• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
16 #define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
17 
18 #include <algorithm>
19 #include <initializer_list>
20 #include <iterator>
21 #include <utility>
22 
23 #include "absl/base/internal/throw_delegate.h"
24 #include "absl/container/internal/btree.h"  // IWYU pragma: export
25 #include "absl/container/internal/common.h"
26 #include "absl/meta/type_traits.h"
27 
28 namespace absl {
29 ABSL_NAMESPACE_BEGIN
30 namespace container_internal {
31 
32 // A common base class for btree_set, btree_map, btree_multiset, and
33 // btree_multimap.
34 template <typename Tree>
35 class btree_container {
36   using params_type = typename Tree::params_type;
37 
38  protected:
39   // Alias used for heterogeneous lookup functions.
40   // `key_arg<K>` evaluates to `K` when the functors are transparent and to
41   // `key_type` otherwise. It permits template argument deduction on `K` for the
42   // transparent case.
43   template <class K>
44   using key_arg =
45       typename KeyArg<IsTransparent<typename Tree::key_compare>::value>::
46           template type<K, typename Tree::key_type>;
47 
48  public:
49   using key_type = typename Tree::key_type;
50   using value_type = typename Tree::value_type;
51   using size_type = typename Tree::size_type;
52   using difference_type = typename Tree::difference_type;
53   using key_compare = typename Tree::key_compare;
54   using value_compare = typename Tree::value_compare;
55   using allocator_type = typename Tree::allocator_type;
56   using reference = typename Tree::reference;
57   using const_reference = typename Tree::const_reference;
58   using pointer = typename Tree::pointer;
59   using const_pointer = typename Tree::const_pointer;
60   using iterator = typename Tree::iterator;
61   using const_iterator = typename Tree::const_iterator;
62   using reverse_iterator = typename Tree::reverse_iterator;
63   using const_reverse_iterator = typename Tree::const_reverse_iterator;
64   using node_type = typename Tree::node_handle_type;
65 
66   // Constructors/assignments.
btree_container()67   btree_container() : tree_(key_compare(), allocator_type()) {}
68   explicit btree_container(const key_compare &comp,
69                            const allocator_type &alloc = allocator_type())
tree_(comp,alloc)70       : tree_(comp, alloc) {}
71   btree_container(const btree_container &other) = default;
72   btree_container(btree_container &&other) noexcept = default;
73   btree_container &operator=(const btree_container &other) = default;
74   btree_container &operator=(btree_container &&other) noexcept(
75       std::is_nothrow_move_assignable<Tree>::value) = default;
76 
77   // Iterator routines.
begin()78   iterator begin() { return tree_.begin(); }
begin()79   const_iterator begin() const { return tree_.begin(); }
cbegin()80   const_iterator cbegin() const { return tree_.begin(); }
end()81   iterator end() { return tree_.end(); }
end()82   const_iterator end() const { return tree_.end(); }
cend()83   const_iterator cend() const { return tree_.end(); }
rbegin()84   reverse_iterator rbegin() { return tree_.rbegin(); }
rbegin()85   const_reverse_iterator rbegin() const { return tree_.rbegin(); }
crbegin()86   const_reverse_iterator crbegin() const { return tree_.rbegin(); }
rend()87   reverse_iterator rend() { return tree_.rend(); }
rend()88   const_reverse_iterator rend() const { return tree_.rend(); }
crend()89   const_reverse_iterator crend() const { return tree_.rend(); }
90 
91   // Lookup routines.
92   template <typename K = key_type>
find(const key_arg<K> & key)93   iterator find(const key_arg<K> &key) {
94     return tree_.find(key);
95   }
96   template <typename K = key_type>
find(const key_arg<K> & key)97   const_iterator find(const key_arg<K> &key) const {
98     return tree_.find(key);
99   }
100   template <typename K = key_type>
contains(const key_arg<K> & key)101   bool contains(const key_arg<K> &key) const {
102     return find(key) != end();
103   }
104   template <typename K = key_type>
lower_bound(const key_arg<K> & key)105   iterator lower_bound(const key_arg<K> &key) {
106     return tree_.lower_bound(key);
107   }
108   template <typename K = key_type>
lower_bound(const key_arg<K> & key)109   const_iterator lower_bound(const key_arg<K> &key) const {
110     return tree_.lower_bound(key);
111   }
112   template <typename K = key_type>
upper_bound(const key_arg<K> & key)113   iterator upper_bound(const key_arg<K> &key) {
114     return tree_.upper_bound(key);
115   }
116   template <typename K = key_type>
upper_bound(const key_arg<K> & key)117   const_iterator upper_bound(const key_arg<K> &key) const {
118     return tree_.upper_bound(key);
119   }
120   template <typename K = key_type>
equal_range(const key_arg<K> & key)121   std::pair<iterator, iterator> equal_range(const key_arg<K> &key) {
122     return tree_.equal_range(key);
123   }
124   template <typename K = key_type>
equal_range(const key_arg<K> & key)125   std::pair<const_iterator, const_iterator> equal_range(
126       const key_arg<K> &key) const {
127     return tree_.equal_range(key);
128   }
129 
130   // Deletion routines. Note that there is also a deletion routine that is
131   // specific to btree_set_container/btree_multiset_container.
