Used by the testsuite, sanitize the validator state
5820  * after a simulated failure:
5821  */
5822 
lockdep_reset(void)5823 void lockdep_reset(void)
5824 {
5825 	unsigned long flags;
5826 	int i;
5827 
5828 	raw_local_irq_save(flags);
5829 	lockdep_init_task(current);
5830 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5831 	nr_hardirq_chains = 0;
5832 	nr_softirq_chains = 0;
5833 	nr_process_chains = 0;
5834 	debug_locks = 1;
5835 	for (i = 0; i < CHAINHASH_SIZE; i++)
5836 		INIT_HLIST_HEAD(chainhash_table + i);
5837 	raw_local_irq_restore(flags);
5838 }
5839 
5840 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5841 static void remove_class_from_lock_chain(struct pending_free *pf,
5842 					 struct lock_chain *chain,
5843 					 struct lock_class *class)
5844 {
5845 #ifdef CONFIG_PROVE_LOCKING
5846 	int i;
5847 
5848 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5849 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5850 			continue;
5851 		/*
5852 		 * Each lock class occurs at most once in a lock chain so once
5853 		 * we found a match we can break out of this loop.
5854 		 */
5855 		goto free_lock_chain;
5856 	}
5857 	/* Since the chain has not been modified, return. */
5858 	return;
5859 
5860 free_lock_chain:
5861 	free_chain_hlocks(chain->base, chain->depth);
5862 	/* Overwrite the chain key for concurrent RCU readers. */
5863 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5864 	dec_chains(chain->irq_context);
5865 
5866 	/*
5867 	 * Note: calling hlist_del_rcu() from inside a
5868 	 * hlist_for_each_entry_rcu() loop is safe.
5869 	 */
5870 	hlist_del_rcu(&chain->entry);
5871 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5872 	nr_zapped_lock_chains++;
5873 #endif
5874 }
5875 
5876 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5877 static void remove_class_from_lock_chains(struct pending_free *pf,
5878 					  struct lock_class *class)
5879 {
5880 	struct lock_chain *chain;
5881 	struct hlist_head *head;
5882 	int i;
5883 
5884 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5885 		head = chainhash_table + i;
5886 		hlist_for_each_entry_rcu(chain, head, entry) {
5887 			remove_class_from_lock_chain(pf, chain, class);
5888 		}
5889 	}
5890 }
5891 
5892 /*
5893  * Remove all references to a lock class. The caller must hold the graph lock.
5894  */
zap_class(struct pending_free * pf,struct lock_class * class)5895 static void zap_class(struct pending_free *pf, struct lock_class *class)
5896 {
5897 	struct lock_list *entry;
5898 	int i;
5899 
5900 	WARN_ON_ONCE(!class->key);
5901 
5902 	/*
5903 	 * Remove all dependencies this lock is
5904 	 * involved in:
5905 	 */
5906 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5907 		entry = list_entries + i;
5908 		if (entry->class != class && entry->links_to != class)
5909 			continue;
5910 		__clear_bit(i, list_entries_in_use);
5911 		nr_list_entries--;
5912 		list_del_rcu(&entry->entry);
5913 	}
5914 	if (list_empty(&class->locks_after) &&
5915 	    list_empty(&class->locks_before)) {
5916 		list_move_tail(&class->lock_entry, &pf->zapped);
5917 		hlist_del_rcu(&class->hash_entry);
5918 		WRITE_ONCE(class->key, NULL);
5919 		WRITE_ONCE(class->name, NULL);
5920 		nr_lock_classes--;
5921 		__clear_bit(class - lock_classes, lock_classes_in_use);
5922 	} else {
5923 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5924 			  class->name);
5925 	}
5926 
5927 	remove_class_from_lock_chains(pf, class);
5928 	nr_zapped_classes++;
5929 }
5930 
reinit_class(struct lock_class * class)5931 static void reinit_class(struct lock_class *class)
5932 {
5933 	void *const p = class;
5934 	const unsigned int offset = offsetof(struct lock_class, key);
5935 
5936 	WARN_ON_ONCE(!class->lock_entry.next);
5937 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5938 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5939 	memset(p + offset, 0, sizeof(*class) - offset);
5940 	WARN_ON_ONCE(!class->lock_entry.next);
5941 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5942 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5943 }
5944 
within(const void * addr,void * start,unsigned long size)5945 static inline int within(const void *addr, void *start, unsigned long size)
5946 {
5947 	return addr >= start && addr < start + size;
5948 }
5949 
inside_selftest(void)5950 static bool inside_selftest(void)
5951 {
5952 	return current == lockdep_selftest_task_struct;
5953 }
5954 
5955 /* The caller must hold the graph lock. */
get_pending_free(void)5956 static struct pending_free *get_pending_free(void)
5957 {
5958 	return delayed_free.pf + delayed_free.index;
5959 }
5960 
5961 static void free_zapped_rcu(struct rcu_head *cb);
5962 
5963 /*
5964  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5965  * the graph lock held.
