1 /* $FreeBSD: releng/12.2/sys/dev/usb/usb_transfer.c 363664 2020-07-29 14:30:42Z markj $ */ 2 /*- 3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 4 * 5 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "implementation/global_implementation.h" 30 31 #undef USB_DEBUG_VAR 32 #define USB_DEBUG_VAR usb_debug 33 34 SPIN_LOCK_INIT(g_usb_wait_queue_spinlock); 35 36 struct usb_std_packet_size { 37 struct { 38 uint16_t min; /* inclusive */ 39 uint16_t max; /* inclusive */ 40 } range; 41 42 uint16_t fixed[4]; 43 }; 44 45 static usb_callback_t usb_request_callback; 46 47 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 48 49 /* This transfer is used for generic control endpoint transfers */ 50 51 [0] = { 52 .type = UE_CONTROL, 53 .endpoint = 0x00, /* Control endpoint */ 54 .direction = UE_DIR_ANY, 55 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 56 .flags = {.proxy_buffer = 1,}, 57 .callback = &usb_request_callback, 58 .usb_mode = USB_MODE_DUAL, /* both modes */ 59 }, 60 61 /* This transfer is used for generic clear stall only */ 62 63 [1] = { 64 .type = UE_CONTROL, 65 .endpoint = 0x00, /* Control pipe */ 66 .direction = UE_DIR_ANY, 67 .bufsize = sizeof(struct usb_device_request), 68 .callback = &usb_do_clear_stall_callback, 69 .timeout = 1000, /* 1 second */ 70 .interval = 50, /* 50ms */ 71 .usb_mode = USB_MODE_HOST, 72 }, 73 }; 74 75 static const struct usb_config usb_control_ep_quirk_cfg[USB_CTRL_XFER_MAX] = { 76 77 /* This transfer is used for generic control endpoint transfers */ 78 79 [0] = { 80 .type = UE_CONTROL, 81 .endpoint = 0x00, /* Control endpoint */ 82 .direction = UE_DIR_ANY, 83 .bufsize = 65535, /* bytes */ 84 .callback = &usb_request_callback, 85 .usb_mode = USB_MODE_DUAL, /* both modes */ 86 }, 87 88 /* This transfer is used for generic clear stall only */ 89 90 [1] = { 91 .type = UE_CONTROL, 92 .endpoint = 0x00, /* Control pipe */ 93 .direction = UE_DIR_ANY, 94 .bufsize = sizeof(struct usb_device_request), 95 .callback = &usb_do_clear_stall_callback, 96 .timeout = 1000, /* 1 second */ 97 .interval = 50, /* 50ms */ 98 .usb_mode = USB_MODE_HOST, 99 }, 100 }; 101 102 /* function prototypes */ 103 104 static void usbd_update_max_frame_size(struct usb_xfer *); 105 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 106 static void usbd_control_transfer_init(struct usb_xfer *); 107 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 108 static void usb_callback_proc(struct usb_proc_msg *); 109 static void usbd_callback_ss_done_defer(struct usb_xfer *); 110 static void usbd_callback_wrapper(struct usb_xfer_queue *); 111 static void usbd_transfer_start_cb(void *); 112 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 113 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 114 uint8_t type, enum usb_dev_speed speed); 115 116 /*------------------------------------------------------------------------* 117 * usb_request_callback 118 *------------------------------------------------------------------------*/ 119 static void 120 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 121 { 122 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 123 usb_handle_request_callback(xfer, error); 124 else 125 usbd_do_request_callback(xfer, error); 126 } 127 128 /*------------------------------------------------------------------------* 129 * usbd_update_max_frame_size 130 * 131 * This function updates the maximum frame size, hence high speed USB 132 * can transfer multiple consecutive packets. 133 *------------------------------------------------------------------------*/ 134 static void 135 usbd_update_max_frame_size(struct usb_xfer *xfer) 136 { 137 /* compute maximum frame size */ 138 /* this computation should not overflow 16-bit */ 139 /* max = 15 * 1024 */ 140 141 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 142 } 143 144 /*------------------------------------------------------------------------* 145 * usbd_get_dma_delay 146 * 147 * The following function is called when we need to 148 * synchronize with DMA hardware. 149 * 150 * Returns: 151 * 0: no DMA delay required 152 * Else: milliseconds of DMA delay 153 *------------------------------------------------------------------------*/ 154 usb_timeout_t 155 usbd_get_dma_delay(struct usb_device *udev) 156 { 157 const struct usb_bus_methods *mtod; 158 uint32_t temp; 159 160 mtod = udev->bus->methods; 161 temp = 0; 162 163 if (mtod->get_dma_delay) { 164 (mtod->get_dma_delay) (udev, &temp); 165 /* 166 * Round up and convert to milliseconds. Note that we use 167 * 1024 milliseconds per second. to save a division. 168 */ 169 temp += 0x3FF; 170 temp /= 0x400; 171 } 172 return (temp); 173 } 174 175 /*------------------------------------------------------------------------* 176 * usbd_transfer_setup_sub_malloc 177 * 178 * This function will allocate one or more DMA'able memory chunks 179 * according to "size", "align" and "count" arguments. "ppc" is 180 * pointed to a linear array of USB page caches afterwards. 181 * 182 * If the "align" argument is equal to "1" a non-contiguous allocation 183 * can happen. Else if the "align" argument is greater than "1", the 184 * allocation will always be contiguous in memory. 185 * 186 * Returns: 187 * 0: Success 188 * Else: Failure 189 *------------------------------------------------------------------------*/ 190 #if USB_HAVE_BUSDMA 191 uint8_t 192 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 193 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 194 usb_size_t count) 195 { 196 struct usb_page_cache *pc; 197 struct usb_page *pg; 198 void *buf; 199 usb_size_t n_dma_pc; 200 usb_size_t n_dma_pg; 201 usb_size_t n_obj; 202 usb_size_t x; 203 usb_size_t y; 204 usb_size_t r; 205 usb_size_t z; 206 207 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 208 align)); 209 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 210 211 if (count == 0) { 212 return (0); /* nothing to allocate */ 213 } 214 /* 215 * Make sure that the size is aligned properly. 216 */ 217 size = -((-size) & (-align)); 218 219 /* 220 * Try multi-allocation chunks to reduce the number of DMA 221 * allocations, hence DMA allocations are slow. 222 */ 223 if (align == 1) { 224 /* special case - non-cached multi page DMA memory */ 225 n_dma_pc = count; 226 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 227 n_obj = 1; 228 } else if (size >= USB_PAGE_SIZE) { 229 n_dma_pc = count; 230 n_dma_pg = 1; 231 n_obj = 1; 232 } else { 233 /* compute number of objects per page */ 234 n_obj = (USB_PAGE_SIZE / size); 235 /* 236 * Compute number of DMA chunks, rounded up 237 * to nearest one: 238 */ 239 n_dma_pc = ((count + n_obj - 1) / n_obj); 240 n_dma_pg = 1; 241 } 242 243 /* 244 * DMA memory is allocated once, but mapped twice. That's why 245 * there is one list for auto-free and another list for 246 * non-auto-free which only holds the mapping and not the 247 * allocation. 248 */ 249 if (parm->buf == NULL) { 250 /* reserve memory (auto-free) */ 251 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 252 parm->dma_page_cache_ptr += n_dma_pc; 253 254 /* reserve memory (no-auto-free) */ 255 parm->dma_page_ptr += count * n_dma_pg; 256 parm->xfer_page_cache_ptr += count; 257 return (0); 258 } 259 for (x = 0; x != n_dma_pc; x++) { 260 /* need to initialize the page cache */ 261 parm->dma_page_cache_ptr[x].tag_parent = 262 &parm->curr_xfer->xroot->dma_parent_tag; 263 } 264 for (x = 0; x != count; x++) { 265 /* need to initialize the page cache */ 266 parm->xfer_page_cache_ptr[x].tag_parent = 267 &parm->curr_xfer->xroot->dma_parent_tag; 268 } 269 270 if (ppc != NULL) { 271 *ppc = parm->xfer_page_cache_ptr; 272 } 273 r = count; /* set remainder count */ 274 z = n_obj * size; /* set allocation size */ 275 pc = parm->xfer_page_cache_ptr; 276 pg = parm->dma_page_ptr; 277 278 for (x = 0; x != n_dma_pc; x++) { 279 280 if (r < n_obj) { 281 /* compute last remainder */ 282 z = r * size; 283 n_obj = r; 284 } 285 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 286 pg, z, align)) { 287 return (1); /* failure */ 288 } 289 /* Set beginning of current buffer */ 290 buf = parm->dma_page_cache_ptr->buffer; 291 /* Make room for one DMA page cache and one page */ 292 parm->dma_page_cache_ptr++; 293 pg += n_dma_pg; 294 295 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 296 297 /* Load sub-chunk into DMA */ 298 if (usb_pc_dmamap_create(pc, size)) { 299 return (1); /* failure */ 300 } 301 pc->buffer = USB_ADD_BYTES(buf, y * size); 302 pc->page_start = pg; 303 304 USB_MTX_LOCK(pc->tag_parent->mtx); 305 (void)usb_pc_load_mem(pc, size, 1 /* synchronous */ ); 306 USB_MTX_UNLOCK(pc->tag_parent->mtx); 307 } 308 } 309 310 parm->xfer_page_cache_ptr = pc; 311 parm->dma_page_ptr = pg; 312 return (0); 313 } 314 #endif 315 316 /*------------------------------------------------------------------------* 317 * usbd_transfer_setup_sub - transfer setup subroutine 318 * 319 * This function must be called from the "xfer_setup" callback of the 320 * USB Host or Device controller driver when setting up an USB 321 * transfer. This function will setup correct packet sizes, buffer 322 * sizes, flags and more, that are stored in the "usb_xfer" 323 * structure. 324 *------------------------------------------------------------------------*/ 325 void 326 usbd_transfer_setup_sub(struct usb_setup_params *parm) 327 { 328 enum { 329 REQ_SIZE = 8, 330 MIN_PKT = 8, 331 }; 332 struct usb_xfer *xfer = parm->curr_xfer; 333 const struct usb_config *setup = parm->curr_setup; 334 struct usb_endpoint_ss_comp_descriptor *ecomp; 335 struct usb_endpoint_descriptor *edesc; 336 struct usb_std_packet_size std_size; 337 usb_frcount_t n_frlengths; 338 usb_frcount_t n_frbuffers; 339 usb_frcount_t x; 340 uint16_t maxp_old; 341 uint8_t type; 342 uint8_t zmps; 343 344 /* 345 * Sanity check. The following parameters must be initialized before 346 * calling this function. 347 */ 348 if ((parm->hc_max_packet_size == 0) || 349 (parm->hc_max_packet_count == 0) || 350 (parm->hc_max_frame_size == 0)) { 351 parm->err = USB_ERR_INVAL; 352 goto done; 353 } 354 edesc = xfer->endpoint->edesc; 355 ecomp = xfer->endpoint->ecomp; 356 357 type = (edesc->bmAttributes & UE_XFERTYPE); 358 359 xfer->flags = setup->flags; 360 xfer->nframes = setup->frames; 361 xfer->timeout = setup->timeout; 362 xfer->callback = setup->callback; 363 xfer->interval = setup->interval; 364 xfer->endpointno = edesc->bEndpointAddress; 365 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 366 xfer->max_packet_count = 1; 367 /* make a shadow copy: */ 368 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 369 370 parm->bufsize = setup->bufsize; 371 372 switch (parm->speed) { 373 case USB_SPEED_HIGH: 374 switch (type) { 375 case UE_ISOCHRONOUS: 376 case UE_INTERRUPT: 377 xfer->max_packet_count += 378 (xfer->max_packet_size >> 11) & 3; 379 380 /* check for invalid max packet count */ 381 if (xfer->max_packet_count > 3) 382 xfer->max_packet_count = 3; 383 break; 384 default: 385 break; 386 } 387 xfer->max_packet_size &= 0x7FF; 388 break; 389 case USB_SPEED_SUPER: 390 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 391 392 if (ecomp != NULL) 393 xfer->max_packet_count += ecomp->bMaxBurst; 394 395 if ((xfer->max_packet_count == 0) || 396 (xfer->max_packet_count > 16)) 397 xfer->max_packet_count = 16; 398 399 switch (type) { 400 case UE_CONTROL: 401 xfer->max_packet_count = 1; 402 break; 403 case UE_ISOCHRONOUS: 404 if (ecomp != NULL) { 405 uint8_t mult; 406 407 mult = UE_GET_SS_ISO_MULT( 408 ecomp->bmAttributes) + 1; 409 if (mult > 3) 410 mult = 3; 411 412 xfer->max_packet_count *= mult; 413 } 414 break; 415 default: 416 break; 417 } 418 xfer->max_packet_size &= 0x7FF; 419 break; 420 default: 421 break; 422 } 423 /* range check "max_packet_count" */ 424 425 if (xfer->max_packet_count > parm->hc_max_packet_count) { 426 xfer->max_packet_count = parm->hc_max_packet_count; 427 } 428 429 /* store max packet size value before filtering */ 430 431 maxp_old = xfer->max_packet_size; 432 433 /* filter "wMaxPacketSize" according to HC capabilities */ 434 435 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 436 (xfer->max_packet_size == 0)) { 437 xfer->max_packet_size = parm->hc_max_packet_size; 438 } 439 /* filter "wMaxPacketSize" according to standard sizes */ 440 441 usbd_get_std_packet_size(&std_size, type, parm->speed); 442 443 if (std_size.range.min || std_size.range.max) { 444 445 if (xfer->max_packet_size < std_size.range.min) { 446 xfer->max_packet_size = std_size.range.min; 447 } 448 if (xfer->max_packet_size > std_size.range.max) { 449 xfer->max_packet_size = std_size.range.max; 450 } 451 } else { 452 453 if (xfer->max_packet_size >= std_size.fixed[3]) { 454 xfer->max_packet_size = std_size.fixed[3]; 455 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 456 xfer->max_packet_size = std_size.fixed[2]; 457 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 458 xfer->max_packet_size = std_size.fixed[1]; 459 } else { 460 /* only one possibility left */ 461 xfer->max_packet_size = std_size.fixed[0]; 462 } 463 } 464 465 /* 466 * Check if the max packet size was outside its allowed range 467 * and clamped to a valid value: 468 */ 469 if (maxp_old != xfer->max_packet_size) 470 xfer->flags_int.maxp_was_clamped = 1; 471 472 /* compute "max_frame_size" */ 473 474 usbd_update_max_frame_size(xfer); 475 476 /* check interrupt interval and transfer pre-delay */ 477 478 if (type == UE_ISOCHRONOUS) { 479 480 uint16_t frame_limit; 481 482 xfer->interval = 0; /* not used, must be zero */ 483 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 484 485 if (xfer->timeout == 0) { 486 /* 487 * set a default timeout in 488 * case something goes wrong! 