132 
133   // Erase the specified iterator from the btree. The iterator must be valid
134   // (i.e. not equal to end()).  Return an iterator pointing to the node after
135   // the one that was erased (or end() if none exists).
erase(const_iterator iter)136   iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); }
erase(iterator iter)137   iterator erase(iterator iter) { return tree_.erase(iter); }
erase(const_iterator first,const_iterator last)138   iterator erase(const_iterator first, const_iterator last) {
139     return tree_.erase_range(iterator(first), iterator(last)).second;
140   }
141 
142   // Extract routines.
extract(iterator position)143   node_type extract(iterator position) {
144     // Use Move instead of Transfer, because the rebalancing code expects to
145     // have a valid object to scribble metadata bits on top of.
146     auto node = CommonAccess::Move<node_type>(get_allocator(), position.slot());
147     erase(position);
148     return node;
149   }
extract(const_iterator position)150   node_type extract(const_iterator position) {
151     return extract(iterator(position));
152   }
153 
154  public:
155   // Utility routines.
clear()156   void clear() { tree_.clear(); }
swap(btree_container & other)157   void swap(btree_container &other) { tree_.swap(other.tree_); }
verify()158   void verify() const { tree_.verify(); }
159 
160   // Size routines.
size()161   size_type size() const { return tree_.size(); }
max_size()162   size_type max_size() const { return tree_.max_size(); }
empty()163   bool empty() const { return tree_.empty(); }
164 
165   friend bool operator==(const btree_container &x, const btree_container &y) {
166     if (x.size() != y.size()) return false;
167     return std::equal(x.begin(), x.end(), y.begin());
168   }
169 
170   friend bool operator!=(const btree_container &x, const btree_container &y) {
171     return !(x == y);
172   }
173 
174   friend bool operator<(const btree_container &x, const btree_container &y) {
175     return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
176   }
177 
178   friend bool operator>(const btree_container &x, const btree_container &y) {
179     return y < x;
180   }
181 
182   friend bool operator<=(const btree_container &x, const btree_container &y) {
183     return !(y < x);
184   }
185 
186   friend bool operator>=(const btree_container &x, const btree_container &y) {
187     return !(x < y);
188   }
189 
190   // The allocator used by the btree.
get_allocator()191   allocator_type get_allocator() const { return tree_.get_allocator(); }
192 
193   // The key comparator used by the btree.
key_comp()194   key_compare key_comp() const { return tree_.key_comp(); }
value_comp()195   value_compare value_comp() const { return tree_.value_comp(); }
196 
197   // Support absl::Hash.
198   template <typename State>
AbslHashValue(State h,const btree_container & b)199   friend State AbslHashValue(State h, const btree_container &b) {
200     for (const auto &v : b) {
201       h = State::combine(std::move(h), v);
202     }
203     return State::combine(std::move(h), b.size());
204   }
205 
206  protected:
207   Tree tree_;
208 };
209 
210 // A common base class for btree_set and btree_map.
211 template <typename Tree>
212 class btree_set_container : public btree_container<Tree> {
213   using super_type = btree_container<Tree>;
214   using params_type = typename Tree::params_type;
215   using init_type = typename params_type::init_type;
216   using is_key_compare_to = typename params_type::is_key_compare_to;
217   friend class BtreeNodePeer;
218 
219  protected:
220   template <class K>
221   using key_arg = typename super_type::template key_arg<K>;
222 
223  public:
224   using key_type = typename Tree::key_type;
225   using value_type = typename Tree::value_type;
226   using size_type = typename Tree::size_type;
227   using key_compare = typename Tree::key_compare;
228   using allocator_type = typename Tree::allocator_type;
229   using iterator = typename Tree::iterator;
230   using const_iterator = typename Tree::const_iterator;
231   using node_type = typename super_type::node_type;
232   using insert_return_type = InsertReturnType<iterator, node_type>;
233 
234   // Inherit constructors.