5966  */
call_rcu_zapped(struct pending_free * pf)5967 static void call_rcu_zapped(struct pending_free *pf)
5968 {
5969 	WARN_ON_ONCE(inside_selftest());
5970 
5971 	if (list_empty(&pf->zapped))
5972 		return;
5973 
5974 	if (delayed_free.scheduled)
5975 		return;
5976 
5977 	delayed_free.scheduled = true;
5978 
5979 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5980 	delayed_free.index ^= 1;
5981 
5982 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5983 }
5984 
5985 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)5986 static void __free_zapped_classes(struct pending_free *pf)
5987 {
5988 	struct lock_class *class;
5989 
5990 	check_data_structures();
5991 
5992 	list_for_each_entry(class, &pf->zapped, lock_entry)
5993 		reinit_class(class);
5994 
5995 	list_splice_init(&pf->zapped, &free_lock_classes);
5996 
5997 #ifdef CONFIG_PROVE_LOCKING
5998 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5999 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6000 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6001 #endif
6002 }
6003 
free_zapped_rcu(struct rcu_head * ch)6004 static void free_zapped_rcu(struct rcu_head *ch)
6005 {
6006 	struct pending_free *pf;
6007 	unsigned long flags;
6008 
6009 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6010 		return;
6011 
6012 	raw_local_irq_save(flags);
6013 	lockdep_lock();
6014 
6015 	/* closed head */
6016 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6017 	__free_zapped_classes(pf);
6018 	delayed_free.scheduled = false;
6019 
6020 	/*
6021 	 * If there's anything on the open list, close and start a new callback.
6022 	 */
6023 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6024 
6025 	lockdep_unlock();
6026 	raw_local_irq_restore(flags);
6027 }
6028 
6029 /*
6030  * Remove all lock classes from the class hash table and from the
6031  * all_lock_classes list whose key or name is in the address range [start,
6032  * start + size). Move these lock classes to the zapped_classes list. Must
6033  * be called with the graph lock held.
6034  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6035 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6036 				     unsigned long size)
6037 {
6038 	struct lock_class *class;
6039 	struct hlist_head *head;
6040 	int i;
6041 
6042 	/* Unhash all classes that were created by a module. */
6043 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6044 		head = classhash_table + i;
6045 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6046 			if (!within(class->key, start, size) &&
6047 			    !within(class->name, start, size))
6048 				continue;
6049 			zap_class(pf, class);
6050 		}
6051 	}
6052 }
6053 
6054 /*
6055  * Used in module.c to remove lock classes from memory that is going to be
6056  * freed; and possibly re-used by other modules.
6057  *
6058  * We will have had one synchronize_rcu() before getting here, so we're
6059  * guaranteed nobody will look up these exact classes -- they're properly dead
6060  * but still allocated.
6061  */
lockdep_free_key_range_reg(void * start,unsigned long size)6062 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6063 {
6064 	struct pending_free *pf;
6065 	unsigned long flags;
6066 
6067 	init_data_structures_once();
6068 
6069 	raw_local_irq_save(flags);
6070 	lockdep_lock();
6071 	pf = get_pending_free();
6072 	__lockdep_free_key_range(pf, start, size);
6073 	call_rcu_zapped(pf);
6074 	lockdep_unlock();
6075 	raw_local_irq_restore(flags);
6076 
6077 	/*
6078 	 * Wait for any possible iterators from look_up_lock_class() to pass
6079 	 * before continuing to free the memory they refer to.
6080 	 */
6081 	synchronize_rcu();
6082 }
6083 
6084 /*
6085  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6086  * Ignores debug_locks. Must only be used by the lockdep selftests.