489 */ 490 xfer->timeout = 1000 / 4; 491 } 492 switch (parm->speed) { 493 case USB_SPEED_LOW: 494 case USB_SPEED_FULL: 495 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 496 xfer->fps_shift = 0; 497 break; 498 default: 499 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 500 xfer->fps_shift = edesc->bInterval; 501 if (xfer->fps_shift > 0) 502 xfer->fps_shift--; 503 if (xfer->fps_shift > 3) 504 xfer->fps_shift = 3; 505 if (xfer->flags.pre_scale_frames != 0) 506 xfer->nframes <<= (3 - xfer->fps_shift); 507 break; 508 } 509 510 if (xfer->nframes > frame_limit) { 511 /* 512 * this is not going to work 513 * cross hardware 514 */ 515 parm->err = USB_ERR_INVAL; 516 goto done; 517 } 518 if (xfer->nframes == 0) { 519 /* 520 * this is not a valid value 521 */ 522 parm->err = USB_ERR_ZERO_NFRAMES; 523 goto done; 524 } 525 } else { 526 527 /* 528 * If a value is specified use that else check the 529 * endpoint descriptor! 530 */ 531 if (type == UE_INTERRUPT) { 532 533 uint32_t temp; 534 535 if (xfer->interval == 0) { 536 537 xfer->interval = edesc->bInterval; 538 539 switch (parm->speed) { 540 case USB_SPEED_LOW: 541 case USB_SPEED_FULL: 542 break; 543 default: 544 /* 125us -> 1ms */ 545 if (xfer->interval < 4) 546 xfer->interval = 1; 547 else if (xfer->interval > 16) 548 xfer->interval = (1 << (16 - 4)); 549 else 550 xfer->interval = 551 (1 << (xfer->interval - 4)); 552 break; 553 } 554 } 555 556 if (xfer->interval == 0) { 557 /* 558 * One millisecond is the smallest 559 * interval we support: 560 */ 561 xfer->interval = 1; 562 } 563 564 xfer->fps_shift = 0; 565 temp = 1; 566 567 while ((temp != 0) && (temp < xfer->interval)) { 568 xfer->fps_shift++; 569 temp *= 2; 570 } 571 572 switch (parm->speed) { 573 case USB_SPEED_LOW: 574 case USB_SPEED_FULL: 575 break; 576 default: 577 xfer->fps_shift += 3; 578 break; 579 } 580 } 581 } 582 583 /* 584 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 585 * to be equal to zero when setting up USB transfers, hence 586 * this leads to alot of extra code in the USB kernel. 587 */ 588 589 if ((xfer->max_frame_size == 0) || 590 (xfer->max_packet_size == 0)) { 591 592 zmps = 1; 593 594 if ((parm->bufsize <= MIN_PKT) && 595 (type != UE_CONTROL) && 596 (type != UE_BULK)) { 597 598 /* workaround */ 599 xfer->max_packet_size = MIN_PKT; 600 xfer->max_packet_count = 1; 601 parm->bufsize = 0; /* automatic setup length */ 602 usbd_update_max_frame_size(xfer); 603 604 } else { 605 parm->err = USB_ERR_ZERO_MAXP; 606 goto done; 607 } 608 609 } else { 610 zmps = 0; 611 } 612 613 /* 614 * check if we should setup a default 615 * length: 616 */ 617 618 if (parm->bufsize == 0) { 619 620 parm->bufsize = xfer->max_frame_size; 621 622 if (type == UE_ISOCHRONOUS) { 623 parm->bufsize *= xfer->nframes; 624 } 625 } 626 /* 627 * check if we are about to setup a proxy 628 * type of buffer: 629 */ 630 631 if (xfer->flags.proxy_buffer) { 632 633 /* round bufsize up */ 634 635 parm->bufsize += (xfer->max_frame_size - 1); 636 637 if (parm->bufsize < xfer->max_frame_size) { 638 /* length wrapped around */ 639 parm->err = USB_ERR_INVAL; 640 goto done; 641 } 642 /* subtract remainder */ 643 644 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 645 646 /* add length of USB device request structure, if any */ 647 648 if (type == UE_CONTROL) { 649 parm->bufsize += REQ_SIZE; /* SETUP message */ 650 } 651 } 652 xfer->max_data_length = parm->bufsize; 653 654 /* Setup "n_frlengths" and "n_frbuffers" */ 655 656 if (type == UE_ISOCHRONOUS) { 657 n_frlengths = xfer->nframes; 658 n_frbuffers = 1; 659 } else { 660 661 if (type == UE_CONTROL) { 662 xfer->flags_int.control_xfr = 1; 663 if (xfer->nframes == 0) { 664 if (parm->bufsize <= REQ_SIZE) { 665 /* 666 * there will never be any data 667 * stage 668 */ 669 xfer->nframes = 1; 670 } else { 671 xfer->nframes = 2; 672 } 673 } 674 } else { 675 if (xfer->nframes == 0) { 676 xfer->nframes = 1; 677 } 678 } 679 680 n_frlengths = xfer->nframes; 681 n_frbuffers = xfer->nframes; 682 } 683 684 /* 685 * check if we have room for the 686 * USB device request structure: 687 */ 688 689 if (type == UE_CONTROL) { 690 691 if (xfer->max_data_length < REQ_SIZE) { 692 /* length wrapped around or too small bufsize */ 693 parm->err = USB_ERR_INVAL; 694 goto done; 695 } 696 xfer->max_data_length -= REQ_SIZE; 697 } 698 /* 699 * Setup "frlengths" and shadow "frlengths" for keeping the 700 * initial frame lengths when a USB transfer is complete. This 701 * information is useful when computing isochronous offsets. 702 */ 703 xfer->frlengths = parm->xfer_length_ptr; 704 parm->xfer_length_ptr += 2 * n_frlengths; 705 706 /* setup "frbuffers" */ 707 xfer->frbuffers = parm->xfer_page_cache_ptr; 708 parm->xfer_page_cache_ptr += n_frbuffers; 709 710 /* initialize max frame count */ 711 xfer->max_frame_count = xfer->nframes; 712 713 /* 714 * check if we need to setup 715 * a local buffer: 716 */ 717 718 if (!xfer->flags.ext_buffer) { 719 #if USB_HAVE_BUSDMA 720 struct usb_page_search page_info; 721 struct usb_page_cache *pc; 722 723 if (usbd_transfer_setup_sub_malloc(parm, 724 &pc, parm->bufsize, 1, 1)) { 725 parm->err = USB_ERR_NOMEM; 726 } else if (parm->buf != NULL) { 727 728 usbd_get_page(pc, 0, &page_info); 729 730 xfer->local_buffer = page_info.buffer; 731 732 usbd_xfer_set_frame_offset(xfer, 0, 0); 733 734 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 735 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 736 } 737 } 738 #else 739 /* align data */ 740 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 741 742 if (parm->buf != NULL) { 743 xfer->local_buffer = 744 USB_ADD_BYTES(parm->buf, parm->size[0]); 745 746 usbd_xfer_set_frame_offset(xfer, 0, 0); 747 748 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 749 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 750 } 751 } 752 parm->size[0] += parm->bufsize; 753 754 /* align data again */ 755 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 756 #endif 757 } 758 /* 759 * Compute maximum buffer size 760 */ 761 762 if (parm->bufsize_max < parm->bufsize) { 763 parm->bufsize_max = parm->bufsize; 764 } 765 #if USB_HAVE_BUSDMA 766 if (xfer->flags_int.bdma_enable) { 767 /* 768 * Setup "dma_page_ptr". 769 * 770 * Proof for formula below: 771 * 772 * Assume there are three USB frames having length "a", "b" and 773 * "c". These USB frames will at maximum need "z" 774 * "usb_page" structures. "z" is given by: 775 * 776 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 777 * ((c / USB_PAGE_SIZE) + 2); 778 * 779 * Constraining "a", "b" and "c" like this: 780 * 781 * (a + b + c) <= parm->bufsize 782 * 783 * We know that: 784 * 785 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 786 * 787 * Here is the general formula: 788 */ 789 xfer->dma_page_ptr = parm->dma_page_ptr; 790 parm->dma_page_ptr += (2 * n_frbuffers); 791 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 792 } 793 #endif 794 if (zmps) { 795 /* correct maximum data length */ 796 xfer->max_data_length = 0; 797 } 798 /* subtract USB frame remainder from "hc_max_frame_size" */ 799 800 xfer->max_hc_frame_size = 801 (parm->hc_max_frame_size - 802 (parm->hc_max_frame_size % xfer->max_frame_size)); 803 804 if (xfer->max_hc_frame_size == 0) { 805 parm->err = USB_ERR_INVAL; 806 goto done; 807 } 808 809 /* initialize frame buffers */ 810 811 if (parm->buf) { 812 for (x = 0; x != n_frbuffers; x++) { 813 xfer->frbuffers[x].tag_parent = 814 &xfer->xroot->dma_parent_tag; 815 #if USB_HAVE_BUSDMA 816 if (xfer->flags_int.bdma_enable && 817 (parm->bufsize_max > 0)) { 818 819 if (usb_pc_dmamap_create( 820 xfer->frbuffers + x, 821 parm->bufsize_max)) { 822 parm->err = USB_ERR_NOMEM; 823 goto done; 824 } 825 } 826 #endif 827 } 828 } 829 done: 830 if (parm->err) { 831 /* 832 * Set some dummy values so that we avoid division by zero: 833 */ 834 xfer->max_hc_frame_size = 1; 835 xfer->max_frame_size = 1; 836 xfer->max_packet_size = 1; 837 xfer->max_data_length = 0; 838 xfer->nframes = 0; 839 xfer->max_frame_count = 0; 840 } 841 } 842 843 static uint8_t 844 usbd_transfer_setup_has_bulk(const struct usb_config *setup_start, 845 uint16_t n_setup) 846 { 847 uint8_t type; 848 849 while (n_setup--) { 850 type = setup_start[n_setup].type; 851 if ((type == UE_BULK) || (type == UE_BULK_INTR) || 852 (type == UE_TYPE_ANY)) 853 return (1); 854 } 855 return (0); 856 } 857 858 /*------------------------------------------------------------------------* 859 * usbd_transfer_setup - setup an array of USB transfers 860 * 861 * NOTE: You must always call "usbd_transfer_unsetup" after calling 862 * "usbd_transfer_setup" if success was returned. 863 * 864 * The idea is that the USB device driver should pre-allocate all its 865 * transfers by one call to this function. 866 * 867 * Return values: 868 * 0: Success 869 * Else: Failure 870 *------------------------------------------------------------------------*/ 871 usb_error_t 872 usbd_transfer_setup(struct usb_device *udev, 873 const uint8_t *ifaces, struct usb_xfer **ppxfer, 874 const struct usb_config *setup_start, uint16_t n_setup, 875 void *priv_sc, struct mtx *xfer_mtx) 876 { 877 const struct usb_config *setup_end = setup_start + n_setup; 878 const struct usb_config *setup; 879 struct usb_setup_params *parm; 880 struct usb_endpoint *ep; 881 struct usb_xfer_root *info; 882 struct usb_xfer *xfer; 883 void *buf = NULL; 884 usb_error_t error = USB_ERR_NORMAL_COMPLETION; 885 uint16_t n; 886 uint16_t refcount; 887 uint8_t do_unlock; 888 889 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 890 "usbd_transfer_setup can sleep!"); 891 892 /* do some checking first */ 893 894 if (n_setup == 0) { 895 DPRINTFN(5, "setup array has zero length!\n"); 896 return (USB_ERR_INVAL); 897 } 898 if (ifaces == 0) { 899 DPRINTFN(5, "ifaces array is NULL!\n"); 900 return (USB_ERR_INVAL); 901 } 902 if (xfer_mtx == NULL) { 903 DPRINTFN(5, "using global lock\n"); 904 xfer_mtx = &Giant; 905 } 906 907 /* more sanity checks */ 908 909 for (setup = setup_start, n = 0; 910 setup != setup_end; setup++, n++) { 911 if (setup->bufsize == (usb_frlength_t)-1) { 912 error = USB_ERR_BAD_BUFSIZE; 913 DPRINTF("invalid bufsize\n"); 914 } 915 if (setup->callback == NULL) { 916 error = USB_ERR_NO_CALLBACK; 917 DPRINTF("no callback\n"); 918 } 919 ppxfer[n] = NULL; 920 } 921 922 if (error) 923 return (error); 924 925 /* Protect scratch area */ 926 do_unlock = usbd_ctrl_lock(udev); 927 928 refcount = 0; 929 info = NULL; 930 931 parm = &udev->scratch.xfer_setup[0].parm; 932 (void)memset_s(parm, sizeof(*parm), 0, sizeof(*parm)); 933 934 parm->udev = udev; 935 parm->speed = usbd_get_speed(udev); 936 parm->hc_max_packet_count = 1; 937 938 if (parm->speed >= USB_SPEED_MAX) { 939 parm->err = USB_ERR_INVAL; 940 goto done; 941 } 942 /* setup all transfers */ 943 944 while (1) { 945 946 if (buf) { 947 /* 948 * Initialize the "usb_xfer_root" structure, 949 * which is common for all our USB transfers. 