• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include <sstream>
17 #include <algorithm>
18 #include <v1_0/nnrt_types.h>
19 
20 #include "securec.h"
21 #include "interfaces/kits/c/neural_network_runtime.h"
22 #include "frameworks/native/inner_model.h"
23 #include "frameworks/native/memory_manager.h"
24 #include "hdi_nnrt_test_utils.h"
25 
26 namespace OHOS::NeuralNetworkRuntime::Test {
27 
BuildAddGraph(OH_NNModel ** model)28 void HDICommon::BuildAddGraph(OH_NNModel **model)
29 {
30     printf("[NNRtTest] BuildAddGraph start.\n");
31     // create OH_NNModel
32     *model = OH_NNModel_Construct();
33     ASSERT_NE(nullptr, model);
34     // add inputs of Add operation
35     int32_t dimensions[3]{3, 2, 2};
36     OH_NN_Tensor firstAddend{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
37     OH_NN_Tensor secondAddend{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
38     uint32_t inputIndicesValue[2]{0, 1};
39     OH_NN_UInt32Array inputIndices{inputIndicesValue, 2};
40     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &firstAddend));
41     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &secondAddend));
42 
43     // Add activation type and set value
44     OH_NN_Tensor activationType{OH_NN_INT8, 0, nullptr, nullptr, OH_NN_ADD_ACTIVATIONTYPE};
45     int8_t activationValue{0};
46     uint32_t paramIndicesValue{2};
47     OH_NN_UInt32Array paramIndices{&paramIndicesValue, 1};
48     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &activationType));
49     int opCnt = 2;
50     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_SetTensorData(*model, opCnt, (void *)&activationValue, sizeof(int8_t)));
51 
52     // add output of Add operation
53     OH_NN_Tensor output{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
54     uint32_t outputIndicesValue{3};
55     OH_NN_UInt32Array outputIndices{&outputIndicesValue, 1};
56     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &output));
57 
58     // add Add operation to model
59     ASSERT_EQ(OH_NN_SUCCESS,
60               OH_NNModel_AddOperation(*model, OH_NN_OPS_ADD, &paramIndices, &inputIndices, &outputIndices));
61     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_SpecifyInputsAndOutputs(*model, &inputIndices, &outputIndices));
62     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_Finish(*model));
63 
64     printf("[NNRtTest] BuildAddGraph done.\n");
65 }
66 
BuildAddGraphDynamic(OH_NNModel ** model)67 void HDICommon::BuildAddGraphDynamic(OH_NNModel **model)
68 {
69     printf("[NNRtTest] BuildAddGraphDynamic start.\n");
70     // create OH_NNModel
71     *model = OH_NNModel_Construct();
72     ASSERT_NE(nullptr, *model);
73     // add inputs of Add operation
74     int32_t dimensions[3]{-1, -1, -1};
75     OH_NN_Tensor firstAddend{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
76     OH_NN_Tensor secondAddend{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
77     uint32_t inputIndicesValue[2]{0, 1};
78     OH_NN_UInt32Array inputIndices{inputIndicesValue, 2};
79     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &firstAddend));
80     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &secondAddend));
81 
82     // Add activation type and set value
83     OH_NN_Tensor activationType{OH_NN_INT8, 0, nullptr, nullptr, OH_NN_ADD_ACTIVATIONTYPE};
84     int8_t activationValue{OH_NN_FUSED_NONE};
85     uint32_t paramIndicesValue{2};
86     OH_NN_UInt32Array paramIndices{&paramIndicesValue, 1};
87     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &activationType));
88     int opCnt = 2;
89     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_SetTensorData(*model, opCnt, (void *)&activationValue, sizeof(int8_t)));
90 
91     // add output of Add operation
92     OH_NN_Tensor output{OH_NN_FLOAT32, 3, dimensions, nullptr, OH_NN_TENSOR};
93     uint32_t outputIndicesValue{3};
94     OH_NN_UInt32Array outputIndices{&outputIndicesValue, 1};
95     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_AddTensor(*model, &output));
96 
97     // add Add operation to model
98     ASSERT_EQ(OH_NN_SUCCESS,
99               OH_NNModel_AddOperation(*model, OH_NN_OPS_ADD, &paramIndices, &inputIndices, &outputIndices));
100     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_SpecifyInputsAndOutputs(*model, &inputIndices, &outputIndices));