6087  */
lockdep_free_key_range_imm(void * start,unsigned long size)6088 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6089 {
6090 	struct pending_free *pf = delayed_free.pf;
6091 	unsigned long flags;
6092 
6093 	init_data_structures_once();
6094 
6095 	raw_local_irq_save(flags);
6096 	lockdep_lock();
6097 	__lockdep_free_key_range(pf, start, size);
6098 	__free_zapped_classes(pf);
6099 	lockdep_unlock();
6100 	raw_local_irq_restore(flags);
6101 }
6102 
lockdep_free_key_range(void * start,unsigned long size)6103 void lockdep_free_key_range(void *start, unsigned long size)
6104 {
6105 	init_data_structures_once();
6106 
6107 	if (inside_selftest())
6108 		lockdep_free_key_range_imm(start, size);
6109 	else
6110 		lockdep_free_key_range_reg(start, size);
6111 }
6112 
6113 /*
6114  * Check whether any element of the @lock->class_cache[] array refers to a
6115  * registered lock class. The caller must hold either the graph lock or the
6116  * RCU read lock.
6117  */
lock_class_cache_is_registered(struct lockdep_map * lock)6118 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6119 {
6120 	struct lock_class *class;
6121 	struct hlist_head *head;
6122 	int i, j;
6123 
6124 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6125 		head = classhash_table + i;
6126 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6127 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6128 				if (lock->class_cache[j] == class)
6129 					return true;
6130 		}
6131 	}
6132 	return false;
6133 }
6134 
6135 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6136 static void __lockdep_reset_lock(struct pending_free *pf,
6137 				 struct lockdep_map *lock)
6138 {
6139 	struct lock_class *class;
6140 	int j;
6141 
6142 	/*
6143 	 * Remove all classes this lock might have:
6144 	 */
6145 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6146 		/*
6147 		 * If the class exists we look it up and zap it:
6148 		 */
6149 		class = look_up_lock_class(lock, j);
6150 		if (class)
6151 			zap_class(pf, class);
6152 	}
6153 	/*
6154 	 * Debug check: in the end all mapped classes should
6155 	 * be gone.
6156 	 */
6157 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6158 		debug_locks_off();
6159 }
6160 
6161 /*
6162  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6163  * released data structures from RCU context.
6164  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6165 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6166 {
6167 	struct pending_free *pf;
6168 	unsigned long flags;
6169 	int locked;
6170 
6171 	raw_local_irq_save(flags);
6172 	locked = graph_lock();
6173 	if (!locked)
6174 		goto out_irq;
6175 
6176 	pf = get_pending_free();
6177 	__lockdep_reset_lock(pf, lock);
6178 	call_rcu_zapped(pf);
6179 
6180 	graph_unlock();
6181 out_irq:
6182 	raw_local_irq_restore(flags);
6183 }
6184 
6185 /*
6186  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6187  * lockdep selftests.
6188  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6189 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6190 {
6191 	struct pending_free *pf = delayed_free.pf;
6192 	unsigned long flags;
6193 
6194 	raw_local_irq_save(flags);
6195 	lockdep_lock();
6196 	__lockdep_reset_lock(pf, lock);
6197 	__free_zapped_classes(pf);
6198 	lockdep_unlock();
6199 	raw_local_irq_restore(flags);
6200 }
6201 
lockdep_reset_lock(struct lockdep_map * lock)6202 void lockdep_reset_lock(struct lockdep_map *lock)
6203 {
6204 	init_data_structures_once();
6205 
6206 	if (inside_selftest())
6207 		lockdep_reset_lock_imm(lock);
6208 	else
6209 		lockdep_reset_lock_reg(lock);
6210 }
6211 
6212 /* Unregister a dynamically allocated key. */
lockdep_unregister_key(struct lock_class_key * key)6213 void lockdep_unregister_key(struct lock_class_key *key)
6214 {
6215 	struct hlist_head *hash_head = keyhashentry(key);
6216 	struct lock_class_key *k;
6217 	struct pending_free *pf;
6218 	unsigned long flags;
6219 	bool found = false;
6220 
6221 	might_sleep();
6222 
6223 	if (WARN_ON_ONCE(static_obj(key)))
6224 		return;
6225 
6226 	raw_local_irq_save(flags);
6227 	if (!graph_lock())
6228 		goto out_irq;
6229 
6230 	pf = get_pending_free();
6231 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6232 		if (k == key) {
6233 			hlist_del_rcu(&k->hash_entry);
6234 			found = true;
6235 			break;
6236 		}
6237 	}
6238 	WARN_ON_ONCE(!found);
6239 	__lockdep_free_key_range(pf, key, 1);
6240 	call_rcu_zapped(pf);
6241 	graph_unlock();
6242 out_irq:
6243 	raw_local_irq_restore(flags);
6244 
6245 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6246 	synchronize_rcu();
6247 }
6248 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6249 
lockdep_init(void)6250 void __init lockdep_init(void)
6251 {
6252 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6253 