950 */ 951 info = USB_ADD_BYTES(buf, 0); 952 953 info->memory_base = buf; 954 info->memory_size = parm->size[0]; 955 956 #if USB_HAVE_BUSDMA 957 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 958 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 959 #endif 960 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 961 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 962 963 cv_init(&info->cv_drain, "WDRAIN"); 964 965 info->xfer_mtx = xfer_mtx; 966 #if USB_HAVE_BUSDMA 967 usb_dma_tag_setup(&info->dma_parent_tag, 968 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 969 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, parm->dma_tag_max); 970 #endif 971 972 info->bus = udev->bus; 973 info->udev = udev; 974 975 TAILQ_INIT(&info->done_q.head); 976 info->done_q.command = &usbd_callback_wrapper; 977 #if USB_HAVE_BUSDMA 978 TAILQ_INIT(&info->dma_q.head); 979 info->dma_q.command = &usb_bdma_work_loop; 980 #endif 981 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 982 info->done_m[0].xroot = info; 983 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 984 info->done_m[1].xroot = info; 985 986 /* 987 * In device side mode control endpoint 988 * requests need to run from a separate 989 * context, else there is a chance of 990 * deadlock! 991 */ 992 if (setup_start == usb_control_ep_cfg || 993 setup_start == usb_control_ep_quirk_cfg) 994 info->done_p = 995 USB_BUS_CONTROL_XFER_PROC(udev->bus); 996 else if (xfer_mtx == &Giant) 997 info->done_p = 998 USB_BUS_GIANT_PROC(udev->bus); 999 else if (usbd_transfer_setup_has_bulk(setup_start, n_setup)) 1000 info->done_p = 1001 USB_BUS_NON_GIANT_BULK_PROC(udev->bus); 1002 else 1003 info->done_p = 1004 USB_BUS_NON_GIANT_ISOC_PROC(udev->bus); 1005 } 1006 /* reset sizes */ 1007 1008 parm->size[0] = 0; 1009 parm->buf = buf; 1010 parm->size[0] += sizeof(info[0]); 1011 1012 for (setup = setup_start, n = 0; 1013 setup != setup_end; setup++, n++) { 1014 1015 /* skip USB transfers without callbacks: */ 1016 if (setup->callback == NULL) { 1017 continue; 1018 } 1019 /* see if there is a matching endpoint */ 1020 ep = usbd_get_endpoint(udev, 1021 ifaces[setup->if_index], setup); 1022 1023 /* 1024 * Check that the USB PIPE is valid and that 1025 * the endpoint mode is proper. 1026 * 1027 * Make sure we don't allocate a streams 1028 * transfer when such a combination is not 1029 * valid. 1030 */ 1031 if ((ep == NULL) || (ep->methods == NULL) || 1032 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1033 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1034 ((setup->stream_id != 0) && 1035 ((setup->stream_id >= USB_MAX_EP_STREAMS) || 1036 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1037 if (setup->flags.no_pipe_ok) 1038 continue; 1039 if ((setup->usb_mode != USB_MODE_DUAL) && 1040 (setup->usb_mode != udev->flags.usb_mode)) 1041 continue; 1042 parm->err = USB_ERR_NO_PIPE; 1043 goto done; 1044 } 1045 1046 /* align data properly */ 1047 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1048 1049 /* store current setup pointer */ 1050 parm->curr_setup = setup; 1051 1052 if (buf) { 1053 /* 1054 * Common initialization of the 1055 * "usb_xfer" structure. 1056 */ 1057 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1058 xfer->address = udev->address; 1059 xfer->priv_sc = priv_sc; 1060 xfer->xroot = info; 1061 1062 callout_init_mtx(&xfer->timeout_handle, 1063 &udev->bus->bus_mtx, 0); 1064 } else { 1065 /* 1066 * Setup a dummy xfer, hence we are 1067 * writing to the "usb_xfer" 1068 * structure pointed to by "xfer" 1069 * before we have allocated any 1070 * memory: 1071 */ 1072 xfer = &udev->scratch.xfer_setup[0].dummy; 1073 (void)memset_s(xfer, sizeof(*xfer), 0, sizeof(*xfer)); 1074 refcount++; 1075 } 1076 1077 /* set transfer endpoint pointer */ 1078 xfer->endpoint = ep; 1079 1080 /* set transfer stream ID */ 1081 xfer->stream_id = setup->stream_id; 1082 1083 parm->size[0] += sizeof(xfer[0]); 1084 parm->methods = xfer->endpoint->methods; 1085 parm->curr_xfer = xfer; 1086 1087 /* 1088 * Call the Host or Device controller transfer 1089 * setup routine: 1090 */ 1091 (udev->bus->methods->xfer_setup) (parm); 1092 1093 /* check for error */ 1094 if (parm->err) 1095 goto done; 1096 1097 if (buf) { 1098 /* 1099 * Increment the endpoint refcount. This 1100 * basically prevents setting a new 1101 * configuration and alternate setting 1102 * when USB transfers are in use on 1103 * the given interface. Search the USB 1104 * code for "endpoint->refcount_alloc" if you 1105 * want more information. 1106 */ 1107 USB_BUS_LOCK(info->bus); 1108 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1109 parm->err = USB_ERR_INVAL; 1110 1111 xfer->endpoint->refcount_alloc++; 1112 1113 if (xfer->endpoint->refcount_alloc == 0) 1114 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1115 USB_BUS_UNLOCK(info->bus); 1116 1117 /* 1118 * Whenever we set ppxfer[] then we 1119 * also need to increment the 1120 * "setup_refcount": 1121 */ 1122 info->setup_refcount++; 1123 1124 /* 1125 * Transfer is successfully setup and 1126 * can be used: 1127 */ 1128 ppxfer[n] = xfer; 1129 } 1130 1131 /* check for error */ 1132 if (parm->err) 1133 goto done; 1134 } 1135 1136 if ((buf != NULL) || (parm->err != 0)) 1137 goto done; 1138 1139 /* if no transfers, nothing to do */ 1140 if (refcount == 0) 1141 goto done; 1142 1143 /* align data properly */ 1144 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1145 1146 /* store offset temporarily */ 1147 parm->size[1] = parm->size[0]; 1148 1149 /* 1150 * The number of DMA tags required depends on 1151 * the number of endpoints. The current estimate 1152 * for maximum number of DMA tags per endpoint 1153 * is three: 1154 * 1) for loading memory 1155 * 2) for allocating memory 1156 * 3) for fixing memory [UHCI] 1157 */ 1158 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1159 1160 /* 1161 * DMA tags for QH, TD, Data and more. 1162 */ 1163 parm->dma_tag_max += 8; 1164 1165 parm->dma_tag_p += parm->dma_tag_max; 1166 1167 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1168 ((uint8_t *)0); 1169 1170 /* align data properly */ 1171 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1172 1173 /* store offset temporarily */ 1174 parm->size[3] = parm->size[0]; 1175 1176 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1177 ((uint8_t *)0); 1178 1179 /* align data properly */ 1180 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1181 1182 /* store offset temporarily */ 1183 parm->size[4] = parm->size[0]; 1184 1185 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1186 ((uint8_t *)0); 1187 1188 /* store end offset temporarily */ 1189 parm->size[5] = parm->size[0]; 1190 1191 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1192 ((uint8_t *)0); 1193 1194 /* store end offset temporarily */ 1195 1196 parm->size[2] = parm->size[0]; 1197 1198 /* align data properly */ 1199 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1200 1201 parm->size[6] = parm->size[0]; 1202 1203 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1204 ((uint8_t *)0); 1205 1206 /* align data properly */ 1207 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1208 1209 /* allocate zeroed memory */ 1210 buf = bsd_malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1211 1212 if (buf == NULL) { 1213 parm->err = USB_ERR_NOMEM; 1214 DPRINTFN(0, "cannot allocate memory block for " 1215 "configuration (%d bytes)\n", 1216 parm->size[0]); 1217 goto done; 1218 } 1219 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1220 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1221 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1222 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1223 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1224 } 1225 1226 done: 1227 if (buf) { 1228 if (info->setup_refcount == 0) { 1229 /* 1230 * "usbd_transfer_unsetup_sub" will unlock 1231 * the bus mutex before returning ! 1232 */ 1233 USB_BUS_LOCK(info->bus); 1234 1235 /* something went wrong */ 1236 usbd_transfer_unsetup_sub(info, 0); 1237 } 1238 } 1239 1240 /* check if any errors happened */ 1241 if (parm->err) 1242 usbd_transfer_unsetup(ppxfer, n_setup); 1243 1244 error = parm->err; 1245 1246 if (do_unlock) 1247 usbd_ctrl_unlock(udev); 1248 1249 return (error); 1250 } 1251 1252 /*------------------------------------------------------------------------* 1253 * usbd_transfer_unsetup_sub - factored out code 1254 *------------------------------------------------------------------------*/ 1255 static void 1256 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1257 { 1258 #if USB_HAVE_BUSDMA 1259 struct usb_page_cache *pc; 1260 #endif 1261 1262 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1263 1264 /* wait for any outstanding DMA operations */ 1265 1266 if (needs_delay) { 1267 usb_timeout_t temp; 1268 temp = usbd_get_dma_delay(info->udev); 1269 if (temp != 0) { 1270 usb_pause_mtx(&info->bus->bus_mtx, 1271 USB_MS_TO_TICKS(temp)); 1272 } 1273 } 1274 1275 /* make sure that our done messages are not queued anywhere */ 1276 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1277 1278 USB_BUS_UNLOCK(info->bus); 1279 1280 #if USB_HAVE_BUSDMA 1281 /* free DMA'able memory, if any */ 1282 pc = info->dma_page_cache_start; 1283 while (pc != info->dma_page_cache_end) { 1284 usb_pc_free_mem(pc); 1285 pc++; 1286 } 1287 1288 /* free DMA maps in all "xfer->frbuffers" */ 1289 pc = info->xfer_page_cache_start; 1290 while (pc != info->xfer_page_cache_end) { 1291 usb_pc_dmamap_destroy(pc); 1292 pc++; 1293 } 1294 1295 /* free all DMA tags */ 1296 usb_dma_tag_unsetup(&info->dma_parent_tag); 1297 #endif 1298 1299 cv_destroy(&info->cv_drain); 1300 1301 /* 1302 * free the "memory_base" last, hence the "info" structure is 1303 * contained within the "memory_base"! 1304 */ 1305 bsd_free(info->memory_base, M_USB); 1306 info->memory_base = NULL; 1307 } 1308 1309 /*------------------------------------------------------------------------* 1310 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1311 * 1312 * NOTE: All USB transfers in progress will get called back passing 1313 * the error code "USB_ERR_CANCELLED" before this function 1314 * returns. 1315 *------------------------------------------------------------------------*/ 1316 void 1317 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1318 { 1319 struct usb_xfer *xfer; 1320 struct usb_xfer_root *info; 1321 uint8_t needs_delay = 0; 1322 1323 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1324 "usbd_transfer_unsetup can sleep!"); 1325 1326 while (n_setup--) { 1327 xfer = pxfer[n_setup]; 1328 1329 if (xfer == NULL) 1330 continue; 1331 1332 info = xfer->xroot; 1333 1334 USB_XFER_LOCK(xfer); 1335 USB_BUS_LOCK(info->bus); 1336 1337 /* 1338 * HINT: when you start/stop a transfer, it might be a 1339 * good idea to directly use the "pxfer[]" structure: 1340 * 1341 * usbd_transfer_start(sc->pxfer[0]); 1342 * usbd_transfer_stop(sc->pxfer[0]); 1343 * 1344 * That way, if your code has many parts that will not 1345 * stop running under the same lock, in other words 1346 * "xfer_mtx", the usbd_transfer_start and 1347 * usbd_transfer_stop functions will simply return 1348 * when they detect a NULL pointer argument. 