101     ASSERT_EQ(OH_NN_SUCCESS, OH_NNModel_Finish(*model));
102 
103     printf("[NNRtTest] BuildAddGraphDynamic done\n");
104 }
105 
ConvertModel(OHOS::sptr<V1_0::INnrtDevice> device_,OH_NNModel * model,V1_0::SharedBuffer & tensorBuffer,V1_0::Model ** iModel)106 OH_NN_ReturnCode HDICommon::ConvertModel(OHOS::sptr<V1_0::INnrtDevice> device_, OH_NNModel *model,
107                                          V1_0::SharedBuffer &tensorBuffer, V1_0::Model **iModel)
108 {
109     printf("[NNRtTest] [ConvertModel] convert OH_NNModel to V1_0::Model\n");
110     auto *innerModel = reinterpret_cast<InnerModel *>(model);
111     std::shared_ptr<mindspore::lite::LiteGraph> m_liteGraph = innerModel->GetLiteGraphs();
112     if (m_liteGraph == nullptr) {
113         printf("[NNRtTest] Model is nullptr, cannot query supported operation.");
114         return OH_NN_NULL_PTR;
115     }
116 
117     size_t tensorSize = mindspore::lite::MindIR_LiteGraph_GetConstTensorSize(m_liteGraph.get());
118     std::cout << "[ConvertModel] const tensorsize:" << tensorSize << std::endl;
119     int32_t hdiRet{0};
120     if (tensorSize > 0) {
121         hdiRet = device_->AllocateBuffer(tensorSize, tensorBuffer);
122         if (hdiRet != HDF_SUCCESS || tensorBuffer.fd == NNRT_INVALID_FD) {
123             printf("[NNRtTest] [ConvertModel] allocate tensor buffer failed after get const tensor size,"\
124                 "ret:%d\n", hdiRet);
125             return OH_NN_FAILED;
126         }
127     }
128     *iModel = mindspore::lite::MindIR_LiteGraph_To_Model(m_liteGraph.get(), tensorBuffer);
129     if (iModel == nullptr) {
130         printf("[NNRtTest] Parse litegraph to hdi model failed.\n");
131         device_->ReleaseBuffer(tensorBuffer);
132         return OH_NN_FAILED;
133     }
134     // release model
135     OH_NNModel_Destroy(&model);
136     model = nullptr;
137     printf("[NNRtTest] [ConvertModel] convert model done\n");
138     return OH_NN_SUCCESS;
139 }
140 
CreateIOTensor(OHOS::sptr<V1_0::INnrtDevice> & device)141 V1_0::IOTensor HDICommon::CreateIOTensor(OHOS::sptr<V1_0::INnrtDevice> &device)
142 {
143     V1_0::SharedBuffer buffer{NNRT_INVALID_FD, 0, 0, 0};
144     int ret = device->AllocateBuffer(ADDEND_BUFFER_LENGTH, buffer);
145     if (ret != HDF_SUCCESS || buffer.fd == NNRT_INVALID_FD) {
146         printf("[NNRtTest] [CreateIOTensor] allocate buffer error. ret: %d, fd: %d\n", ret, buffer.fd);
147     }
148     V1_0::IOTensor tensor{.name = "tensor",
149                           .dataType = V1_0::DATA_TYPE_FLOAT32,
150                           .dimensions = TENSOR_DIMS,
151                           .format = V1_0::FORMAT_NHWC,
152                           .data = buffer};
153     return tensor;
154 }
155 
CreateInputIOTensor(OHOS::sptr<V1_0::INnrtDevice> & device,size_t length,float * data)156 V1_0::IOTensor HDICommon::CreateInputIOTensor(OHOS::sptr<V1_0::INnrtDevice> &device, size_t length, float* data)
157 {
158     if (length == 0) {
159         std::cout << "The length param is invalid, length=0" << std::endl;
160     }
161 
162     V1_0::SharedBuffer buffer{NNRT_INVALID_FD, 0, 0, 0};
163     auto ret = device->AllocateBuffer(length, buffer);
164 
165     if (ret != HDF_SUCCESS || buffer.fd == NNRT_INVALID_FD) {
166         printf("[NNRtTest] [CreateInputIOTensor] allocate buffer error. ret: %d, fd: %d\n", ret, buffer.fd);
167     }
168 
169     auto memManager = MemoryManager::GetInstance();
170     auto memAddress = memManager->MapMemory(buffer.fd, length);
171     if (memAddress == nullptr) {
172         printf("[NNRtTest] [CreateInputIOTensor] map fd to address failed.\n");
173     }
174     memcpy_s(memAddress, length, data, length);
175 
176     V1_0::IOTensor tensor{.name = "tensor",
177                           .dataType = V1_0::DATA_TYPE_FLOAT32,
178                           .dimensions = {3, 2, 2},
179                           .format = V1_0::FORMAT_NHWC,
180                           .data = buffer};
181     return tensor;
182 }
183 
CreateOutputIOTensor(OHOS::sptr<V1_0::INnrtDevice> & device,size_t length)184 V1_0::IOTensor HDICommon::CreateOutputIOTensor(OHOS::sptr<V1_0::INnrtDevice> &device, size_t length)
185 {
186     if (length == 0) {
187         printf("[NNRtTest] The length param is invalid, length=0");
188     }
