1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18
19
20 /* Quick Fair Queueing Plus
21 ========================
22
23 Sources:
24
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38 /*
39
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90 /*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94 #define QFQ_MAX_SLOTS 32
95
96 /*
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
107
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
110
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
113
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116
117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
118
119 /*
120 * Possible group states. These values are used as indexes for the bitmaps
121 * array of struct qfq_queue.
122 */
123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
124
125 struct qfq_group;
126
127 struct qfq_aggregate;
128
129 struct qfq_class {
130 struct Qdisc_class_common common;
131
132 unsigned int filter_cnt;
133
134 struct gnet_stats_basic_packed bstats;
135 struct gnet_stats_queue qstats;
136 struct net_rate_estimator __rcu *rate_est;
137 struct Qdisc *qdisc;
138 struct list_head alist; /* Link for active-classes list. */
139 struct qfq_aggregate *agg; /* Parent aggregate. */
140 int deficit; /* DRR deficit counter. */
141 };
142
143 struct qfq_aggregate {
144 struct hlist_node next; /* Link for the slot list. */
145 u64 S, F; /* flow timestamps (exact) */
146
147 /* group we belong to. In principle we would need the index,
148 * which is log_2(lmax/weight), but we never reference it
149 * directly, only the group.
150 */
151 struct qfq_group *grp;
152
153 /* these are copied from the flowset. */
154 u32 class_weight; /* Weight of each class in this aggregate. */
155 /* Max pkt size for the classes in this aggregate, DRR quantum. */
156 int lmax;
157
158 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
159 u32 budgetmax; /* Max budget for this aggregate. */
160 u32 initial_budget, budget; /* Initial and current budget. */
161
162 int num_classes; /* Number of classes in this aggr. */
163 struct list_head active; /* DRR queue of active classes. */
164
165 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
166 };
167
168 struct qfq_group {
169 u64 S, F; /* group timestamps (approx). */
170 unsigned int slot_shift; /* Slot shift. */
171 unsigned int index; /* Group index. */
172 unsigned int front; /* Index of the front slot. */
173 unsigned long full_slots; /* non-empty slots */
174
175 /* Array of RR lists of active aggregates. */
176 struct hlist_head slots[QFQ_MAX_SLOTS];
177 };
178
179 struct qfq_sched {
180 struct tcf_proto __rcu *filter_list;
181 struct tcf_block *block;
182 struct Qdisc_class_hash clhash;
183
184 u64 oldV, V; /* Precise virtual times. */
185 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
186 u32 wsum; /* weight sum */
187 u32 iwsum; /* inverse weight sum */
188
189 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
190 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
191 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
192
193 u32 max_agg_classes; /* Max number of classes per aggr. */
194 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
195 };
196
197 /*
198 * Possible reasons why the timestamps of an aggregate are updated
199 * enqueue: the aggregate switches from idle to active and must scheduled
200 * for service
201 * requeue: the aggregate finishes its budget, so it stops being served and
202 * must be rescheduled for service
203 */
204 enum update_reason {enqueue, requeue};
205
qfq_find_class(struct Qdisc * sch,u32 classid)206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
207 {
208 struct qfq_sched *q = qdisc_priv(sch);
209 struct Qdisc_class_common *clc;
210
211 clc = qdisc_class_find(&q->clhash, classid);
212 if (clc == NULL)
213 return NULL;
214 return container_of(clc, struct qfq_class, common);
215 }
216
217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
218 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
219 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
220 };
221
222 /*
223 * Calculate a flow index, given its weight and maximum packet length.
224 * index = log_2(maxlen/weight) but we need to apply the scaling.
225 * This is used only once at flow creation.
226 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
228 {
229 u64 slot_size = (u64)maxlen * inv_w;
230 unsigned long size_map;
231 int index = 0;
232
233 size_map = slot_size >> min_slot_shift;
234 if (!size_map)
235 goto out;
236
237 index = __fls(size_map) + 1; /* basically a log_2 */
238 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
239
240 if (index < 0)
241 index = 0;
242 out:
243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
244 (unsigned long) ONE_FP/inv_w, maxlen, index);
245
246 return index;
247 }
248
249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
251 enum update_reason);
252
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
254 u32 lmax, u32 weight)
255 {
256 INIT_LIST_HEAD(&agg->active);
257 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
258
259 agg->lmax = lmax;
260 agg->class_weight = weight;
261 }
262
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
264 u32 lmax, u32 weight)
265 {
266 struct qfq_aggregate *agg;
267
268 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
269 if (agg->lmax == lmax && agg->class_weight == weight)
270 return agg;
271
272 return NULL;
273 }
274
275
276 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
278 int new_num_classes)
279 {
280 u32 new_agg_weight;
281
282 if (new_num_classes == q->max_agg_classes)
283 hlist_del_init(&agg->nonfull_next);
284
285 if (agg->num_classes > new_num_classes &&
286 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
287 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
288
289 /* The next assignment may let
290 * agg->initial_budget > agg->budgetmax
291 * hold, we will take it into account in charge_actual_service().