1349 * 1350 * To avoid any races we clear the "pxfer[]" pointer 1351 * while holding the private mutex of the driver: 1352 */ 1353 pxfer[n_setup] = NULL; 1354 1355 USB_BUS_UNLOCK(info->bus); 1356 USB_XFER_UNLOCK(xfer); 1357 1358 usbd_transfer_drain(xfer); 1359 1360 #if USB_HAVE_BUSDMA 1361 if (xfer->flags_int.bdma_enable) 1362 needs_delay = 1; 1363 #endif 1364 /* 1365 * NOTE: default endpoint does not have an 1366 * interface, even if endpoint->iface_index == 0 1367 */ 1368 USB_BUS_LOCK(info->bus); 1369 xfer->endpoint->refcount_alloc--; 1370 USB_BUS_UNLOCK(info->bus); 1371 1372 callout_drain(&xfer->timeout_handle); 1373 1374 USB_BUS_LOCK(info->bus); 1375 1376 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1377 "reference count\n")); 1378 1379 info->setup_refcount--; 1380 1381 if (info->setup_refcount == 0) { 1382 usbd_transfer_unsetup_sub(info, 1383 needs_delay); 1384 } else { 1385 USB_BUS_UNLOCK(info->bus); 1386 } 1387 } 1388 } 1389 1390 /*------------------------------------------------------------------------* 1391 * usbd_control_transfer_init - factored out code 1392 * 1393 * In USB Device Mode we have to wait for the SETUP packet which 1394 * containst the "struct usb_device_request" structure, before we can 1395 * transfer any data. In USB Host Mode we already have the SETUP 1396 * packet at the moment the USB transfer is started. This leads us to 1397 * having to setup the USB transfer at two different places in 1398 * time. This function just contains factored out control transfer 1399 * initialisation code, so that we don't duplicate the code. 1400 *------------------------------------------------------------------------*/ 1401 static void 1402 usbd_control_transfer_init(struct usb_xfer *xfer) 1403 { 1404 struct usb_device_request req; 1405 1406 /* copy out the USB request header */ 1407 1408 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1409 1410 /* setup remainder */ 1411 1412 xfer->flags_int.control_rem = UGETW(req.wLength); 1413 1414 /* copy direction to endpoint variable */ 1415 1416 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1417 xfer->endpointno |= 1418 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1419 } 1420 1421 /*------------------------------------------------------------------------* 1422 * usbd_control_transfer_did_data 1423 * 1424 * This function returns non-zero if a control endpoint has 1425 * transferred the first DATA packet after the SETUP packet. 1426 * Else it returns zero. 1427 *------------------------------------------------------------------------*/ 1428 static uint8_t 1429 usbd_control_transfer_did_data(struct usb_xfer *xfer) 1430 { 1431 struct usb_device_request req; 1432 1433 /* SETUP packet is not yet sent */ 1434 if (xfer->flags_int.control_hdr != 0) 1435 return (0); 1436 1437 /* copy out the USB request header */ 1438 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1439 1440 /* compare remainder to the initial value */ 1441 return (xfer->flags_int.control_rem != UGETW(req.wLength)); 1442 } 1443 1444 /*------------------------------------------------------------------------* 1445 * usbd_setup_ctrl_transfer 1446 * 1447 * This function handles initialisation of control transfers. Control 1448 * transfers are special in that regard that they can both transmit 1449 * and receive data. 1450 * 1451 * Return values: 1452 * 0: Success 1453 * Else: Failure 1454 *------------------------------------------------------------------------*/ 1455 static int 1456 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1457 { 1458 usb_frlength_t len; 1459 1460 /* Check for control endpoint stall */ 1461 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1462 /* the control transfer is no longer active */ 1463 xfer->flags_int.control_stall = 1; 1464 xfer->flags_int.control_act = 0; 1465 } else { 1466 /* don't stall control transfer by default */ 1467 xfer->flags_int.control_stall = 0; 1468 } 1469 1470 /* Check for invalid number of frames */ 1471 if (xfer->nframes > 2) { 1472 /* 1473 * If you need to split a control transfer, you 1474 * have to do one part at a time. Only with 1475 * non-control transfers you can do multiple 1476 * parts a time. 1477 */ 1478 DPRINTFN(0, "Too many frames: %u\n", 1479 (unsigned int)xfer->nframes); 1480 goto error; 1481 } 1482 1483 /* 1484 * Check if there is a control 1485 * transfer in progress: 1486 */ 1487 if (xfer->flags_int.control_act) { 1488 1489 if (xfer->flags_int.control_hdr) { 1490 1491 /* clear send header flag */ 1492 1493 xfer->flags_int.control_hdr = 0; 1494 1495 /* setup control transfer */ 1496 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1497 usbd_control_transfer_init(xfer); 1498 } 1499 } 1500 /* get data length */ 1501 1502 len = xfer->sumlen; 1503 1504 } else { 1505 1506 /* the size of the SETUP structure is hardcoded ! */ 1507 1508 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1509 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1510 xfer->frlengths[0], sizeof(struct 1511 usb_device_request)); 1512 goto error; 1513 } 1514 /* check USB mode */ 1515 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1516 1517 /* check number of frames */ 1518 if (xfer->nframes != 1) { 1519 /* 1520 * We need to receive the setup 1521 * message first so that we know the 1522 * data direction! 1523 */ 1524 DPRINTF("Misconfigured transfer\n"); 1525 goto error; 1526 } 1527 /* 1528 * Set a dummy "control_rem" value. This 1529 * variable will be overwritten later by a 1530 * call to "usbd_control_transfer_init()" ! 1531 */ 1532 xfer->flags_int.control_rem = 0xFFFF; 1533 } else { 1534 1535 /* setup "endpoint" and "control_rem" */ 1536 1537 usbd_control_transfer_init(xfer); 1538 } 1539 1540 /* set transfer-header flag */ 1541 1542 xfer->flags_int.control_hdr = 1; 1543 1544 /* get data length */ 1545 1546 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1547 } 1548 1549 /* update did data flag */ 1550 1551 xfer->flags_int.control_did_data = 1552 usbd_control_transfer_did_data(xfer); 1553 1554 /* check if there is a length mismatch */ 1555 1556 if (len > xfer->flags_int.control_rem) { 1557 DPRINTFN(0, "Length (%d) greater than " 1558 "remaining length (%d)\n", len, 1559 xfer->flags_int.control_rem); 1560 goto error; 1561 } 1562 /* check if we are doing a short transfer */ 1563 1564 if (xfer->flags.force_short_xfer) { 1565 xfer->flags_int.control_rem = 0; 1566 } else { 1567 if ((len != xfer->max_data_length) && 1568 (len != xfer->flags_int.control_rem) && 1569 (xfer->nframes != 1)) { 1570 DPRINTFN(0, "Short control transfer without " 1571 "force_short_xfer set\n"); 1572 goto error; 1573 } 1574 xfer->flags_int.control_rem -= len; 1575 } 1576 1577 /* the status part is executed when "control_act" is 0 */ 1578 1579 if ((xfer->flags_int.control_rem > 0) || 1580 (xfer->flags.manual_status)) { 1581 /* don't execute the STATUS stage yet */ 1582 xfer->flags_int.control_act = 1; 1583 1584 /* sanity check */ 1585 if ((!xfer->flags_int.control_hdr) && 1586 (xfer->nframes == 1)) { 1587 /* 1588 * This is not a valid operation! 1589 */ 1590 DPRINTFN(0, "Invalid parameter " 1591 "combination\n"); 1592 goto error; 1593 } 1594 } else { 1595 /* time to execute the STATUS stage */ 1596 xfer->flags_int.control_act = 0; 1597 } 1598 return (0); /* success */ 1599 1600 error: 1601 return (1); /* failure */ 1602 } 1603 1604 /*------------------------------------------------------------------------* 1605 * usbd_transfer_submit - start USB hardware for the given transfer 1606 * 1607 * This function should only be called from the USB callback. 1608 *------------------------------------------------------------------------*/ 1609 void 1610 usbd_transfer_submit(struct usb_xfer *xfer) 1611 { 1612 struct usb_xfer_root *info; 1613 struct usb_bus *bus; 1614 usb_frcount_t x; 1615 1616 info = xfer->xroot; 1617 bus = info->bus; 1618 1619 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1620 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1621 "read" : "write"); 1622 1623 #ifdef LOSCFG_USB_DEBUG 1624 if (USB_DEBUG_VAR > 0) { 1625 USB_BUS_LOCK(bus); 1626 1627 usb_dump_endpoint(xfer->endpoint); 1628 1629 USB_BUS_UNLOCK(bus); 1630 } 1631 #endif 1632 1633 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1634 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1635 1636 /* Only open the USB transfer once! */ 1637 if (!xfer->flags_int.open) { 1638 xfer->flags_int.open = 1; 1639 1640 DPRINTF("open\n"); 1641 1642 USB_BUS_LOCK(bus); 1643 (xfer->endpoint->methods->open) (xfer); 1644 USB_BUS_UNLOCK(bus); 1645 } 1646 /* set "transferring" flag */ 1647 xfer->flags_int.transferring = 1; 1648 1649 #if USB_HAVE_POWERD 1650 /* increment power reference */ 1651 usbd_transfer_power_ref(xfer, 1); 1652 #endif 1653 /* 1654 * Check if the transfer is waiting on a queue, most 1655 * frequently the "done_q": 1656 */ 1657 if (xfer->wait_queue) { 1658 USB_BUS_LOCK(bus); 1659 usbd_transfer_dequeue(xfer); 1660 USB_BUS_UNLOCK(bus); 1661 } 1662 /* clear "did_dma_delay" flag */ 1663 xfer->flags_int.did_dma_delay = 0; 1664 1665 /* clear "did_close" flag */ 1666 xfer->flags_int.did_close = 0; 1667 1668 #if USB_HAVE_BUSDMA 1669 /* clear "bdma_setup" flag */ 1670 xfer->flags_int.bdma_setup = 0; 1671 #endif 1672 /* by default we cannot cancel any USB transfer immediately */ 1673 xfer->flags_int.can_cancel_immed = 0; 1674 1675 /* clear lengths and frame counts by default */ 1676 xfer->sumlen = 0; 1677 xfer->actlen = 0; 1678 xfer->aframes = 0; 1679 1680 /* clear any previous errors */ 1681 xfer->error = USB_ERR_NORMAL_COMPLETION; 1682 1683 /* Check if the device is still alive */ 1684 if (info->udev->state < USB_STATE_POWERED) { 1685 USB_BUS_LOCK(bus); 1686 /* 1687 * Must return cancelled error code else 1688 * device drivers can hang. 1689 */ 1690 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1691 USB_BUS_UNLOCK(bus); 1692 return; 1693 } 1694 1695 /* sanity check */ 1696 if (xfer->nframes == 0) { 1697 if (xfer->flags.stall_pipe) { 1698 /* 1699 * Special case - want to stall without transferring 1700 * any data: 1701 */ 1702 DPRINTF("xfer=%p nframes=0: stall " 1703 "or clear stall!\n", xfer); 1704 USB_BUS_LOCK(bus); 1705 xfer->flags_int.can_cancel_immed = 1; 1706 /* start the transfer */ 1707 usb_command_wrapper(&xfer->endpoint-> 1708 endpoint_q[xfer->stream_id], xfer); 1709 USB_BUS_UNLOCK(bus); 1710 return; 1711 } 1712 USB_BUS_LOCK(bus); 1713 usbd_transfer_done(xfer, USB_ERR_INVAL); 1714 USB_BUS_UNLOCK(bus); 1715 return; 1716 } 1717 /* compute some variables */ 1718 1719 for (x = 0; x != xfer->nframes; x++) { 1720 /* make a copy of the frlenghts[] */ 1721 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1722 /* compute total transfer length */ 1723 xfer->sumlen += xfer->frlengths[x]; 1724 if (xfer->sumlen < xfer->frlengths[x]) { 1725 /* length wrapped around */ 1726 USB_BUS_LOCK(bus); 1727 usbd_transfer_done(xfer, USB_ERR_INVAL); 1728 USB_BUS_UNLOCK(bus); 1729 return; 1730 } 1731 } 1732 1733 /* clear some internal flags */ 1734 1735 xfer->flags_int.short_xfer_ok = 0; 1736 xfer->flags_int.short_frames_ok = 0; 1737 1738 /* check if this is a control transfer */ 1739 1740 if (xfer->flags_int.control_xfr) { 1741 1742 if (usbd_setup_ctrl_transfer(xfer)) { 1743 USB_BUS_LOCK(bus); 1744 usbd_transfer_done(xfer, USB_ERR_STALLED); 1745 USB_BUS_UNLOCK(bus); 1746 return; 1747 } 1748 } 1749 /* 1750 * Setup filtered version of some transfer flags, 1751 * in case of data read direction 1752 */ 1753 if (USB_GET_DATA_ISREAD(xfer)) { 1754 1755 if (xfer->flags.short_frames_ok) { 1756 xfer->flags_int.short_xfer_ok = 1; 1757 xfer->flags_int.short_frames_ok = 1; 1758 } else if (xfer->flags.short_xfer_ok) { 1759 xfer->flags_int.short_xfer_ok = 1; 1760 1761 /* check for control transfer */ 1762 if (xfer->flags_int.control_xfr) { 1763 /* 1764 * 1) Control transfers do not support 1765 * reception of multiple short USB 1766 * frames in host mode and device side 1767 * mode, with exception of: 1768 * 1769 * 2) Due to sometimes buggy device 1770 * side firmware we need to do a 1771 * STATUS stage in case of short 1772 * control transfers in USB host mode. 1773 * The STATUS stage then becomes the 1774 * "alt_next" to the DATA stage. 1775 */ 1776 xfer->flags_int.short_frames_ok = 1; 1777 } 1778 } 1779 } 1780 /* 1781 * Check if BUS-DMA support is enabled and try to load virtual 1782 * buffers into DMA, if any: 1783 */ 1784 #if USB_HAVE_BUSDMA 1785 if (xfer->flags_int.bdma_enable) { 1786 /* insert the USB transfer last in the BUS-DMA queue */ 1787 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1788 return; 1789 } 1790 #endif 1791 /* 1792 * Enter the USB transfer into the Host Controller or 1793 * Device Controller schedule: 1794 */ 1795 usbd_pipe_enter(xfer); 1796 } 1797 1798 /*------------------------------------------------------------------------* 1799 * usbd_pipe_enter - factored out code 1800 *------------------------------------------------------------------------*/ 1801 void 1802 usbd_pipe_enter(struct usb_xfer *xfer) 1803 { 1804 struct usb_endpoint *ep; 1805 1806 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1807 1808 USB_BUS_LOCK(xfer->xroot->bus); 1809 1810 ep = xfer->endpoint; 1811 1812 DPRINTF("enter\n"); 1813 1814 /* the transfer can now be cancelled */ 1815 xfer->flags_int.can_cancel_immed = 1; 1816 1817 /* enter the transfer */ 1818 (ep->methods->enter) (xfer); 1819 1820 /* check for transfer error */ 1821 if (xfer->error) { 1822 /* some error has happened */ 1823 usbd_transfer_done(xfer, (usb_error_t)0); 1824 USB_BUS_UNLOCK(xfer->xroot->bus); 1825 return; 1826 } 1827 1828 /* start the transfer */ 1829 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1830 USB_BUS_UNLOCK(xfer->xroot->bus); 1831 } 1832 1833 /*------------------------------------------------------------------------* 1834 * usbd_transfer_start - start an USB transfer 1835 * 1836 * NOTE: Calling this function more than one time will only 1837 * result in a single transfer start, until the USB transfer 1838 * completes. 