189 
190     V1_0::SharedBuffer buffer{NNRT_INVALID_FD, 0, 0, 0};
191     int ret = device->AllocateBuffer(length, buffer);
192 
193     if (ret != HDF_SUCCESS || buffer.fd == NNRT_INVALID_FD) {
194         printf("[NNRtTest] Allocate buffer error. ErrorCode: %d, fd: %d", ret, buffer.fd);
195     }
196 
197     V1_0::IOTensor tensor{.name = "tensor",
198                           .dataType = V1_0::DATA_TYPE_FLOAT32,
199                           .dimensions = {3, 2, 2},
200                           .format = V1_0::FORMAT_NHWC,
201                           .data = buffer};
202     return tensor;
203 }
204 
MapMemory(int fd,size_t length)205 void* HDICommon::MapMemory(int fd, size_t length)
206 {
207     auto memManager = MemoryManager::GetInstance();
208     auto memAddress = memManager->MapMemory(fd, length);
209     if (memAddress == nullptr) {
210         printf("[NNRtTest] Map fd to address failed.");
211         return nullptr;
212     }
213     return memAddress;
214 }
215 
UnmapMemory(float * buffer)216 void HDICommon::UnmapMemory(float* buffer)
217 {
218     auto memManager = MemoryManager::GetInstance();
219     auto ret = memManager->UnMapMemory(buffer);
220     if (ret != OH_NN_SUCCESS) {
221         printf("[NNRtTest] [UnmapMemory] unmap memory failed. ret:%d.\n", ret);
222     }
223 }
224 
SetData(float * buffer,size_t length,float * data)225 void HDICommon::SetData(float* buffer, size_t length, float* data)
226 {
227     if (buffer == nullptr || data == nullptr) {
228         printf("[NNRtTest] [SetData] buffer or data is nullprt\n");
229         return;
230     }
231     int ret = memcpy_s(buffer, length, data, length);
232     if (ret != 0) {
233         printf("[NNRtTest] [SetData] set data failed, error code: %d\n", ret);
234     }
235 }
236 
ReleaseBufferOfTensors(OHOS::sptr<V1_0::INnrtDevice> & device,std::vector<V1_0::IOTensor> & tensors)237 void HDICommon::ReleaseBufferOfTensors(OHOS::sptr<V1_0::INnrtDevice> &device, std::vector<V1_0::IOTensor> &tensors)
238 {
239     if (device == nullptr) {
240         printf("[NNRtTest] [ReleaseBufferOfTensors] device is nullptr.\n");
241         return;
242     }
243 
244     for (auto &tensor : tensors) {
245         auto ret = device->ReleaseBuffer(tensor.data);
246         if (ret != HDF_SUCCESS) {
247             printf("[NNRtTest] [ReleaseBufferOfTensors] release buffer failed, fd:%d ret:%d.\n", tensor.data.fd, ret);
248         }
249     }
250 }
251 
UnmapAllMemory(std::vector<void * > & buffers)252 void HDICommon::UnmapAllMemory(std::vector<void* > &buffers)
253 {
254     auto memoryMenager = MemoryManager::GetInstance();
255     for (auto buffer : buffers) {
256         auto ret = memoryMenager->UnMapMemory(buffer);
257         if (ret != OH_NN_SUCCESS) {
258             printf("[NNRtTest] [UnmapAllMemory] release buffer failed, ret:%d.\n", ret);
259         }
260     }
261 }
262 
CheckExpectOutput(const std::vector<float> & output,const std::vector<float> & expect)263 bool CheckExpectOutput(const std::vector<float> &output, const std::vector<float> &expect)
264 {
265     if (output.empty() || expect.empty()) {
266         printf("[NNRtTest] [CheckExpectOutput] output or expect is empty.\n");
267         return false;
268     }
269     int outputSize = output.size();
270     int expectSize = expect.size();
271     if (outputSize != expectSize) {
272         printf("[NNRtTest] [CheckExpectOutput] output size not match: expect:%d, actual:%d\n", outputSize, expectSize);
273         return false;
274     }
275     for (int i = 0; i < outputSize; i++) {
276         if (std::abs(float(output[i]) - float(expect[i])) > 1e-8) {
277             printf("[NNRtTest] [CheckExpectOutput] output %d not match: expect:%f, actual:%f\n", i, float(expect[i]),
278                    float(output[i]));
279             return false;
280         }
281     }
282     return true;
283 }
284 
PrintTensor(const float * buffer,size_t length)285 void PrintTensor(const float *buffer, size_t length)
286 {
287     std::stringstream ss;
288     size_t printNum = std::min(length, PRINT_NUM);
289     for (size_t i = 0; i < printNum; i++) {
290         ss << std::to_string(buffer[i]) << " ";
291     }
292     printf("[NNRtTest] [data] %s\n", ss.str().c_str());
293 }
294 
295 } // namespace OHOS::NeuralNetworkRuntime::Test