6254 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6255 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6256 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6257 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6258 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6259 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6260 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6261 
6262 	printk(" memory used by lock dependency info: %zu kB\n",
6263 	       (sizeof(lock_classes) +
6264 		sizeof(lock_classes_in_use) +
6265 		sizeof(classhash_table) +
6266 		sizeof(list_entries) +
6267 		sizeof(list_entries_in_use) +
6268 		sizeof(chainhash_table) +
6269 		sizeof(delayed_free)
6270 #ifdef CONFIG_PROVE_LOCKING
6271 		+ sizeof(lock_cq)
6272 		+ sizeof(lock_chains)
6273 		+ sizeof(lock_chains_in_use)
6274 		+ sizeof(chain_hlocks)
6275 #endif
6276 		) / 1024
6277 		);
6278 
6279 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6280 	printk(" memory used for stack traces: %zu kB\n",
6281 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6282 	       );
6283 #endif
6284 
6285 	printk(" per task-struct memory footprint: %zu bytes\n",
6286 	       sizeof(((struct task_struct *)NULL)->held_locks));
6287 }
6288 
6289 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6290 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6291 		     const void *mem_to, struct held_lock *hlock)
6292 {
6293 	if (!debug_locks_off())
6294 		return;
6295 	if (debug_locks_silent)
6296 		return;
6297 
6298 	pr_warn("\n");
6299 	pr_warn("=========================\n");
6300 	pr_warn("WARNING: held lock freed!\n");
6301 	print_kernel_ident();
6302 	pr_warn("-------------------------\n");
6303 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6304 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6305 	print_lock(hlock);
6306 	lockdep_print_held_locks(curr);
6307 
6308 	pr_warn("\nstack backtrace:\n");
6309 	dump_stack();
6310 }
6311 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6312 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6313 				const void* lock_from, unsigned long lock_len)
6314 {
6315 	return lock_from + lock_len <= mem_from ||
6316 		mem_from + mem_len <= lock_from;
6317 }
6318 
6319 /*
6320  * Called when kernel memory is freed (or unmapped), or if a lock
6321  * is destroyed or reinitialized - this code checks whether there is
6322  * any held lock in the memory range of <from> to <to>:
6323  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6324 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6325 {
6326 	struct task_struct *curr = current;
6327 	struct held_lock *hlock;
6328 	unsigned long flags;
6329 	int i;
6330 
6331 	if (unlikely(!debug_locks))
6332 		return;
6333 
6334 	raw_local_irq_save(flags);
6335 	for (i = 0; i < curr->lockdep_depth; i++) {
6336 		hlock = curr->held_locks + i;
6337 
6338 		if (not_in_range(mem_from, mem_len, hlock->instance,
6339 					sizeof(*hlock->instance)))
6340 			continue;
6341 
6342 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6343 		break;
6344 	}
6345 	raw_local_irq_restore(flags);
6346 }
6347 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6348 
print_held_locks_bug(void)6349 static void print_held_locks_bug(void)
6350 {
6351 	if (!debug_locks_off())
6352 		return;
6353 	if (debug_locks_silent)
6354 		return;
6355 
6356 	pr_warn("\n");
6357 	pr_warn("====================================\n");
6358 	pr_warn("WARNING: %s/%d still has locks held!\n",
6359 	       current->comm, task_pid_nr(current));
6360 	print_kernel_ident();
6361 	pr_warn("------------------------------------\n");
6362 	lockdep_print_held_locks(current);
6363 	pr_warn("\nstack backtrace:\n");
6364 	dump_stack();
6365 }
6366 
debug_check_no_locks_held(void)6367 void debug_check_no_locks_held(void)
6368 {
6369 	if (unlikely(current->lockdep_depth > 0))
6370 		print_held_locks_bug();
6371 }
6372 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6373 
6374 #ifdef __KERNEL__
debug_show_all_locks(void)6375 void debug_show_all_locks(void)
6376 {
6377 	struct task_struct *g, *p;
6378 
6379 	if (unlikely(!debug_locks)) {
6380 		pr_warn("INFO: lockdep is turned off.\n");
6381 		return;
6382 	}
6383 	pr_warn("\nShowing all locks held in the system:\n");
6384 
6385 	rcu_read_lock();
6386 	for_each_process_thread(g, p) {
6387 		if (!p->lockdep_depth)
6388 			continue;
6389 		lockdep_print_held_locks(p);
6390 		touch_nmi_watchdog();
6391 		touch_all_softlockup_watchdogs();
6392 	}
6393 	rcu_read_unlock();
6394 
6395 	pr_warn("\n");
6396 	pr_warn("=============================================\n\n");
6397 }
6398 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6399 #endif
6400 
6401 /*
6402  * Careful: only use this function if you are sure that
6403  * the task cannot run in parallel!