292 */
293 agg->budgetmax = new_num_classes * agg->lmax;
294 new_agg_weight = agg->class_weight * new_num_classes;
295 agg->inv_w = ONE_FP/new_agg_weight;
296
297 if (agg->grp == NULL) {
298 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
299 q->min_slot_shift);
300 agg->grp = &q->groups[i];
301 }
302
303 q->wsum +=
304 (int) agg->class_weight * (new_num_classes - agg->num_classes);
305 q->iwsum = ONE_FP / q->wsum;
306
307 agg->num_classes = new_num_classes;
308 }
309
310 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)311 static void qfq_add_to_agg(struct qfq_sched *q,
312 struct qfq_aggregate *agg,
313 struct qfq_class *cl)
314 {
315 cl->agg = agg;
316
317 qfq_update_agg(q, agg, agg->num_classes+1);
318 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
319 list_add_tail(&cl->alist, &agg->active);
320 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
321 cl && q->in_serv_agg != agg) /* agg was inactive */
322 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
323 }
324 }
325
326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
327
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
329 {
330 hlist_del_init(&agg->nonfull_next);
331 q->wsum -= agg->class_weight;
332 if (q->wsum != 0)
333 q->iwsum = ONE_FP / q->wsum;
334
335 if (q->in_serv_agg == agg)
336 q->in_serv_agg = qfq_choose_next_agg(q);
337 kfree(agg);
338 }
339
340 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
342 {
343 struct qfq_aggregate *agg = cl->agg;
344
345
346 list_del(&cl->alist); /* remove from RR queue of the aggregate */
347 if (list_empty(&agg->active)) /* agg is now inactive */
348 qfq_deactivate_agg(q, agg);
349 }
350
351 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
353 {
354 struct qfq_aggregate *agg = cl->agg;
355
356 cl->agg = NULL;
357 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
358 qfq_destroy_agg(q, agg);
359 return;
360 }
361 qfq_update_agg(q, agg, agg->num_classes-1);
362 }
363
364 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 {
367 if (cl->qdisc->q.qlen > 0) /* class is active */
368 qfq_deactivate_class(q, cl);
369
370 qfq_rm_from_agg(q, cl);
371 }
372
373 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
375 u32 lmax)
376 {
377 struct qfq_sched *q = qdisc_priv(sch);
378 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
379
380 if (new_agg == NULL) { /* create new aggregate */
381 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
382 if (new_agg == NULL)
383 return -ENOBUFS;
384 qfq_init_agg(q, new_agg, lmax, weight);
385 }
386 qfq_deact_rm_from_agg(q, cl);
387 qfq_add_to_agg(q, new_agg, cl);
388
389 return 0;
390 }
391
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)392 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
393 struct nlattr **tca, unsigned long *arg,
394 struct netlink_ext_ack *extack)
395 {
396 struct qfq_sched *q = qdisc_priv(sch);
397 struct qfq_class *cl = (struct qfq_class *)*arg;
398 bool existing = false;
399 struct nlattr *tb[TCA_QFQ_MAX + 1];
400 struct qfq_aggregate *new_agg = NULL;
401 u32 weight, lmax, inv_w;
402 int err;
403 int delta_w;
404
405 if (tca[TCA_OPTIONS] == NULL) {
406 pr_notice("qfq: no options\n");
407 return -EINVAL;
408 }
409
410 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
411 qfq_policy, NULL);
412 if (err < 0)
413 return err;
414
415 if (tb[TCA_QFQ_WEIGHT]) {
416 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
417 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
418 pr_notice("qfq: invalid weight %u\n", weight);
419 return -EINVAL;
420 }
421 } else
422 weight = 1;
423
424 if (tb[TCA_QFQ_LMAX]) {
425 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
426 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
427 pr_notice("qfq: invalid max length %u\n", lmax);
428 return -EINVAL;
429 }
430 } else
431 lmax = psched_mtu(qdisc_dev(sch));
432
433 inv_w = ONE_FP / weight;
434 weight = ONE_FP / inv_w;
435
436 if (cl != NULL &&
437 lmax == cl->agg->lmax &&
438 weight == cl->agg->class_weight)
439 return 0; /* nothing to change */
440
441 delta_w = weight - (cl ? cl->agg->class_weight : 0);
442
443 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
444 pr_notice("qfq: total weight out of range (%d + %u)\n",
445 delta_w, q->wsum);
446 return -EINVAL;
447 }
448
449 if (cl != NULL) { /* modify existing class */
450 if (tca[TCA_RATE]) {
451 err = gen_replace_estimator(&cl->bstats, NULL,
452 &cl->rate_est,
453 NULL,
454 qdisc_root_sleeping_running(sch),
455 tca[TCA_RATE]);
456 if (err)
457 return err;
458 }
459 existing = true;
460 goto set_change_agg;
461 }
462
463 /* create and init new class */
464 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
465 if (cl == NULL)
466 return -ENOBUFS;
467
468 cl->common.classid = classid;
469 cl->deficit = lmax;
470
471 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
472 classid, NULL);
473 if (cl->qdisc == NULL)
474 cl->qdisc = &noop_qdisc;
475
476 if (tca[TCA_RATE]) {
477 err = gen_new_estimator(&cl->bstats, NULL,
478 &cl->rate_est,
479 NULL,
480 qdisc_root_sleeping_running(sch),
481 tca[TCA_RATE]);
482 if (err)
483 goto destroy_class;
484 }
485
486 if (cl->qdisc != &noop_qdisc)
487 qdisc_hash_add(cl->qdisc, true);
488
489 set_change_agg:
490 sch_tree_lock(sch);
491 new_agg = qfq_find_agg(q, lmax, weight);
492 if (new_agg == NULL) { /* create new aggregate */
493 sch_tree_unlock(sch);
494 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
495 if (new_agg == NULL) {
496 err = -ENOBUFS;
497 gen_kill_estimator(&cl->rate_est);
498 goto destroy_class;
499 }
500 sch_tree_lock(sch);
501 qfq_init_agg(q, new_agg, lmax, weight);
502 }
503 if (existing)
504 qfq_deact_rm_from_agg(q, cl);
505 else
506 qdisc_class_hash_insert(&q->clhash, &cl->common);