1839 *------------------------------------------------------------------------*/ 1840 void 1841 usbd_transfer_start(struct usb_xfer *xfer) 1842 { 1843 if (xfer == NULL) { 1844 /* transfer is gone */ 1845 return; 1846 } 1847 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1848 1849 /* mark the USB transfer started */ 1850 1851 if (!xfer->flags_int.started) { 1852 /* lock the BUS lock to avoid races updating flags_int */ 1853 USB_BUS_LOCK(xfer->xroot->bus); 1854 xfer->flags_int.started = 1; 1855 USB_BUS_UNLOCK(xfer->xroot->bus); 1856 } 1857 /* check if the USB transfer callback is already transferring */ 1858 1859 if (xfer->flags_int.transferring) { 1860 return; 1861 } 1862 USB_BUS_LOCK(xfer->xroot->bus); 1863 /* call the USB transfer callback */ 1864 usbd_callback_ss_done_defer(xfer); 1865 USB_BUS_UNLOCK(xfer->xroot->bus); 1866 } 1867 1868 /*------------------------------------------------------------------------* 1869 * usbd_transfer_stop - stop an USB transfer 1870 * 1871 * NOTE: Calling this function more than one time will only 1872 * result in a single transfer stop. 1873 * NOTE: When this function returns it is not safe to free nor 1874 * reuse any DMA buffers. See "usbd_transfer_drain()". 1875 *------------------------------------------------------------------------*/ 1876 void 1877 usbd_transfer_stop(struct usb_xfer *xfer) 1878 { 1879 struct usb_endpoint *ep; 1880 1881 if (xfer == NULL) { 1882 /* transfer is gone */ 1883 return; 1884 } 1885 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1886 1887 /* check if the USB transfer was ever opened */ 1888 1889 if (!xfer->flags_int.open) { 1890 if (xfer->flags_int.started) { 1891 /* nothing to do except clearing the "started" flag */ 1892 /* lock the BUS lock to avoid races updating flags_int */ 1893 USB_BUS_LOCK(xfer->xroot->bus); 1894 xfer->flags_int.started = 0; 1895 USB_BUS_UNLOCK(xfer->xroot->bus); 1896 } 1897 return; 1898 } 1899 /* try to stop the current USB transfer */ 1900 1901 USB_BUS_LOCK(xfer->xroot->bus); 1902 /* override any previous error */ 1903 xfer->error = USB_ERR_CANCELLED; 1904 1905 /* 1906 * Clear "open" and "started" when both private and USB lock 1907 * is locked so that we don't get a race updating "flags_int" 1908 */ 1909 xfer->flags_int.open = 0; 1910 xfer->flags_int.started = 0; 1911 1912 /* 1913 * Check if we can cancel the USB transfer immediately. 1914 */ 1915 if (xfer->flags_int.transferring) { 1916 if (xfer->flags_int.can_cancel_immed && 1917 (!xfer->flags_int.did_close)) { 1918 DPRINTF("close\n"); 1919 /* 1920 * The following will lead to an USB_ERR_CANCELLED 1921 * error code being passed to the USB callback. 1922 */ 1923 (xfer->endpoint->methods->close) (xfer); 1924 /* only close once */ 1925 xfer->flags_int.did_close = 1; 1926 } else { 1927 /* need to wait for the next done callback */ 1928 } 1929 } else { 1930 DPRINTF("close\n"); 1931 1932 /* close here and now */ 1933 (xfer->endpoint->methods->close) (xfer); 1934 1935 /* 1936 * Any additional DMA delay is done by 1937 * "usbd_transfer_unsetup()". 1938 */ 1939 1940 /* 1941 * Special case. Check if we need to restart a blocked 1942 * endpoint. 1943 */ 1944 ep = xfer->endpoint; 1945 1946 /* 1947 * If the current USB transfer is completing we need 1948 * to start the next one: 1949 */ 1950 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 1951 usb_command_wrapper( 1952 &ep->endpoint_q[xfer->stream_id], NULL); 1953 } 1954 } 1955 1956 USB_BUS_UNLOCK(xfer->xroot->bus); 1957 } 1958 1959 /*------------------------------------------------------------------------* 1960 * usbd_transfer_pending 1961 * 1962 * This function will check if an USB transfer is pending which is a 1963 * little bit complicated! 1964 * Return values: 1965 * 0: Not pending 1966 * 1: Pending: The USB transfer will receive a callback in the future. 1967 *------------------------------------------------------------------------*/ 1968 uint8_t 1969 usbd_transfer_pending(struct usb_xfer *xfer) 1970 { 1971 struct usb_xfer_root *info; 1972 struct usb_xfer_queue *pq; 1973 1974 if (xfer == NULL) { 1975 /* transfer is gone */ 1976 return (0); 1977 } 1978 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1979 1980 if (xfer->flags_int.transferring) { 1981 /* trivial case */ 1982 return (1); 1983 } 1984 USB_BUS_LOCK(xfer->xroot->bus); 1985 if (xfer->wait_queue) { 1986 /* we are waiting on a queue somewhere */ 1987 USB_BUS_UNLOCK(xfer->xroot->bus); 1988 return (1); 1989 } 1990 info = xfer->xroot; 1991 pq = &info->done_q; 1992 1993 if (pq->curr == xfer) { 1994 /* we are currently scheduled for callback */ 1995 USB_BUS_UNLOCK(xfer->xroot->bus); 1996 return (1); 1997 } 1998 /* we are not pending */ 1999 USB_BUS_UNLOCK(xfer->xroot->bus); 2000 return (0); 2001 } 2002 2003 /*------------------------------------------------------------------------* 2004 * usbd_transfer_drain 2005 * 2006 * This function will stop the USB transfer and wait for any 2007 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 2008 * are loaded into DMA can safely be freed or reused after that this 2009 * function has returned. 2010 *------------------------------------------------------------------------*/ 2011 void 2012 usbd_transfer_drain(struct usb_xfer *xfer) 2013 { 2014 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2015 "usbd_transfer_drain can sleep!"); 2016 2017 if (xfer == NULL) { 2018 /* transfer is gone */ 2019 return; 2020 } 2021 if (xfer->xroot->xfer_mtx != &Giant) { 2022 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 2023 } 2024 USB_XFER_LOCK(xfer); 2025 2026 usbd_transfer_stop(xfer); 2027 2028 while (usbd_transfer_pending(xfer) || 2029 xfer->flags_int.doing_callback) { 2030 2031 /* 2032 * It is allowed that the callback can drop its 2033 * transfer mutex. In that case checking only 2034 * "usbd_transfer_pending()" is not enough to tell if 2035 * the USB transfer is fully drained. We also need to 2036 * check the internal "doing_callback" flag. 2037 */ 2038 xfer->flags_int.draining = 1; 2039 2040 /* 2041 * Wait until the current outstanding USB 2042 * transfer is complete ! 2043 */ 2044 (void)cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2045 } 2046 USB_XFER_UNLOCK(xfer); 2047 } 2048 2049 struct usb_page_cache * 2050 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2051 { 2052 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2053 2054 return (&xfer->frbuffers[frindex]); 2055 } 2056 2057 void * 2058 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2059 { 2060 struct usb_page_search page_info; 2061 2062 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2063 2064 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2065 return (page_info.buffer); 2066 } 2067 2068 /*------------------------------------------------------------------------* 2069 * usbd_xfer_get_fps_shift 2070 * 2071 * The following function is only useful for isochronous transfers. It 2072 * returns how many times the frame execution rate has been shifted 2073 * down. 2074 * 2075 * Return value: 2076 * Success: 0..3 2077 * Failure: 0 2078 *------------------------------------------------------------------------*/ 2079 uint8_t 2080 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2081 { 2082 return (xfer->fps_shift); 2083 } 2084 2085 usb_frlength_t 2086 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2087 { 2088 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2089 2090 return (xfer->frlengths[frindex]); 2091 } 2092 2093 /*------------------------------------------------------------------------* 2094 * usbd_xfer_set_frame_data 2095 * 2096 * This function sets the pointer of the buffer that should 2097 * loaded directly into DMA for the given USB frame. Passing "ptr" 2098 * equal to NULL while the corresponding "frlength" is greater 2099 * than zero gives undefined results! 2100 *------------------------------------------------------------------------*/ 2101 void 2102 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2103 void *ptr, usb_frlength_t len) 2104 { 2105 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2106 2107 /* set virtual address to load and length */ 2108 xfer->frbuffers[frindex].buffer = ptr; 2109 usbd_xfer_set_frame_len(xfer, frindex, len); 2110 } 2111 2112 void 2113 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2114 void **ptr, int *len) 2115 { 2116 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2117 2118 if (ptr != NULL) 2119 *ptr = xfer->frbuffers[frindex].buffer; 2120 if (len != NULL) 2121 *len = xfer->frlengths[frindex]; 2122 } 2123 2124 /*------------------------------------------------------------------------* 2125 * usbd_xfer_old_frame_length 2126 * 2127 * This function returns the framelength of the given frame at the 2128 * time the transfer was submitted. This function can be used to 2129 * compute the starting data pointer of the next isochronous frame 2130 * when an isochronous transfer has completed. 2131 *------------------------------------------------------------------------*/ 2132 usb_frlength_t 2133 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2134 { 2135 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2136 2137 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2138 } 2139 2140 void 2141 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2142 int *nframes) 2143 { 2144 if (actlen != NULL) 2145 *actlen = xfer->actlen; 2146 if (sumlen != NULL) 2147 *sumlen = xfer->sumlen; 2148 if (aframes != NULL) 2149 *aframes = xfer->aframes; 2150 if (nframes != NULL) 2151 *nframes = xfer->nframes; 2152 } 2153 2154 /*------------------------------------------------------------------------* 2155 * usbd_xfer_set_frame_offset 2156 * 2157 * This function sets the frame data buffer offset relative to the beginning 2158 * of the USB DMA buffer allocated for this USB transfer. 2159 *------------------------------------------------------------------------*/ 2160 void 2161 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2162 usb_frcount_t frindex) 2163 { 2164 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2165 "when the USB buffer is external\n")); 2166 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2167 2168 /* set virtual address to load */ 2169 xfer->frbuffers[frindex].buffer = 2170 USB_ADD_BYTES(xfer->local_buffer, offset); 2171 } 2172 2173 void 2174 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2175 { 2176 xfer->interval = i; 2177 } 2178 2179 void 2180 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2181 { 2182 xfer->timeout = t; 2183 } 2184 2185 void 2186 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2187 { 2188 xfer->nframes = n; 2189 } 2190 2191 usb_frcount_t 2192 usbd_xfer_max_frames(struct usb_xfer *xfer) 2193 { 2194 return (xfer->max_frame_count); 2195 } 2196 2197 usb_frlength_t 2198 usbd_xfer_max_len(struct usb_xfer *xfer) 2199 { 2200 return (xfer->max_data_length); 2201 } 2202 2203 usb_frlength_t 2204 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2205 { 2206 return (xfer->max_frame_size); 2207 } 2208 2209 void 2210 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2211 usb_frlength_t len) 2212 { 2213 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2214 2215 xfer->frlengths[frindex] = len; 2216 } 2217 2218 /*------------------------------------------------------------------------* 2219 * usb_callback_proc - factored out code 2220 * 2221 * This function performs USB callbacks. 