235   using super_type::super_type;
btree_set_container()236   btree_set_container() {}
237 
238   // Range constructor.
239   template <class InputIterator>
240   btree_set_container(InputIterator b, InputIterator e,
241                       const key_compare &comp = key_compare(),
242                       const allocator_type &alloc = allocator_type())
super_type(comp,alloc)243       : super_type(comp, alloc) {
244     insert(b, e);
245   }
246 
247   // Initializer list constructor.
248   btree_set_container(std::initializer_list<init_type> init,
249                       const key_compare &comp = key_compare(),
250                       const allocator_type &alloc = allocator_type())
251       : btree_set_container(init.begin(), init.end(), comp, alloc) {}
252 
253   // Lookup routines.
254   template <typename K = key_type>
count(const key_arg<K> & key)255   size_type count(const key_arg<K> &key) const {
256     return this->tree_.count_unique(key);
257   }
258 
259   // Insertion routines.
insert(const value_type & v)260   std::pair<iterator, bool> insert(const value_type &v) {
261     return this->tree_.insert_unique(params_type::key(v), v);
262   }
insert(value_type && v)263   std::pair<iterator, bool> insert(value_type &&v) {
264     return this->tree_.insert_unique(params_type::key(v), std::move(v));
265   }
266   template <typename... Args>
emplace(Args &&...args)267   std::pair<iterator, bool> emplace(Args &&... args) {
268     init_type v(std::forward<Args>(args)...);
269     return this->tree_.insert_unique(params_type::key(v), std::move(v));
270   }
insert(const_iterator hint,const value_type & v)271   iterator insert(const_iterator hint, const value_type &v) {
272     return this->tree_
273         .insert_hint_unique(iterator(hint), params_type::key(v), v)
274         .first;
275   }
insert(const_iterator hint,value_type && v)276   iterator insert(const_iterator hint, value_type &&v) {
277     return this->tree_
278         .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v))
279         .first;
280   }
281   template <typename... Args>
emplace_hint(const_iterator hint,Args &&...args)282   iterator emplace_hint(const_iterator hint, Args &&... args) {
283     init_type v(std::forward<Args>(args)...);
284     return this->tree_
285         .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v))
286         .first;
287   }
288   template <typename InputIterator>
insert(InputIterator b,InputIterator e)289   void insert(InputIterator b, InputIterator e) {
290     this->tree_.insert_iterator_unique(b, e, 0);
291   }
insert(std::initializer_list<init_type> init)292   void insert(std::initializer_list<init_type> init) {
293     this->tree_.insert_iterator_unique(init.begin(), init.end(), 0);
294   }
insert(node_type && node)295   insert_return_type insert(node_type &&node) {
296     if (!node) return {this->end(), false, node_type()};
297     std::pair<iterator, bool> res =
298         this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)),
299                                   CommonAccess::GetSlot(node));
300     if (res.second) {
301       CommonAccess::Destroy(&node);
302       return {res.first, true, node_type()};
303     } else {
304       return {res.first, false, std::move(node)};
305     }
306   }
insert(const_iterator hint,node_type && node)307   iterator insert(const_iterator hint, node_type &&node) {
308     if (!node) return this->end();
309     std::pair<iterator, bool> res = this->tree_.insert_hint_unique(
310         iterator(hint), params_type::key(CommonAccess::GetSlot(node)),
311         CommonAccess::GetSlot(node));
312     if (res.second) CommonAccess::Destroy(&node);
313     return res.first;
314   }
315 
316   // Deletion routines.
317   // TODO(ezb): we should support heterogeneous comparators that have different
318   // behavior for K!=key_type.
319   template <typename K = key_type>
erase(const key_arg<K> & key)320   size_type erase(const key_arg<K> &key) {
321     return this->tree_.erase_unique(key);
322   }
323   using super_type::erase;
324 
325   // Node extraction routines.
326   template <typename K = key_type>
extract(const key_arg<K> & key)327   node_type extract(const key_arg<K> &key) {
328     auto it = this->find(key);
329     return it == this->end() ? node_type() : extract(it);
330   }
331   using super_type::extract;
332 
333   // Merge routines.