507 qfq_add_to_agg(q, new_agg, cl);
508 sch_tree_unlock(sch);
509 qdisc_class_hash_grow(sch, &q->clhash);
510
511 *arg = (unsigned long)cl;
512 return 0;
513
514 destroy_class:
515 qdisc_put(cl->qdisc);
516 kfree(cl);
517 return err;
518 }
519
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)520 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
521 {
522 struct qfq_sched *q = qdisc_priv(sch);
523
524 qfq_rm_from_agg(q, cl);
525 gen_kill_estimator(&cl->rate_est);
526 qdisc_put(cl->qdisc);
527 kfree(cl);
528 }
529
qfq_delete_class(struct Qdisc * sch,unsigned long arg)530 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
531 {
532 struct qfq_sched *q = qdisc_priv(sch);
533 struct qfq_class *cl = (struct qfq_class *)arg;
534
535 if (cl->filter_cnt > 0)
536 return -EBUSY;
537
538 sch_tree_lock(sch);
539
540 qdisc_purge_queue(cl->qdisc);
541 qdisc_class_hash_remove(&q->clhash, &cl->common);
542
543 sch_tree_unlock(sch);
544
545 qfq_destroy_class(sch, cl);
546 return 0;
547 }
548
qfq_search_class(struct Qdisc * sch,u32 classid)549 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
550 {
551 return (unsigned long)qfq_find_class(sch, classid);
552 }
553
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)554 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
555 struct netlink_ext_ack *extack)
556 {
557 struct qfq_sched *q = qdisc_priv(sch);
558
559 if (cl)
560 return NULL;
561
562 return q->block;
563 }
564
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)565 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
566 u32 classid)
567 {
568 struct qfq_class *cl = qfq_find_class(sch, classid);
569
570 if (cl != NULL)
571 cl->filter_cnt++;
572
573 return (unsigned long)cl;
574 }
575
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)576 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
577 {
578 struct qfq_class *cl = (struct qfq_class *)arg;
579
580 cl->filter_cnt--;
581 }
582
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)583 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
584 struct Qdisc *new, struct Qdisc **old,
585 struct netlink_ext_ack *extack)
586 {
587 struct qfq_class *cl = (struct qfq_class *)arg;
588
589 if (new == NULL) {
590 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
591 cl->common.classid, NULL);
592 if (new == NULL)
593 new = &noop_qdisc;
594 }
595
596 *old = qdisc_replace(sch, new, &cl->qdisc);
597 return 0;
598 }
599
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)600 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
601 {
602 struct qfq_class *cl = (struct qfq_class *)arg;
603
604 return cl->qdisc;
605 }
606
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)607 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
608 struct sk_buff *skb, struct tcmsg *tcm)
609 {
610 struct qfq_class *cl = (struct qfq_class *)arg;
611 struct nlattr *nest;
612
613 tcm->tcm_parent = TC_H_ROOT;
614 tcm->tcm_handle = cl->common.classid;
615 tcm->tcm_info = cl->qdisc->handle;
616
617 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
618 if (nest == NULL)
619 goto nla_put_failure;
620 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
621 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
622 goto nla_put_failure;
623 return nla_nest_end(skb, nest);
624
625 nla_put_failure:
626 nla_nest_cancel(skb, nest);
627 return -EMSGSIZE;
628 }
629
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)630 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
631 struct gnet_dump *d)
632 {
633 struct qfq_class *cl = (struct qfq_class *)arg;
634 struct tc_qfq_stats xstats;
635
636 memset(&xstats, 0, sizeof(xstats));
637
638 xstats.weight = cl->agg->class_weight;
639 xstats.lmax = cl->agg->lmax;
640
641 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
642 d, NULL, &cl->bstats) < 0 ||
643 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
644 qdisc_qstats_copy(d, cl->qdisc) < 0)
645 return -1;
646
647 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
648 }
649
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)650 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
651 {
652 struct qfq_sched *q = qdisc_priv(sch);
653 struct qfq_class *cl;
654 unsigned int i;
655
656 if (arg->stop)
657 return;
658
659 for (i = 0; i < q->clhash.hashsize; i++) {
660 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
661 if (arg->count < arg->skip) {
662 arg->count++;
663 continue;
664 }
665 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
666 arg->stop = 1;
667 return;
668 }
669 arg->count++;
670 }
671 }
672 }
673
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)674 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
675 int *qerr)
676 {
677 struct qfq_sched *q = qdisc_priv(sch);
678 struct qfq_class *cl;
679 struct tcf_result res;
680 struct tcf_proto *fl;
681 int result;
682
683 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
684 pr_debug("qfq_classify: found %d\n", skb->priority);
685 cl = qfq_find_class(sch, skb->priority);
686 if (cl != NULL)
687 return cl;
688 }
689
690 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
691 fl = rcu_dereference_bh(q->filter_list);
692 result = tcf_classify(skb, fl, &res, false);
693 if (result >= 0) {
694 #ifdef CONFIG_NET_CLS_ACT
695 switch (result) {
696 case TC_ACT_QUEUED:
697 case TC_ACT_STOLEN:
698 case TC_ACT_TRAP:
699 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
700 fallthrough;
701 case TC_ACT_SHOT:
702 return NULL;
703 }
704 #endif
705 cl = (struct qfq_class *)res.class;
706 if (cl == NULL)
707 cl = qfq_find_class(sch, res.classid);
708 return cl;
709 }
710
711 return NULL;
712 }
713
714 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)715 static inline int qfq_gt(u64 a, u64 b)