2222 *------------------------------------------------------------------------*/ 2223 static void 2224 usb_callback_proc(struct usb_proc_msg *_pm) 2225 { 2226 struct usb_done_msg *pm = (void *)_pm; 2227 struct usb_xfer_root *info = pm->xroot; 2228 2229 /* Change locking order */ 2230 USB_BUS_UNLOCK(info->bus); 2231 2232 /* 2233 * We exploit the fact that the mutex is the same for all 2234 * callbacks that will be called from this thread: 2235 */ 2236 USB_MTX_LOCK(info->xfer_mtx); 2237 USB_BUS_LOCK(info->bus); 2238 2239 /* Continue where we lost track */ 2240 usb_command_wrapper(&info->done_q, 2241 info->done_q.curr); 2242 2243 USB_MTX_UNLOCK(info->xfer_mtx); 2244 } 2245 2246 /*------------------------------------------------------------------------* 2247 * usbd_callback_ss_done_defer 2248 * 2249 * This function will defer the start, stop and done callback to the 2250 * correct thread. 2251 *------------------------------------------------------------------------*/ 2252 static void 2253 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2254 { 2255 struct usb_xfer_root *info = xfer->xroot; 2256 struct usb_xfer_queue *pq = &info->done_q; 2257 2258 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2259 2260 if (pq->curr != xfer) { 2261 usbd_transfer_enqueue(pq, xfer); 2262 } 2263 if (!pq->recurse_1) { 2264 2265 /* 2266 * We have to postpone the callback due to the fact we 2267 * will have a Lock Order Reversal, LOR, if we try to 2268 * proceed ! 2269 */ 2270 if (usb_proc_msignal(info->done_p, 2271 &info->done_m[0], &info->done_m[1])) { 2272 /* ignore */ 2273 } 2274 } else { 2275 /* clear second recurse flag */ 2276 pq->recurse_2 = 0; 2277 } 2278 return; 2279 2280 } 2281 2282 /*------------------------------------------------------------------------* 2283 * usbd_callback_wrapper 2284 * 2285 * This is a wrapper for USB callbacks. This wrapper does some 2286 * auto-magic things like figuring out if we can call the callback 2287 * directly from the current context or if we need to wakeup the 2288 * interrupt process. 2289 *------------------------------------------------------------------------*/ 2290 static void 2291 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2292 { 2293 struct usb_xfer *xfer = pq->curr; 2294 struct usb_xfer_root *info = xfer->xroot; 2295 2296 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2297 if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) { 2298 /* 2299 * Cases that end up here: 2300 * 2301 * 5) HW interrupt done callback or other source. 2302 */ 2303 DPRINTFN(3, "case 5\n"); 2304 2305 /* 2306 * We have to postpone the callback due to the fact we 2307 * will have a Lock Order Reversal, LOR, if we try to 2308 * proceed! 2309 */ 2310 if (usb_proc_msignal(info->done_p, 2311 &info->done_m[0], &info->done_m[1])) { 2312 /* ignore */ 2313 } 2314 return; 2315 } 2316 /* 2317 * Cases that end up here: 2318 * 2319 * 1) We are starting a transfer 2320 * 2) We are prematurely calling back a transfer 2321 * 3) We are stopping a transfer 2322 * 4) We are doing an ordinary callback 2323 */ 2324 DPRINTFN(3, "case 1-4\n"); 2325 /* get next USB transfer in the queue */ 2326 info->done_q.curr = NULL; 2327 2328 /* set flag in case of drain */ 2329 xfer->flags_int.doing_callback = 1; 2330 2331 USB_BUS_UNLOCK(info->bus); 2332 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2333 2334 /* set correct USB state for callback */ 2335 if (!xfer->flags_int.transferring) { 2336 xfer->usb_state = USB_ST_SETUP; 2337 if (!xfer->flags_int.started) { 2338 /* we got stopped before we even got started */ 2339 USB_BUS_LOCK(info->bus); 2340 goto done; 2341 } 2342 } else { 2343 2344 if (usbd_callback_wrapper_sub(xfer)) { 2345 /* the callback has been deferred */ 2346 USB_BUS_LOCK(info->bus); 2347 goto done; 2348 } 2349 #if USB_HAVE_POWERD 2350 /* decrement power reference */ 2351 usbd_transfer_power_ref(xfer, -1); 2352 #endif 2353 xfer->flags_int.transferring = 0; 2354 2355 if (xfer->error) { 2356 xfer->usb_state = USB_ST_ERROR; 2357 } else { 2358 /* set transferred state */ 2359 xfer->usb_state = USB_ST_TRANSFERRED; 2360 #if USB_HAVE_BUSDMA 2361 /* sync DMA memory, if any */ 2362 if (xfer->flags_int.bdma_enable && 2363 (!xfer->flags_int.bdma_no_post_sync)) { 2364 usb_bdma_post_sync(xfer); 2365 } 2366 #endif 2367 } 2368 } 2369 2370 #if USB_HAVE_PF 2371 if (xfer->usb_state != USB_ST_SETUP) { 2372 USB_BUS_LOCK(info->bus); 2373 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2374 USB_BUS_UNLOCK(info->bus); 2375 } 2376 #endif 2377 /* call processing routine */ 2378 (xfer->callback) (xfer, xfer->error); 2379 2380 /* pickup the USB mutex again */ 2381 USB_BUS_LOCK(info->bus); 2382 2383 /* 2384 * Check if we got started after that we got cancelled, but 2385 * before we managed to do the callback. 2386 */ 2387 if ((!xfer->flags_int.open) && 2388 (xfer->flags_int.started) && 2389 (xfer->usb_state == USB_ST_ERROR)) { 2390 /* clear flag in case of drain */ 2391 xfer->flags_int.doing_callback = 0; 2392 /* try to loop, but not recursivly */ 2393 usb_command_wrapper(&info->done_q, xfer); 2394 return; 2395 } 2396 2397 done: 2398 /* clear flag in case of drain */ 2399 xfer->flags_int.doing_callback = 0; 2400 2401 /* 2402 * Check if we are draining. 2403 */ 2404 if (xfer->flags_int.draining && 2405 (!xfer->flags_int.transferring)) { 2406 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2407 xfer->flags_int.draining = 0; 2408 (void)cv_broadcast(&info->cv_drain); 2409 } 2410 2411 /* do the next callback, if any */ 2412 usb_command_wrapper(&info->done_q, 2413 info->done_q.curr); 2414 } 2415 2416 /*------------------------------------------------------------------------* 2417 * usb_dma_delay_done_cb 2418 * 2419 * This function is called when the DMA delay has been exectuded, and 2420 * will make sure that the callback is called to complete the USB 2421 * transfer. This code path is usually only used when there is an USB 2422 * error like USB_ERR_CANCELLED. 2423 *------------------------------------------------------------------------*/ 2424 void 2425 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2426 { 2427 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2428 2429 DPRINTFN(3, "Completed %p\n", xfer); 2430 2431 /* queue callback for execution, again */ 2432 usbd_transfer_done(xfer, (usb_error_t)0); 2433 } 2434 2435 /*------------------------------------------------------------------------* 2436 * usbd_transfer_dequeue 2437 * 2438 * - This function is used to remove an USB transfer from a USB 2439 * transfer queue. 2440 * 2441 * - This function can be called multiple times in a row. 2442 *------------------------------------------------------------------------*/ 2443 void 2444 usbd_transfer_dequeue(struct usb_xfer *xfer) 2445 { 2446 struct usb_xfer_queue *pq; 2447 uint32_t int_save; 2448 2449 LOS_SpinLockSave(&g_usb_wait_queue_spinlock, &int_save); 2450 pq = xfer->wait_queue; 2451 if (pq != NULL) { 2452 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2453 xfer->wait_queue = NULL; 2454 } 2455 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 2456 } 2457 2458 /*------------------------------------------------------------------------* 2459 * usbd_transfer_enqueue 2460 * 2461 * - This function is used to insert an USB transfer into a USB * 2462 * transfer queue. 2463 * 2464 * - This function can be called multiple times in a row. 2465 *------------------------------------------------------------------------*/ 2466 void 2467 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2468 { 2469 uint32_t int_save; 2470 /* 2471 * Insert the USB transfer into the queue, if it is not 2472 * already on a USB transfer queue: 2473 */ 2474 LOS_SpinLockSave(&g_usb_wait_queue_spinlock, &int_save); 2475 if (xfer->wait_queue == NULL) { 2476 xfer->wait_queue = pq; 2477 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2478 } 2479 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 2480 } 2481 2482 /*------------------------------------------------------------------------* 2483 * usbd_transfer_done 2484 * 2485 * - This function is used to remove an USB transfer from the busdma, 2486 * pipe or interrupt queue. 2487 * 2488 * - This function is used to queue the USB transfer on the done 2489 * queue. 2490 * 2491 * - This function is used to stop any USB transfer timeouts. 2492 *------------------------------------------------------------------------*/ 2493 void 2494 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2495 { 2496 struct usb_xfer_root *info = xfer->xroot; 2497 2498 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2499 2500 DPRINTF("err=%s\n", usbd_errstr(error)); 2501 2502 /* 2503 * If we are not transferring then just return. 2504 * This can happen during transfer cancel. 2505 */ 2506 if (!xfer->flags_int.transferring) { 2507 DPRINTF("not transferring\n"); 2508 /* end of control transfer, if any */ 2509 xfer->flags_int.control_act = 0; 2510 return; 2511 } 2512 /* only set transfer error, if not already set */ 2513 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2514 xfer->error = error; 2515 2516 /* stop any callouts */ 2517 callout_stop(&xfer->timeout_handle); 2518 2519 /* 2520 * If we are waiting on a queue, just remove the USB transfer 2521 * from the queue, if any. We should have the required locks 2522 * locked to do the remove when this function is called. 2523 */ 2524 usbd_transfer_dequeue(xfer); 2525 2526 #if USB_HAVE_BUSDMA 2527 if (mtx_owned(info->xfer_mtx)) { 2528 struct usb_xfer_queue *pq; 2529 2530 /* 2531 * If the private USB lock is not locked, then we assume 2532 * that the BUS-DMA load stage has been passed: 2533 */ 2534 pq = &info->dma_q; 2535 2536 if (pq->curr == xfer) { 2537 /* start the next BUS-DMA load, if any */ 2538 usb_command_wrapper(pq, NULL); 2539 } 2540 } 2541 #endif 2542 /* keep some statistics */ 2543 if (xfer->error == USB_ERR_CANCELLED) { 2544 info->udev->stats_cancelled.uds_requests 2545 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2546 } else if (xfer->error != USB_ERR_NORMAL_COMPLETION) { 2547 info->udev->stats_err.uds_requests 2548 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2549 } else { 2550 info->udev->stats_ok.uds_requests 2551 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2552 } 2553 2554 /* call the USB transfer callback */ 2555 usbd_callback_ss_done_defer(xfer); 2556 } 2557 2558 /*------------------------------------------------------------------------* 2559 * usbd_transfer_start_cb 2560 * 2561 * This function is called to start the USB transfer when 2562 * "xfer->interval" is greater than zero, and and the endpoint type is 2563 * BULK or CONTROL. 2564 *------------------------------------------------------------------------*/ 2565 static void 2566 usbd_transfer_start_cb(void *arg) 2567 { 2568 struct usb_xfer *xfer = arg; 2569 struct usb_endpoint *ep = xfer->endpoint; 2570 2571 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2572 2573 DPRINTF("start\n"); 2574 2575 #if USB_HAVE_PF 2576 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2577 #endif 2578 2579 /* the transfer can now be cancelled */ 2580 xfer->flags_int.can_cancel_immed = 1; 2581 2582 /* start USB transfer, if no error */ 2583 if (xfer->error == 0) 2584 (ep->methods->start) (xfer); 2585 2586 /* check for transfer error */ 2587 if (xfer->error) { 2588 /* some error has happened */ 2589 usbd_transfer_done(xfer, (usb_error_t)0); 2590 } 2591 } 2592 2593 /*------------------------------------------------------------------------* 2594 * usbd_xfer_set_stall 2595 * 2596 * This function is used to set the stall flag outside the 2597 * callback. This function is NULL safe. 2598 *------------------------------------------------------------------------*/ 2599 void 2600 usbd_xfer_set_stall(struct usb_xfer *xfer) 2601 { 2602 if (xfer == NULL) { 2603 /* tearing down */ 2604 return; 2605 } 2606 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2607 2608 /* avoid any races by locking the USB mutex */ 2609 USB_BUS_LOCK(xfer->xroot->bus); 2610 xfer->flags.stall_pipe = 1; 2611 USB_BUS_UNLOCK(xfer->xroot->bus); 2612 } 2613 2614 int 2615 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2616 { 2617 return (xfer->endpoint->is_stalled); 2618 } 2619 2620 /*------------------------------------------------------------------------* 2621 * usbd_transfer_clear_stall 2622 * 2623 * This function is used to clear the stall flag outside the 2624 * callback. This function is NULL safe. 2625 *------------------------------------------------------------------------*/ 2626 void 2627 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2628 { 2629 if (xfer == NULL) { 2630 /* tearing down */ 2631 return; 2632 } 2633 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2634 2635 /* avoid any races by locking the USB mutex */ 2636 USB_BUS_LOCK(xfer->xroot->bus); 2637 2638 xfer->flags.stall_pipe = 0; 2639 2640 USB_BUS_UNLOCK(xfer->xroot->bus); 2641 } 2642 2643 /*------------------------------------------------------------------------* 2644 * usbd_pipe_start 2645 * 2646 * This function is used to add an USB transfer to the pipe transfer list. 2647 *------------------------------------------------------------------------*/ 2648 void 2649 usbd_pipe_start(struct usb_xfer_queue *pq) 2650 { 2651 struct usb_endpoint *ep; 2652 struct usb_xfer *xfer; 2653 uint8_t type; 2654 2655 xfer = pq->curr; 2656 ep = xfer->endpoint; 2657 2658 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2659 2660 /* 2661 * If the endpoint is already stalled we do nothing ! 