334   // Moves elements from `src` into `this`. If the element already exists in
335   // `this`, it is left unmodified in `src`.
336   template <
337       typename T,
338       typename absl::enable_if_t<
339           absl::conjunction<
340               std::is_same<value_type, typename T::value_type>,
341               std::is_same<allocator_type, typename T::allocator_type>,
342               std::is_same<typename params_type::is_map_container,
343                            typename T::params_type::is_map_container>>::value,
344           int> = 0>
merge(btree_container<T> & src)345   void merge(btree_container<T> &src) {  // NOLINT
346     for (auto src_it = src.begin(); src_it != src.end();) {
347       if (insert(std::move(*src_it)).second) {
348         src_it = src.erase(src_it);
349       } else {
350         ++src_it;
351       }
352     }
353   }
354 
355   template <
356       typename T,
357       typename absl::enable_if_t<
358           absl::conjunction<
359               std::is_same<value_type, typename T::value_type>,
360               std::is_same<allocator_type, typename T::allocator_type>,
361               std::is_same<typename params_type::is_map_container,
362                            typename T::params_type::is_map_container>>::value,
363           int> = 0>
merge(btree_container<T> && src)364   void merge(btree_container<T> &&src) {
365     merge(src);
366   }
367 };
368 
369 // Base class for btree_map.
370 template <typename Tree>
371 class btree_map_container : public btree_set_container<Tree> {
372   using super_type = btree_set_container<Tree>;
373   using params_type = typename Tree::params_type;
374 
375  private:
376   template <class K>
377   using key_arg = typename super_type::template key_arg<K>;
378 
379  public:
380   using key_type = typename Tree::key_type;
381   using mapped_type = typename params_type::mapped_type;
382   using value_type = typename Tree::value_type;
383   using key_compare = typename Tree::key_compare;
384   using allocator_type = typename Tree::allocator_type;
385   using iterator = typename Tree::iterator;
386   using const_iterator = typename Tree::const_iterator;
387 
388   // Inherit constructors.
389   using super_type::super_type;
btree_map_container()390   btree_map_container() {}
391 
392   // Insertion routines.
393   // Note: the nullptr template arguments and extra `const M&` overloads allow
394   // for supporting bitfield arguments.
395   template <typename K = key_type, class M>
insert_or_assign(const key_arg<K> & k,const M & obj)396   std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k,
397                                              const M &obj) {
398     return insert_or_assign_impl(k, obj);
399   }
400   template <typename K = key_type, class M, K * = nullptr>
insert_or_assign(key_arg<K> && k,const M & obj)401   std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) {
402     return insert_or_assign_impl(std::forward<K>(k), obj);
403   }
404   template <typename K = key_type, class M, M * = nullptr>
insert_or_assign(const key_arg<K> & k,M && obj)405   std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) {
406     return insert_or_assign_impl(k, std::forward<M>(obj));
407   }
408   template <typename K = key_type, class M, K * = nullptr, M * = nullptr>
insert_or_assign(key_arg<K> && k,M && obj)409   std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) {
410     return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj));
411   }
412   template <typename K = key_type, class M>
insert_or_assign(const_iterator hint,const key_arg<K> & k,const M & obj)413   iterator insert_or_assign(const_iterator hint, const key_arg<K> &k,
414                             const M &obj) {
415     return insert_or_assign_hint_impl(hint, k, obj);
416   }
417   template <typename K = key_type, class M, K * = nullptr>
insert_or_assign(const_iterator hint,key_arg<K> && k,const M & obj)418   iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) {
419     return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj);
420   }
421   template <typename K = key_type, class M, M * = nullptr>
insert_or_assign(const_iterator hint,const key_arg<K> & k,M && obj)422   iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) {
423     return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj));
424   }
425   template <typename K = key_type, class M, K * = nullptr, M * = nullptr>
insert_or_assign(const_iterator hint,key_arg<K> && k,M && obj)426   iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) {
427     return insert_or_assign_hint_impl(hint, std::forward<K>(k),
428                                       std::forward<M>(obj));
429   }
430 
431   template <typename K = key_type, typename... Args,
432             typename absl::enable_if_t<
433                 !std::is_convertible<K, const_iterator>::value, int> = 0>
try_emplace(const key_arg<K> & k,Args &&...args)434   std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) {
435     return try_emplace_impl(k, std::forward<Args>(args)...);