716 {
717 return (s64)(a - b) > 0;
718 }
719
720 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)721 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
722 {
723 return ts & ~((1ULL << shift) - 1);
724 }
725
726 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)727 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
728 unsigned long bitmap)
729 {
730 int index = __ffs(bitmap);
731 return &q->groups[index];
732 }
733 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)734 static inline unsigned long mask_from(unsigned long bitmap, int from)
735 {
736 return bitmap & ~((1UL << from) - 1);
737 }
738
739 /*
740 * The state computation relies on ER=0, IR=1, EB=2, IB=3
741 * First compute eligibility comparing grp->S, q->V,
742 * then check if someone is blocking us and possibly add EB
743 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)744 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
745 {
746 /* if S > V we are not eligible */
747 unsigned int state = qfq_gt(grp->S, q->V);
748 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
749 struct qfq_group *next;
750
751 if (mask) {
752 next = qfq_ffs(q, mask);
753 if (qfq_gt(grp->F, next->F))
754 state |= EB;
755 }
756
757 return state;
758 }
759
760
761 /*
762 * In principle
763 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
764 * q->bitmaps[src] &= ~mask;
765 * but we should make sure that src != dst
766 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)767 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
768 int src, int dst)
769 {
770 q->bitmaps[dst] |= q->bitmaps[src] & mask;
771 q->bitmaps[src] &= ~mask;
772 }
773
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)774 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
775 {
776 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
777 struct qfq_group *next;
778
779 if (mask) {
780 next = qfq_ffs(q, mask);
781 if (!qfq_gt(next->F, old_F))
782 return;
783 }
784
785 mask = (1UL << index) - 1;
786 qfq_move_groups(q, mask, EB, ER);
787 qfq_move_groups(q, mask, IB, IR);
788 }
789
790 /*
791 * perhaps
792 *
793 old_V ^= q->V;
794 old_V >>= q->min_slot_shift;
795 if (old_V) {
796 ...
797 }
798 *
799 */
qfq_make_eligible(struct qfq_sched * q)800 static void qfq_make_eligible(struct qfq_sched *q)
801 {
802 unsigned long vslot = q->V >> q->min_slot_shift;
803 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
804
805 if (vslot != old_vslot) {
806 unsigned long mask;
807 int last_flip_pos = fls(vslot ^ old_vslot);
808
809 if (last_flip_pos > 31) /* higher than the number of groups */
810 mask = ~0UL; /* make all groups eligible */
811 else
812 mask = (1UL << last_flip_pos) - 1;
813
814 qfq_move_groups(q, mask, IR, ER);
815 qfq_move_groups(q, mask, IB, EB);
816 }
817 }
818
819 /*
820 * The index of the slot in which the input aggregate agg is to be
821 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
822 * and not a '-1' because the start time of the group may be moved
823 * backward by one slot after the aggregate has been inserted, and
824 * this would cause non-empty slots to be right-shifted by one
825 * position.
826 *
827 * QFQ+ fully satisfies this bound to the slot index if the parameters
828 * of the classes are not changed dynamically, and if QFQ+ never
829 * happens to postpone the service of agg unjustly, i.e., it never
830 * happens that the aggregate becomes backlogged and eligible, or just
831 * eligible, while an aggregate with a higher approximated finish time
832 * is being served. In particular, in this case QFQ+ guarantees that
833 * the timestamps of agg are low enough that the slot index is never
834 * higher than 2. Unfortunately, QFQ+ cannot provide the same
835 * guarantee if it happens to unjustly postpone the service of agg, or
836 * if the parameters of some class are changed.
837 *
838 * As for the first event, i.e., an out-of-order service, the
839 * upper bound to the slot index guaranteed by QFQ+ grows to
840 * 2 +
841 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
842 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
843 *
844 * The following function deals with this problem by backward-shifting
845 * the timestamps of agg, if needed, so as to guarantee that the slot
846 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
847 * cause the service of other aggregates to be postponed, yet the
848 * worst-case guarantees of these aggregates are not violated. In
849 * fact, in case of no out-of-order service, the timestamps of agg
850 * would have been even lower than they are after the backward shift,
851 * because QFQ+ would have guaranteed a maximum value equal to 2 for
852 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
853 * service is postponed because of the backward-shift would have
854 * however waited for the service of agg before being served.
855 *
856 * The other event that may cause the slot index to be higher than 2
857 * for agg is a recent change of the parameters of some class. If the
858 * weight of a class is increased or the lmax (max_pkt_size) of the
859 * class is decreased, then a new aggregate with smaller slot size
860 * than the original parent aggregate of the class may happen to be
861 * activated. The activation of this aggregate should be properly
862 * delayed to when the service of the class has finished in the ideal
863 * system tracked by QFQ+. If the activation of the aggregate is not
864 * delayed to this reference time instant, then this aggregate may be
865 * unjustly served before other aggregates waiting for service. This
866 * may cause the above bound to the slot index to be violated for some
867 * of these unlucky aggregates.