2662 */ 2663 if (ep->is_stalled) { 2664 DPRINTFN(1, "is_stalled\n"); 2665 return; 2666 } 2667 /* 2668 * Check if we are supposed to stall the endpoint: 2669 */ 2670 if (xfer->flags.stall_pipe) { 2671 struct usb_device *udev; 2672 struct usb_xfer_root *info; 2673 2674 /* clear stall command */ 2675 xfer->flags.stall_pipe = 0; 2676 2677 /* get pointer to USB device */ 2678 info = xfer->xroot; 2679 udev = info->udev; 2680 2681 /* 2682 * Only stall BULK and INTERRUPT endpoints. 2683 */ 2684 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2685 if ((type == UE_BULK) || 2686 (type == UE_INTERRUPT)) { 2687 uint8_t did_stall; 2688 2689 did_stall = 1; 2690 2691 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2692 (udev->bus->methods->set_stall) ( 2693 udev, ep, &did_stall); 2694 } else if (udev->ctrl_xfer[1]) { 2695 info = udev->ctrl_xfer[1]->xroot; 2696 (void)usb_proc_msignal( 2697 USB_BUS_CS_PROC(info->bus), 2698 &udev->cs_msg[0], &udev->cs_msg[1]); 2699 } else { 2700 /* should not happen */ 2701 DPRINTFN(0, "No stall handler\n"); 2702 } 2703 /* 2704 * Check if we should stall. Some USB hardware 2705 * handles set- and clear-stall in hardware. 2706 */ 2707 if (did_stall) { 2708 /* 2709 * The transfer will be continued when 2710 * the clear-stall control endpoint 2711 * message is received. 2712 */ 2713 ep->is_stalled = 1; 2714 DPRINTFN(1, "did_stall\n"); 2715 return; 2716 } 2717 } else if (type == UE_ISOCHRONOUS) { 2718 2719 /* 2720 * Make sure any FIFO overflow or other FIFO 2721 * error conditions go away by resetting the 2722 * endpoint FIFO through the clear stall 2723 * method. 2724 */ 2725 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2726 (udev->bus->methods->clear_stall) (udev, ep); 2727 } 2728 } 2729 } 2730 /* Set or clear stall complete - special case */ 2731 if (xfer->nframes == 0) { 2732 /* we are complete */ 2733 xfer->aframes = 0; 2734 usbd_transfer_done(xfer, (usb_error_t)0); 2735 DPRINTFN(1, "nframes == 0\n"); 2736 return; 2737 } 2738 /* 2739 * Handled cases: 2740 * 2741 * 1) Start the first transfer queued. 2742 * 2743 * 2) Re-start the current USB transfer. 2744 */ 2745 /* 2746 * Check if there should be any 2747 * pre transfer start delay: 2748 */ 2749 if (xfer->interval > 0) { 2750 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2751 if ((type == UE_BULK) || 2752 (type == UE_CONTROL)) { 2753 usbd_transfer_timeout_ms(xfer, 2754 &usbd_transfer_start_cb, 2755 xfer->interval); 2756 DPRINTFN(1, "usbd_transfer_timeout_ms \n"); 2757 return; 2758 } 2759 } 2760 2761 usbd_transfer_start_cb((void *)xfer); 2762 } 2763 2764 /*------------------------------------------------------------------------* 2765 * usbd_transfer_timeout_ms 2766 * 2767 * This function is used to setup a timeout on the given USB 2768 * transfer. If the timeout has been deferred the callback given by 2769 * "cb" will get called after "ms" milliseconds. 2770 *------------------------------------------------------------------------*/ 2771 void 2772 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2773 void (*cb) (void *arg), usb_timeout_t ms) 2774 { 2775 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2776 2777 /* defer delay */ 2778 callout_reset(&xfer->timeout_handle, 2779 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2780 } 2781 2782 /*------------------------------------------------------------------------* 2783 * usbd_callback_wrapper_sub 2784 * 2785 * - This function will update variables in an USB transfer after 2786 * that the USB transfer is complete. 2787 * 2788 * - This function is used to start the next USB transfer on the 2789 * ep transfer queue, if any. 2790 * 2791 * NOTE: In some special cases the USB transfer will not be removed from 2792 * the pipe queue, but remain first. To enforce USB transfer removal call 2793 * this function passing the error code "USB_ERR_CANCELLED". 2794 * 2795 * Return values: 2796 * 0: Success. 2797 * Else: The callback has been deferred. 2798 *------------------------------------------------------------------------*/ 2799 static uint8_t 2800 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2801 { 2802 struct usb_endpoint *ep; 2803 struct usb_bus *bus; 2804 usb_frcount_t x; 2805 2806 bus = xfer->xroot->bus; 2807 2808 if ((!xfer->flags_int.open) && 2809 (!xfer->flags_int.did_close)) { 2810 DPRINTF("close\n"); 2811 USB_BUS_LOCK(bus); 2812 (xfer->endpoint->methods->close) (xfer); 2813 USB_BUS_UNLOCK(bus); 2814 /* only close once */ 2815 xfer->flags_int.did_close = 1; 2816 return (1); /* wait for new callback */ 2817 } 2818 /* 2819 * If we have a non-hardware induced error we 2820 * need to do the DMA delay! 2821 */ 2822 if ((xfer->error != 0) && (!xfer->flags_int.did_dma_delay) && 2823 ((xfer->error == USB_ERR_CANCELLED) || 2824 (xfer->error == USB_ERR_TIMEOUT) || 2825 (bus->methods->start_dma_delay != NULL))) { 2826 2827 usb_timeout_t temp; 2828 2829 /* only delay once */ 2830 xfer->flags_int.did_dma_delay = 1; 2831 2832 /* we can not cancel this delay */ 2833 xfer->flags_int.can_cancel_immed = 0; 2834 2835 temp = usbd_get_dma_delay(xfer->xroot->udev); 2836 2837 DPRINTFN(3, "DMA delay, %u ms, " 2838 "on %p\n", temp, xfer); 2839 2840 if (temp != 0) { 2841 USB_BUS_LOCK(bus); 2842 /* 2843 * Some hardware solutions have dedicated 2844 * events when it is safe to free DMA'ed 2845 * memory. For the other hardware platforms we 2846 * use a static delay. 2847 */ 2848 if (bus->methods->start_dma_delay != NULL) { 2849 (bus->methods->start_dma_delay) (xfer); 2850 } else { 2851 usbd_transfer_timeout_ms(xfer, 2852 (void (*)(void *))&usb_dma_delay_done_cb, 2853 temp); 2854 } 2855 USB_BUS_UNLOCK(bus); 2856 return (1); /* wait for new callback */ 2857 } 2858 } 2859 /* check actual number of frames */ 2860 if (xfer->aframes > xfer->nframes) { 2861 if (xfer->error == 0) { 2862 panic("%s: actual number of frames, %d, is " 2863 "greater than initial number of frames, %d\n", 2864 __FUNCTION__, xfer->aframes, xfer->nframes); 2865 } else { 2866 /* just set some valid value */ 2867 xfer->aframes = xfer->nframes; 2868 } 2869 } 2870 /* compute actual length */ 2871 xfer->actlen = 0; 2872 2873 for (x = 0; x != xfer->aframes; x++) { 2874 xfer->actlen += xfer->frlengths[x]; 2875 } 2876 2877 /* 2878 * Frames that were not transferred get zero actual length in 2879 * case the USB device driver does not check the actual number 2880 * of frames transferred, "xfer->aframes": 2881 */ 2882 for (; x < xfer->nframes; x++) { 2883 usbd_xfer_set_frame_len(xfer, x, 0); 2884 } 2885 2886 /* check actual length */ 2887 if (xfer->actlen > xfer->sumlen) { 2888 if (xfer->error == 0) { 2889 panic("%s: actual length, %d, is greater than " 2890 "initial length, %d\n", 2891 __FUNCTION__, xfer->actlen, xfer->sumlen); 2892 } else { 2893 /* just set some valid value */ 2894 xfer->actlen = xfer->sumlen; 2895 } 2896 } 2897 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2898 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2899 xfer->aframes, xfer->nframes); 2900 2901 if (xfer->error) { 2902 /* end of control transfer, if any */ 2903 xfer->flags_int.control_act = 0; 2904 2905 #if USB_HAVE_TT_SUPPORT 2906 switch (xfer->error) { 2907 case USB_ERR_NORMAL_COMPLETION: 2908 case USB_ERR_SHORT_XFER: 2909 case USB_ERR_STALLED: 2910 case USB_ERR_CANCELLED: 2911 /* nothing to do */ 2912 break; 2913 default: 2914 /* try to reset the TT, if any */ 2915 USB_BUS_LOCK(bus); 2916 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 2917 USB_BUS_UNLOCK(bus); 2918 break; 2919 } 2920 #endif 2921 /* check if we should block the execution queue */ 2922 if ((xfer->error != USB_ERR_CANCELLED) && 2923 (xfer->flags.pipe_bof)) { 2924 DPRINTFN(2, "xfer=%p: Block On Failure " 2925 "on endpoint=%p\n", xfer, xfer->endpoint); 2926 goto done; 2927 } 2928 } else { 2929 /* check for short transfers */ 2930 if (xfer->actlen < xfer->sumlen) { 2931 2932 /* end of control transfer, if any */ 2933 xfer->flags_int.control_act = 0; 2934 2935 if (!xfer->flags_int.short_xfer_ok) { 2936 xfer->error = USB_ERR_SHORT_XFER; 2937 if (xfer->flags.pipe_bof) { 2938 DPRINTFN(2, "xfer=%p: Block On Failure on " 2939 "Short Transfer on endpoint %p.\n", 2940 xfer, xfer->endpoint); 2941 goto done; 2942 } 2943 } 2944 } else { 2945 /* 2946 * Check if we are in the middle of a 2947 * control transfer: 2948 */ 2949 if (xfer->flags_int.control_act) { 2950 DPRINTFN(5, "xfer=%p: Control transfer " 2951 "active on endpoint=%p\n", xfer, xfer->endpoint); 2952 goto done; 2953 } 2954 } 2955 } 2956 2957 ep = xfer->endpoint; 2958 2959 /* 2960 * If the current USB transfer is completing we need to start the 2961 * next one: 2962 */ 2963 USB_BUS_LOCK(bus); 2964 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2965 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 2966 2967 if ((ep->endpoint_q[xfer->stream_id].curr != NULL) || 2968 (TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL)) { 2969 /* there is another USB transfer waiting */ 2970 } else { 2971 /* this is the last USB transfer */ 2972 /* clear isochronous sync flag */ 2973 xfer->endpoint->is_synced = 0; 2974 } 2975 } 2976 USB_BUS_UNLOCK(bus); 2977 done: 2978 return (0); 2979 } 2980 2981 /*------------------------------------------------------------------------* 2982 * usb_command_wrapper 2983 * 2984 * This function is used to execute commands non-recursivly on an USB 2985 * transfer. 2986 *------------------------------------------------------------------------*/ 2987 void 2988 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2989 { 2990 uint32_t int_save; 2991 2992 if (xfer) { 2993 /* 2994 * If the transfer is not already processing, 2995 * queue it! 2996 */ 2997 if (pq->curr != xfer) { 2998 usbd_transfer_enqueue(pq, xfer); 2999 if (pq->curr != NULL) { 3000 /* something is already processing */ 3001 DPRINTFN(6, "busy %p\n", pq->curr); 3002 return; 3003 } 3004 } 3005 } else { 3006 /* Get next element in queue */ 3007 pq->curr = NULL; 3008 } 3009 3010 if (!pq->recurse_1) { 3011 3012 do { 3013 3014 LOS_SpinLockSave(&g_usb_wait_queue_spinlock, &int_save); 3015 /* set both recurse flags */ 3016 pq->recurse_1 = 1; 3017 pq->recurse_2 = 1; 3018 3019 if (pq->curr == NULL) { 3020 xfer = TAILQ_FIRST(&pq->head); 3021 if (xfer) { 3022 TAILQ_REMOVE(&pq->head, xfer, 3023 wait_entry); 3024 xfer->wait_queue = NULL; 3025 pq->curr = xfer; 3026 } else { 3027 /* clear first recurse flag */ 3028 pq->recurse_1 = 0; 3029 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 3030 break; 3031 } 3032 } 3033 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 3034 3035 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 3036 (pq->command) (pq); 3037 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 3038 3039 LOS_SpinLockSave(&g_usb_wait_queue_spinlock, &int_save); 3040 if (pq->recurse_2) { 3041 /* clear first recurse flag */ 3042 pq->recurse_1 = 0; 3043 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 3044 break; 3045 } 3046 LOS_SpinUnlockRestore(&g_usb_wait_queue_spinlock, int_save); 3047 } while (1); 3048 3049 } else { 3050 /* clear second recurse flag */ 3051 pq->recurse_2 = 0; 3052 } 3053 } 3054 3055 /*------------------------------------------------------------------------* 3056 * usbd_ctrl_transfer_setup 3057 * 3058 * This function is used to setup the default USB control endpoint 3059 * transfer. 