6404  */
debug_show_held_locks(struct task_struct * task)6405 void debug_show_held_locks(struct task_struct *task)
6406 {
6407 	if (unlikely(!debug_locks)) {
6408 		printk("INFO: lockdep is turned off.\n");
6409 		return;
6410 	}
6411 	lockdep_print_held_locks(task);
6412 }
6413 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6414 
lockdep_sys_exit(void)6415 asmlinkage __visible void lockdep_sys_exit(void)
6416 {
6417 	struct task_struct *curr = current;
6418 
6419 	if (unlikely(curr->lockdep_depth)) {
6420 		if (!debug_locks_off())
6421 			return;
6422 		pr_warn("\n");
6423 		pr_warn("================================================\n");
6424 		pr_warn("WARNING: lock held when returning to user space!\n");
6425 		print_kernel_ident();
6426 		pr_warn("------------------------------------------------\n");
6427 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6428 				curr->comm, curr->pid);
6429 		lockdep_print_held_locks(curr);
6430 	}
6431 
6432 	/*
6433 	 * The lock history for each syscall should be independent. So wipe the
6434 	 * slate clean on return to userspace.
6435 	 */
6436 	lockdep_invariant_state(false);
6437 }
6438 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6439 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6440 {
6441 	struct task_struct *curr = current;
6442 
6443 	/* Note: the following can be executed concurrently, so be careful. */
6444 	pr_warn("\n");
6445 	pr_warn("=============================\n");
6446 	pr_warn("WARNING: suspicious RCU usage\n");
6447 	print_kernel_ident();
6448 	pr_warn("-----------------------------\n");
6449 	pr_warn("%s:%d %s!\n", file, line, s);
6450 	pr_warn("\nother info that might help us debug this:\n\n");
6451 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6452 	       !rcu_lockdep_current_cpu_online()
6453 			? "RCU used illegally from offline CPU!\n"
6454 			: "",
6455 	       rcu_scheduler_active, debug_locks);
6456 
6457 	/*
6458 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6459 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6460 	 * considers that CPU to be in an "extended quiescent state",
6461 	 * which means that RCU will be completely ignoring that CPU.
6462 	 * Therefore, rcu_read_lock() and friends have absolutely no
6463 	 * effect on a CPU running in that state. In other words, even if
6464 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6465 	 * delete data structures out from under it.  RCU really has no
6466 	 * choice here: we need to keep an RCU-free window in idle where
6467 	 * the CPU may possibly enter into low power mode. This way we can
6468 	 * notice an extended quiescent state to other CPUs that started a grace
6469 	 * period. Otherwise we would delay any grace period as long as we run
6470 	 * in the idle task.
6471 	 *
6472 	 * So complain bitterly if someone does call rcu_read_lock(),
6473 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6474 	 */
6475 	if (!rcu_is_watching())
6476 		pr_warn("RCU used illegally from extended quiescent state!\n");
6477 
6478 	lockdep_print_held_locks(curr);
6479 	pr_warn("\nstack backtrace:\n");
6480 	dump_stack();
6481 }
6482 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6483