868 *
869 * Instead of delaying the activation of the new aggregate, which is
870 * quite complex, the above-discussed capping of the slot index is
871 * used to handle also the consequences of a change of the parameters
872 * of a class.
873 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)874 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
875 u64 roundedS)
876 {
877 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
878 unsigned int i; /* slot index in the bucket list */
879
880 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
881 u64 deltaS = roundedS - grp->S -
882 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
883 agg->S -= deltaS;
884 agg->F -= deltaS;
885 slot = QFQ_MAX_SLOTS - 2;
886 }
887
888 i = (grp->front + slot) % QFQ_MAX_SLOTS;
889
890 hlist_add_head(&agg->next, &grp->slots[i]);
891 __set_bit(slot, &grp->full_slots);
892 }
893
894 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)895 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
896 {
897 return hlist_entry(grp->slots[grp->front].first,
898 struct qfq_aggregate, next);
899 }
900
901 /*
902 * remove the entry from the slot
903 */
qfq_front_slot_remove(struct qfq_group * grp)904 static void qfq_front_slot_remove(struct qfq_group *grp)
905 {
906 struct qfq_aggregate *agg = qfq_slot_head(grp);
907
908 BUG_ON(!agg);
909 hlist_del(&agg->next);
910 if (hlist_empty(&grp->slots[grp->front]))
911 __clear_bit(0, &grp->full_slots);
912 }
913
914 /*
915 * Returns the first aggregate in the first non-empty bucket of the
916 * group. As a side effect, adjusts the bucket list so the first
917 * non-empty bucket is at position 0 in full_slots.
918 */
qfq_slot_scan(struct qfq_group * grp)919 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
920 {
921 unsigned int i;
922
923 pr_debug("qfq slot_scan: grp %u full %#lx\n",
924 grp->index, grp->full_slots);
925
926 if (grp->full_slots == 0)
927 return NULL;
928
929 i = __ffs(grp->full_slots); /* zero based */
930 if (i > 0) {
931 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
932 grp->full_slots >>= i;
933 }
934
935 return qfq_slot_head(grp);
936 }
937
938 /*
939 * adjust the bucket list. When the start time of a group decreases,
940 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
941 * move the objects. The mask of occupied slots must be shifted
942 * because we use ffs() to find the first non-empty slot.
943 * This covers decreases in the group's start time, but what about
944 * increases of the start time ?
945 * Here too we should make sure that i is less than 32
946 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)947 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
948 {
949 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
950
951 grp->full_slots <<= i;
952 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
953 }
954
qfq_update_eligible(struct qfq_sched * q)955 static void qfq_update_eligible(struct qfq_sched *q)
956 {
957 struct qfq_group *grp;
958 unsigned long ineligible;
959
960 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
961 if (ineligible) {
962 if (!q->bitmaps[ER]) {
963 grp = qfq_ffs(q, ineligible);
964 if (qfq_gt(grp->S, q->V))
965 q->V = grp->S;
966 }
967 qfq_make_eligible(q);
968 }
969 }
970
971 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)972 static void agg_dequeue(struct qfq_aggregate *agg,
973 struct qfq_class *cl, unsigned int len)
974 {
975 qdisc_dequeue_peeked(cl->qdisc);
976
977 cl->deficit -= (int) len;
978
979 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
980 list_del(&cl->alist);
981 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
982 cl->deficit += agg->lmax;
983 list_move_tail(&cl->alist, &agg->active);
984 }
985 }
986
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)987 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
988 struct qfq_class **cl,
989 unsigned int *len)
990 {
991 struct sk_buff *skb;
992
993 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
994 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
995 if (skb == NULL)
996 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
997 else
998 *len = qdisc_pkt_len(skb);
999
1000 return skb;
1001 }
1002
1003 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1004 static inline void charge_actual_service(struct qfq_aggregate *agg)
1005 {
1006 /* Compute the service received by the aggregate, taking into
1007 * account that, after decreasing the number of classes in
1008 * agg, it may happen that
1009 * agg->initial_budget - agg->budget > agg->bugdetmax
1010 */
1011 u32 service_received = min(agg->budgetmax,
1012 agg->initial_budget - agg->budget);
1013
1014 agg->F = agg->S + (u64)service_received * agg->inv_w;
1015 }
1016
1017 /* Assign a reasonable start time for a new aggregate in group i.
1018 * Admissible values for \hat(F) are multiples of \sigma_i
1019 * no greater than V+\sigma_i . Larger values mean that
1020 * we had a wraparound so we consider the timestamp to be stale.
1021 *
1022 * If F is not stale and F >= V then we set S = F.
1023 * Otherwise we should assign S = V, but this may violate
1024 * the ordering in EB (see [2]). So, if we have groups in ER,
1025 * set S to the F_j of the first group j which would be blocking us.
1026 * We are guaranteed not to move S backward because
1027 * otherwise our group i would still be blocked.