3060 *------------------------------------------------------------------------*/ 3061 void 3062 usbd_ctrl_transfer_setup(struct usb_device *udev) 3063 { 3064 struct usb_xfer *xfer; 3065 uint8_t no_resetup; 3066 uint8_t iface_index; 3067 3068 /* check for root HUB */ 3069 if (udev->parent_hub == NULL) 3070 return; 3071 repeat: 3072 3073 xfer = udev->ctrl_xfer[0]; 3074 if (xfer) { 3075 USB_XFER_LOCK(xfer); 3076 no_resetup = 3077 ((xfer->address == udev->address) && 3078 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3079 udev->ddesc.bMaxPacketSize)); 3080 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3081 if (no_resetup) { 3082 /* 3083 * NOTE: checking "xfer->address" and 3084 * starting the USB transfer must be 3085 * atomic! 3086 */ 3087 usbd_transfer_start(xfer); 3088 } 3089 } 3090 USB_XFER_UNLOCK(xfer); 3091 } else { 3092 no_resetup = 0; 3093 } 3094 3095 if (no_resetup) { 3096 /* 3097 * All parameters are exactly the same like before. 3098 * Just return. 3099 */ 3100 return; 3101 } 3102 /* 3103 * Update wMaxPacketSize for the default control endpoint: 3104 */ 3105 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3106 udev->ddesc.bMaxPacketSize; 3107 3108 /* 3109 * Unsetup any existing USB transfer: 3110 */ 3111 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3112 3113 /* 3114 * Reset clear stall error counter. 3115 */ 3116 udev->clear_stall_errors = 0; 3117 3118 /* 3119 * Try to setup a new USB transfer for the 3120 * default control endpoint: 3121 */ 3122 iface_index = 0; 3123 if (usbd_transfer_setup(udev, &iface_index, 3124 udev->ctrl_xfer, udev->bus->control_ep_quirk ? 3125 usb_control_ep_quirk_cfg : usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3126 &udev->device_mtx)) { 3127 DPRINTFN(0, "could not setup default " 3128 "USB transfer\n"); 3129 } else { 3130 goto repeat; 3131 } 3132 } 3133 3134 /*------------------------------------------------------------------------* 3135 * usbd_clear_data_toggle - factored out code 3136 * 3137 * NOTE: the intention of this function is not to reset the hardware 3138 * data toggle. 3139 *------------------------------------------------------------------------*/ 3140 void 3141 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3142 { 3143 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3144 3145 /* check that we have a valid case */ 3146 if ((udev->flags.usb_mode == USB_MODE_HOST) && 3147 (udev->parent_hub != NULL) && 3148 (udev->bus->methods->clear_stall != NULL) && 3149 (ep->methods != NULL)) { 3150 (udev->bus->methods->clear_stall) (udev, ep); 3151 } 3152 } 3153 3154 /*------------------------------------------------------------------------* 3155 * usbd_clear_data_toggle - factored out code 3156 * 3157 * NOTE: the intention of this function is not to reset the hardware 3158 * data toggle on the USB device side. 3159 *------------------------------------------------------------------------*/ 3160 void 3161 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3162 { 3163 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3164 3165 USB_BUS_LOCK(udev->bus); 3166 ep->toggle_next = 0; 3167 /* some hardware needs a callback to clear the data toggle */ 3168 usbd_clear_stall_locked(udev, ep); 3169 USB_BUS_UNLOCK(udev->bus); 3170 } 3171 3172 /*------------------------------------------------------------------------* 3173 * usbd_clear_stall_callback - factored out clear stall callback 3174 * 3175 * Input parameters: 3176 * xfer1: Clear Stall Control Transfer 3177 * xfer2: Stalled USB Transfer 3178 * 3179 * This function is NULL safe. 3180 * 3181 * Return values: 3182 * 0: In progress 3183 * Else: Finished 3184 * 3185 * Clear stall config example: 3186 * 3187 * static const struct usb_config my_clearstall = { 3188 * .type = UE_CONTROL, 3189 * .endpoint = 0, 3190 * .direction = UE_DIR_ANY, 3191 * .interval = 50, //50 milliseconds 3192 * .bufsize = sizeof(struct usb_device_request), 3193 * .timeout = 1000, //1.000 seconds 3194 * .callback = &my_clear_stall_callback, // ** 3195 * .usb_mode = USB_MODE_HOST, 3196 * }; 3197 * 3198 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3199 * passing the correct parameters. 3200 *------------------------------------------------------------------------*/ 3201 uint8_t 3202 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3203 struct usb_xfer *xfer2) 3204 { 3205 struct usb_device_request req; 3206 3207 if (xfer2 == NULL) { 3208 /* looks like we are tearing down */ 3209 DPRINTF("NULL input parameter\n"); 3210 return (0); 3211 } 3212 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3213 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3214 3215 switch (USB_GET_STATE(xfer1)) { 3216 case USB_ST_SETUP: 3217 3218 /* 3219 * pre-clear the data toggle to DATA0 ("umass.c" and 3220 * "ata-usb.c" depends on this) 3221 */ 3222 3223 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3224 3225 /* setup a clear-stall packet */ 3226 3227 req.bmRequestType = UT_WRITE_ENDPOINT; 3228 req.bRequest = UR_CLEAR_FEATURE; 3229 USETW(req.wValue, UF_ENDPOINT_HALT); 3230 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3231 req.wIndex[1] = 0; 3232 USETW(req.wLength, 0); 3233 3234 /* 3235 * "usbd_transfer_setup_sub()" will ensure that 3236 * we have sufficient room in the buffer for 3237 * the request structure! 3238 */ 3239 3240 /* copy in the transfer */ 3241 3242 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3243 3244 /* set length */ 3245 xfer1->frlengths[0] = sizeof(req); 3246 xfer1->nframes = 1; 3247 3248 usbd_transfer_submit(xfer1); 3249 return (0); 3250 3251 case USB_ST_TRANSFERRED: 3252 break; 3253 3254 default: /* Error */ 3255 if (xfer1->error == USB_ERR_CANCELLED) { 3256 return (0); 3257 } 3258 break; 3259 } 3260 return (1); /* Clear Stall Finished */ 3261 } 3262 3263 /*------------------------------------------------------------------------* 3264 * usbd_transfer_poll 3265 * 3266 * The following function gets called from the USB keyboard driver and 3267 * UMASS when the system has paniced. 3268 * 3269 * NOTE: It is currently not possible to resume normal operation on 3270 * the USB controller which has been polled, due to clearing of the 3271 * "up_dsleep" and "up_msleep" flags. 3272 *------------------------------------------------------------------------*/ 3273 void 3274 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3275 { 3276 struct usb_xfer *xfer; 3277 struct usb_xfer_root *xroot; 3278 struct usb_device *udev; 3279 struct usb_proc_msg *pm; 3280 uint16_t n; 3281 uint16_t drop_bus; 3282 uint16_t drop_xfer; 3283 3284 for (n = 0; n != max; n++) { 3285 /* Extra checks to avoid panic */ 3286 xfer = ppxfer[n]; 3287 if (xfer == NULL) 3288 continue; /* no USB transfer */ 3289 xroot = xfer->xroot; 3290 if (xroot == NULL) 3291 continue; /* no USB root */ 3292 udev = xroot->udev; 3293 if (udev == NULL) 3294 continue; /* no USB device */ 3295 if (udev->bus == NULL) 3296 continue; /* no BUS structure */ 3297 if (udev->bus->methods == NULL) 3298 continue; /* no BUS methods */ 3299 if (udev->bus->methods->xfer_poll == NULL) 3300 continue; /* no poll method */ 3301 3302 /* make sure that the BUS mutex is not locked */ 3303 drop_bus = 0; 3304 while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { 3305 mtx_unlock(&xroot->udev->bus->bus_mtx); 3306 drop_bus++; 3307 } 3308 3309 /* make sure that the transfer mutex is not locked */ 3310 drop_xfer = 0; 3311 while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { 3312 mtx_unlock(xroot->xfer_mtx); 3313 drop_xfer++; 3314 } 3315 3316 /* Make sure cv_signal() and cv_broadcast() is not called */ 3317 USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0; 3318 USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0; 3319 USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0; 3320 USB_BUS_NON_GIANT_ISOC_PROC(udev->bus)->up_msleep = 0; 3321 USB_BUS_NON_GIANT_BULK_PROC(udev->bus)->up_msleep = 0; 3322 3323 /* poll USB hardware */ 3324 (udev->bus->methods->xfer_poll) (udev->bus); 3325 3326 USB_BUS_LOCK(xroot->bus); 3327 3328 /* check for clear stall */ 3329 if (udev->ctrl_xfer[1] != NULL) { 3330 3331 /* poll clear stall start */ 3332 pm = &udev->cs_msg[0].hdr; 3333 (pm->pm_callback) (pm); 3334 /* poll clear stall done thread */ 3335 pm = &udev->ctrl_xfer[1]-> 3336 xroot->done_m[0].hdr; 3337 (pm->pm_callback) (pm); 3338 } 3339 3340 /* poll done thread */ 3341 pm = &xroot->done_m[0].hdr; 3342 (pm->pm_callback) (pm); 3343 3344 USB_BUS_UNLOCK(xroot->bus); 3345 3346 /* restore transfer mutex */ 3347 while (drop_xfer--) 3348 mtx_lock(xroot->xfer_mtx); 3349 3350 /* restore BUS mutex */ 3351 while (drop_bus--) 3352 mtx_lock(&xroot->udev->bus->bus_mtx); 3353 } 3354 } 3355 3356 static void 3357 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3358 uint8_t type, enum usb_dev_speed speed) 3359 { 3360 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3361 [USB_SPEED_LOW] = 8, 3362 [USB_SPEED_FULL] = 64, 3363 [USB_SPEED_HIGH] = 1024, 3364 [USB_SPEED_VARIABLE] = 1024, 3365 [USB_SPEED_SUPER] = 1024, 3366 }; 3367 3368 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3369 [USB_SPEED_LOW] = 0, /* invalid */ 3370 [USB_SPEED_FULL] = 1023, 3371 [USB_SPEED_HIGH] = 1024, 3372 [USB_SPEED_VARIABLE] = 3584, 3373 [USB_SPEED_SUPER] = 1024, 3374 }; 3375 3376 static const uint16_t control_min[USB_SPEED_MAX] = { 3377 [USB_SPEED_LOW] = 8, 3378 [USB_SPEED_FULL] = 8, 3379 [USB_SPEED_HIGH] = 64, 3380 [USB_SPEED_VARIABLE] = 512, 3381 [USB_SPEED_SUPER] = 512, 3382 }; 3383 3384 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3385 [USB_SPEED_LOW] = 8, 3386 [USB_SPEED_FULL] = 8, 3387 [USB_SPEED_HIGH] = 512, 3388 [USB_SPEED_VARIABLE] = 512, 3389 [USB_SPEED_SUPER] = 1024, 3390 }; 3391 3392 uint16_t temp; 3393 3394 (void)memset_s(ptr, sizeof(*ptr), 0, sizeof(*ptr)); 3395 3396 switch (type) { 3397 case UE_INTERRUPT: 3398 ptr->range.max = intr_range_max[speed]; 3399 break; 3400 case UE_ISOCHRONOUS: 3401 ptr->range.max = isoc_range_max[speed]; 3402 break; 3403 default: 3404 if (type == UE_BULK) 3405 temp = bulk_min[speed]; 3406 else /* UE_CONTROL */ 3407 temp = control_min[speed]; 3408 3409 /* default is fixed */ 3410 ptr->fixed[0] = temp; 3411 ptr->fixed[1] = temp; 3412 ptr->fixed[2] = temp; 3413 ptr->fixed[3] = temp; 3414 3415 if (speed == USB_SPEED_FULL) { 3416 /* multiple sizes */ 3417 ptr->fixed[1] = 16; 3418 ptr->fixed[2] = 32; 3419 ptr->fixed[3] = 64; 3420 } 3421 if ((speed == USB_SPEED_VARIABLE) && 3422 (type == UE_BULK)) { 3423 /* multiple sizes */ 3424 ptr->fixed[2] = 1024; 3425 ptr->fixed[3] = 1536; 3426 } 3427 break; 3428 } 3429 } 3430 3431 void * 3432 usbd_xfer_softc(struct usb_xfer *xfer) 3433 { 3434 return (xfer->priv_sc); 3435 } 3436 3437 void * 3438 usbd_xfer_get_priv(struct usb_xfer *xfer) 3439 { 3440 return (xfer->priv_fifo); 3441 } 3442 3443 void 3444 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3445 { 3446 xfer->priv_fifo = ptr; 3447 } 3448 3449 uint8_t 3450 usbd_xfer_state(struct usb_xfer *xfer) 3451 { 3452 return (xfer->usb_state); 3453 } 3454 3455 void 3456 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3457 { 3458 switch (flag) { 3459 case USB_FORCE_SHORT_XFER: 3460 xfer->flags.force_short_xfer = 1; 3461 break; 3462 case USB_SHORT_XFER_OK: 3463 xfer->flags.short_xfer_ok = 1; 3464 break; 3465 case USB_MULTI_SHORT_OK: 3466 xfer->flags.short_frames_ok = 1; 3467 break; 3468 case USB_MANUAL_STATUS: 3469 xfer->flags.manual_status = 1; 3470 break; 3471 } 3472 } 3473 3474 void 3475 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3476 { 3477 switch (flag) { 3478 case USB_FORCE_SHORT_XFER: 3479 xfer->flags.force_short_xfer = 0; 3480 break; 3481 case USB_SHORT_XFER_OK: 3482 xfer->flags.short_xfer_ok = 0; 3483 break; 3484 case USB_MULTI_SHORT_OK: 3485 xfer->flags.short_frames_ok = 0; 3486 break; 3487 case USB_MANUAL_STATUS: 3488 xfer->flags.manual_status = 0; 3489 break; 3490 } 3491 } 3492 3493 /* 3494 * The following function returns in milliseconds when the isochronous 3495 * transfer was completed by the hardware. The returned value wraps 3496 * around 65536 milliseconds. 3497 */ 3498 uint16_t 3499 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3500 { 3501 return (xfer->isoc_time_complete); 3502 } 3503 3504 /* 3505 * The following function returns non-zero if the max packet size 3506 * field was clamped to a valid value. Else it returns zero. 3507 */ 3508 uint8_t 3509 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3510 { 3511 return (xfer->flags_int.maxp_was_clamped); 3512 } 3513 3514 #undef USB_DEBUG_VAR 3515