1028 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1029 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1030 {
1031 unsigned long mask;
1032 u64 limit, roundedF;
1033 int slot_shift = agg->grp->slot_shift;
1034
1035 roundedF = qfq_round_down(agg->F, slot_shift);
1036 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1037
1038 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1039 /* timestamp was stale */
1040 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1041 if (mask) {
1042 struct qfq_group *next = qfq_ffs(q, mask);
1043 if (qfq_gt(roundedF, next->F)) {
1044 if (qfq_gt(limit, next->F))
1045 agg->S = next->F;
1046 else /* preserve timestamp correctness */
1047 agg->S = limit;
1048 return;
1049 }
1050 }
1051 agg->S = q->V;
1052 } else /* timestamp is not stale */
1053 agg->S = agg->F;
1054 }
1055
1056 /* Update the timestamps of agg before scheduling/rescheduling it for
1057 * service. In particular, assign to agg->F its maximum possible
1058 * value, i.e., the virtual finish time with which the aggregate
1059 * should be labeled if it used all its budget once in service.
1060 */
1061 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1062 qfq_update_agg_ts(struct qfq_sched *q,
1063 struct qfq_aggregate *agg, enum update_reason reason)
1064 {
1065 if (reason != requeue)
1066 qfq_update_start(q, agg);
1067 else /* just charge agg for the service received */
1068 agg->S = agg->F;
1069
1070 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1071 }
1072
1073 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1074
qfq_dequeue(struct Qdisc * sch)1075 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1076 {
1077 struct qfq_sched *q = qdisc_priv(sch);
1078 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1079 struct qfq_class *cl;
1080 struct sk_buff *skb = NULL;
1081 /* next-packet len, 0 means no more active classes in in-service agg */
1082 unsigned int len = 0;
1083
1084 if (in_serv_agg == NULL)
1085 return NULL;
1086
1087 if (!list_empty(&in_serv_agg->active))
1088 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1089
1090 /*
1091 * If there are no active classes in the in-service aggregate,
1092 * or if the aggregate has not enough budget to serve its next
1093 * class, then choose the next aggregate to serve.
1094 */
1095 if (len == 0 || in_serv_agg->budget < len) {
1096 charge_actual_service(in_serv_agg);
1097
1098 /* recharge the budget of the aggregate */
1099 in_serv_agg->initial_budget = in_serv_agg->budget =
1100 in_serv_agg->budgetmax;
1101
1102 if (!list_empty(&in_serv_agg->active)) {
1103 /*
1104 * Still active: reschedule for
1105 * service. Possible optimization: if no other
1106 * aggregate is active, then there is no point
1107 * in rescheduling this aggregate, and we can
1108 * just keep it as the in-service one. This
1109 * should be however a corner case, and to
1110 * handle it, we would need to maintain an
1111 * extra num_active_aggs field.
1112 */
1113 qfq_update_agg_ts(q, in_serv_agg, requeue);
1114 qfq_schedule_agg(q, in_serv_agg);
1115 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1116 q->in_serv_agg = NULL;
1117 return NULL;
1118 }
1119
1120 /*
1121 * If we get here, there are other aggregates queued:
1122 * choose the new aggregate to serve.
1123 */
1124 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1125 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1126 }
1127 if (!skb)
1128 return NULL;
1129
1130 qdisc_qstats_backlog_dec(sch, skb);
1131 sch->q.qlen--;
1132 qdisc_bstats_update(sch, skb);
1133
1134 agg_dequeue(in_serv_agg, cl, len);
1135 /* If lmax is lowered, through qfq_change_class, for a class
1136 * owning pending packets with larger size than the new value
1137 * of lmax, then the following condition may hold.
1138 */
1139 if (unlikely(in_serv_agg->budget < len))
1140 in_serv_agg->budget = 0;
1141 else
1142 in_serv_agg->budget -= len;
1143
1144 q->V += (u64)len * q->iwsum;
1145 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1146 len, (unsigned long long) in_serv_agg->F,
1147 (unsigned long long) q->V);
1148
1149 return skb;
1150 }
1151
qfq_choose_next_agg(struct qfq_sched * q)1152 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1153 {
1154 struct qfq_group *grp;
1155 struct qfq_aggregate *agg, *new_front_agg;
1156 u64 old_F;
1157
1158 qfq_update_eligible(q);
1159 q->oldV = q->V;
1160
1161 if (!q->bitmaps[ER])
1162 return NULL;
1163
1164 grp = qfq_ffs(q, q->bitmaps[ER]);
1165 old_F = grp->F;
1166
1167 agg = qfq_slot_head(grp);
1168
1169 /* agg starts to be served, remove it from schedule */
1170 qfq_front_slot_remove(grp);
1171
1172 new_front_agg = qfq_slot_scan(grp);
1173
1174 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1175 __clear_bit(grp->index, &q->bitmaps[ER]);
1176 else {
1177 u64 roundedS = qfq_round_down(new_front_agg->S,
1178 grp->slot_shift);
1179 unsigned int s;
1180
1181 if (grp->S == roundedS)
1182 return agg;
1183 grp->S = roundedS;
1184 grp->F = roundedS + (2ULL << grp->slot_shift);
1185 __clear_bit(grp->index, &q->bitmaps[ER]);
1186 s = qfq_calc_state(q, grp);
1187 __set_bit(grp->index, &q->bitmaps[s]);
1188 }
1189
1190 qfq_unblock_groups(q, grp->index, old_F);
1191
1192 return agg;
1193 }
1194
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1195 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1196 struct sk_buff **to_free)
1197 {
1198 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1199 struct qfq_sched *q = qdisc_priv(sch);
1200 struct qfq_class *cl;
1201 struct qfq_aggregate *agg;
1202 int err = 0;
1203 bool first;
1204
1205 cl = qfq_classify(skb, sch, &err);
1206 if (cl == NULL) {
1207 if (err & __NET_XMIT_BYPASS)
1208 qdisc_qstats_drop(sch);
1209 __qdisc_drop(skb, to_free);
1210 return err;
1211 }
1212 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1213
1214 if (unlikely(cl->agg->lmax < len)) {
1215 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1216 cl->agg->lmax, len, cl->common.classid);
1217 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1218 if (err) {
1219 cl->qstats.drops++;
1220 return qdisc_drop(skb, sch, to_free);
1221 }
1222 }
1223
1224 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1225 first = !cl->qdisc->q.qlen;
1226 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1227 if (unlikely(err != NET_XMIT_SUCCESS)) {
1228 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1229 if (net_xmit_drop_count(err)) {
1230 cl->qstats.drops++;
1231 qdisc_qstats_drop(sch);
1232 }
1233 return err;
1234 }
1235
1236 cl->bstats.bytes += len;
1237 cl->bstats.packets += gso_segs;
1238 sch->qstats.backlog += len;
1239 ++sch->q.qlen;
1240
1241 agg = cl->agg;
1242 /* if the queue was not empty, then done here */
1243 if (!first) {
1244 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1245 list_first_entry(&agg->active, struct qfq_class, alist)
1246 == cl && cl->deficit < len)
1247 list_move_tail(&cl->alist, &agg->active);
1248
1249 return err;
1250 }
1251
1252 /* schedule class for service within the aggregate */
1253 cl->deficit = agg->lmax;
1254 list_add_tail(&cl->alist, &agg->active);
1255
1256 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1257 q->in_serv_agg == agg)
1258 return err; /* non-empty or in service, nothing else to do */
1259
1260 qfq_activate_agg(q, agg, enqueue);
1261
1262 return err;
1263 }
1264
1265 /*
1266 * Schedule aggregate according to its timestamps.
1267 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1268 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1269 {
1270 struct qfq_group *grp = agg->grp;
1271 u64 roundedS;
1272 int s;
1273
1274 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1275
1276 /*
1277 * Insert agg in the correct bucket.
1278 * If agg->S >= grp->S we don't need to adjust the
1279 * bucket list and simply go to the insertion phase.
1280 * Otherwise grp->S is decreasing, we must make room
1281 * in the bucket list, and also recompute the group state.
1282 * Finally, if there were no flows in this group and nobody
1283 * was in ER make sure to adjust V.
1284 */
1285 if (grp->full_slots) {
1286 if (!qfq_gt(grp->S, agg->S))
1287 goto skip_update;
1288
1289 /* create a slot for this agg->S */
1290 qfq_slot_rotate(grp, roundedS);
1291 /* group was surely ineligible, remove */
1292 __clear_bit(grp->index, &q->bitmaps[IR]);
1293 __clear_bit(grp->index, &q->bitmaps[IB]);
1294 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1295 q->in_serv_agg == NULL)
1296 q->V = roundedS;
1297
1298 grp->S = roundedS;
1299 grp->F = roundedS + (2ULL << grp->slot_shift);
1300 s = qfq_calc_state(q, grp);
1301 __set_bit(grp->index, &q->bitmaps[s]);
1302
1303 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1304 s, q->bitmaps[s],
1305 (unsigned long long) agg->S,
1306 (unsigned long long) agg->F,
1307 (unsigned long long) q->V);
1308
1309 skip_update:
1310 qfq_slot_insert(grp, agg, roundedS);
1311 }
1312
1313
1314 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1315 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1316 enum update_reason reason)
1317 {
1318 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1319
1320 qfq_update_agg_ts(q, agg, reason);
1321 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1322 q->in_serv_agg = agg; /* start serving this aggregate */
1323 /* update V: to be in service, agg must be eligible */
1324 q->oldV = q->V = agg->S;
1325 } else if (agg != q->in_serv_agg)
1326 qfq_schedule_agg(q, agg);
1327 }
1328
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1329 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1330 struct qfq_aggregate *agg)
1331 {
1332 unsigned int i, offset;
1333 u64 roundedS;
1334
1335 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1336 offset = (roundedS - grp->S) >> grp->slot_shift;
1337
1338 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1339
1340 hlist_del(&agg->next);
1341 if (hlist_empty(&grp->slots[i]))
1342 __clear_bit(offset, &grp->full_slots);
1343 }
1344
1345 /*
1346 * Called to forcibly deschedule an aggregate. If the aggregate is
1347 * not in the front bucket, or if the latter has other aggregates in
1348 * the front bucket, we can simply remove the aggregate with no other
1349 * side effects.
1350 * Otherwise we must propagate the event up.
1351 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1352 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1353 {
1354 struct qfq_group *grp = agg->grp;
1355 unsigned long mask;
1356 u64 roundedS;
1357 int s;
1358
1359 if (agg == q->in_serv_agg) {
1360 charge_actual_service(agg);
1361 q->in_serv_agg = qfq_choose_next_agg(q);
1362 return;
1363 }
1364
1365 agg->F = agg->S;
1366 qfq_slot_remove(q, grp, agg);
1367
1368 if (!grp->full_slots) {
1369 __clear_bit(grp->index, &q->bitmaps[IR]);
1370 __clear_bit(grp->index, &q->bitmaps[EB]);
1371 __clear_bit(grp->index, &q->bitmaps[IB]);
1372
1373 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1374 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1375 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1376 if (mask)
1377 mask = ~((1UL << __fls(mask)) - 1);
1378 else
1379 mask = ~0UL;
1380 qfq_move_groups(q, mask, EB, ER);
1381 qfq_move_groups(q, mask, IB, IR);
1382 }
1383 __clear_bit(grp->index, &q->bitmaps[ER]);
1384 } else if (hlist_empty(&grp->slots[grp->front])) {
1385 agg = qfq_slot_scan(grp);
1386 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1387 if (grp->S != roundedS) {
1388 __clear_bit(grp->index, &q->bitmaps[ER]);
1389 __clear_bit(grp->index, &q->bitmaps[IR]);
1390 __clear_bit(grp->index, &q->bitmaps[EB]);
1391 __clear_bit(grp->index, &q->bitmaps[IB]);
1392 grp->S = roundedS;
1393 grp->F = roundedS + (2ULL << grp->slot_shift);
1394 s = qfq_calc_state(q, grp);
1395 __set_bit(grp->index, &q->bitmaps[s]);
1396 }
1397 }
1398 }
1399
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1400 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1401 {
1402 struct qfq_sched *q = qdisc_priv(sch);
1403 struct qfq_class *cl = (struct qfq_class *)arg;
1404
1405 qfq_deactivate_class(q, cl);
1406 }
1407
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1408 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1409 struct netlink_ext_ack *extack)
1410 {
1411 struct qfq_sched *q = qdisc_priv(sch);
1412 struct qfq_group *grp;
1413 int i, j, err;
1414 u32 max_cl_shift, maxbudg_shift, max_classes;
1415
1416 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1417 if (err)
1418 return err;
1419
1420 err = qdisc_class_hash_init(&q->clhash);
1421 if (err < 0)
1422 return err;
1423
1424 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1425 QFQ_MAX_AGG_CLASSES);
1426 /* max_cl_shift = floor(log_2(max_classes)) */
1427 max_cl_shift = __fls(max_classes);
1428 q->max_agg_classes = 1<<max_cl_shift;
1429
1430 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1431 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1432 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1433
1434 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1435 grp = &q->groups[i];
1436 grp->index = i;
1437 grp->slot_shift = q->min_slot_shift + i;
1438 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1439 INIT_HLIST_HEAD(&grp->slots[j]);
1440 }
1441
1442 INIT_HLIST_HEAD(&q->nonfull_aggs);
1443
1444 return 0;
1445 }
1446
qfq_reset_qdisc(struct Qdisc * sch)1447 static void qfq_reset_qdisc(struct Qdisc *sch)
1448 {
1449 struct qfq_sched *q = qdisc_priv(sch);
1450 struct qfq_class *cl;
1451 unsigned int i;
1452
1453 for (i = 0; i < q->clhash.hashsize; i++) {
1454 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1455 if (cl->qdisc->q.qlen > 0)
1456 qfq_deactivate_class(q, cl);
1457
1458 qdisc_reset(cl->qdisc);
1459 }
1460 }
1461 sch->qstats.backlog = 0;
1462 sch->q.qlen = 0;
1463 }
1464
qfq_destroy_qdisc(struct Qdisc * sch)1465 static void qfq_destroy_qdisc(struct Qdisc *sch)
1466 {
1467 struct qfq_sched *q = qdisc_priv(sch);
1468 struct qfq_class *cl;
1469 struct hlist_node *next;
1470 unsigned int i;
1471
1472 tcf_block_put(q->block);
1473
1474 for (i = 0; i < q->clhash.hashsize; i++) {
1475 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1476 common.hnode) {
1477 qfq_destroy_class(sch, cl);
1478 }
1479 }
1480 qdisc_class_hash_destroy(&q->clhash);
1481 }
1482
1483 static const struct Qdisc_class_ops qfq_class_ops = {
1484 .change = qfq_change_class,
1485 .delete = qfq_delete_class,
1486 .find = qfq_search_class,
1487 .tcf_block = qfq_tcf_block,
1488 .bind_tcf = qfq_bind_tcf,
1489 .unbind_tcf = qfq_unbind_tcf,
1490 .graft = qfq_graft_class,
1491 .leaf = qfq_class_leaf,
1492 .qlen_notify = qfq_qlen_notify,
1493 .dump = qfq_dump_class,
1494 .dump_stats = qfq_dump_class_stats,
1495 .walk = qfq_walk,
1496 };
1497
1498 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1499 .cl_ops = &qfq_class_ops,
1500 .id = "qfq",
1501 .priv_size = sizeof(struct qfq_sched),
1502 .enqueue = qfq_enqueue,
1503 .dequeue = qfq_dequeue,
1504 .peek = qdisc_peek_dequeued,
1505 .init = qfq_init_qdisc,
1506 .reset = qfq_reset_qdisc,
1507 .destroy = qfq_destroy_qdisc,
1508 .owner = THIS_MODULE,
1509 };
1510
qfq_init(void)1511 static int __init qfq_init(void)
1512 {
1513 return register_qdisc(&qfq_qdisc_ops);
1514 }
1515
qfq_exit(void)1516 static void __exit qfq_exit(void)
1517 {
1518 unregister_qdisc(&qfq_qdisc_ops);
1519 }
1520
1521 module_init(qfq_init);
1522 module_exit(qfq_exit);
1523 MODULE_LICENSE("GPL");
1524