436   }
437   template <typename K = key_type, typename... Args,
438             typename absl::enable_if_t<
439                 !std::is_convertible<K, const_iterator>::value, int> = 0>
try_emplace(key_arg<K> && k,Args &&...args)440   std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) {
441     return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
442   }
443   template <typename K = key_type, typename... Args>
try_emplace(const_iterator hint,const key_arg<K> & k,Args &&...args)444   iterator try_emplace(const_iterator hint, const key_arg<K> &k,
445                        Args &&... args) {
446     return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...);
447   }
448   template <typename K = key_type, typename... Args>
try_emplace(const_iterator hint,key_arg<K> && k,Args &&...args)449   iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) {
450     return try_emplace_hint_impl(hint, std::forward<K>(k),
451                                  std::forward<Args>(args)...);
452   }
453 
454   template <typename K = key_type>
455   mapped_type &operator[](const key_arg<K> &k) {
456     return try_emplace(k).first->second;
457   }
458   template <typename K = key_type>
459   mapped_type &operator[](key_arg<K> &&k) {
460     return try_emplace(std::forward<K>(k)).first->second;
461   }
462 
463   template <typename K = key_type>
at(const key_arg<K> & key)464   mapped_type &at(const key_arg<K> &key) {
465     auto it = this->find(key);
466     if (it == this->end())
467       base_internal::ThrowStdOutOfRange("absl::btree_map::at");
468     return it->second;
469   }
470   template <typename K = key_type>
at(const key_arg<K> & key)471   const mapped_type &at(const key_arg<K> &key) const {
472     auto it = this->find(key);
473     if (it == this->end())
474       base_internal::ThrowStdOutOfRange("absl::btree_map::at");
475     return it->second;
476   }
477 
478  private:
479   // Note: when we call `std::forward<M>(obj)` twice, it's safe because
480   // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when
481   // `ret.second` is false.
482   template <class K, class M>
insert_or_assign_impl(K && k,M && obj)483   std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) {
484     const std::pair<iterator, bool> ret =
485         this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj));
486     if (!ret.second) ret.first->second = std::forward<M>(obj);
487     return ret;
488   }
489   template <class K, class M>
insert_or_assign_hint_impl(const_iterator hint,K && k,M && obj)490   iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) {
491     const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique(
492         iterator(hint), k, std::forward<K>(k), std::forward<M>(obj));
493     if (!ret.second) ret.first->second = std::forward<M>(obj);
494     return ret.first;
495   }
496 
497   template <class K, class... Args>
try_emplace_impl(K && k,Args &&...args)498   std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) {
499     return this->tree_.insert_unique(
500         k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)),
501         std::forward_as_tuple(std::forward<Args>(args)...));
502   }
503   template <class K, class... Args>
try_emplace_hint_impl(const_iterator hint,K && k,Args &&...args)504   iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) {
505     return this->tree_
506         .insert_hint_unique(iterator(hint), k, std::piecewise_construct,
507                             std::forward_as_tuple(std::forward<K>(k)),
508                             std::forward_as_tuple(std::forward<Args>(args)...))
509         .first;
510   }
511 };
512 
513 // A common base class for btree_multiset and btree_multimap.
514 template <typename Tree>
515 class btree_multiset_container : public btree_container<Tree> {
516   using super_type = btree_container<Tree>;
517   using params_type = typename Tree::params_type;
518   using init_type = typename params_type::init_type;
519   using is_key_compare_to = typename params_type::is_key_compare_to;
520 
521   template <class K>
522   using key_arg = typename super_type::template key_arg<K>;
523 
524  public:
525   using key_type = typename Tree::key_type;
526   using value_type = typename Tree::value_type;
527   using size_type = typename Tree::size_type;
528   using key_compare = typename Tree::key_compare;
529   using allocator_type = typename Tree::allocator_type;
530   using iterator = typename Tree::iterator;
531   using const_iterator = typename Tree::const_iterator;
532   using node_type = typename super_type::node_type;
533 
534   // Inherit constructors.
535   using super_type::super_type;
btree_multiset_container()536   btree_multiset_container() {}
537 
538   // Range constructor.
539   template <class InputIterator>
540   btree_multiset_container(InputIterator b, InputIterator e,
541                            const key_compare &comp = key_compare(),
542                            const allocator_type &alloc = allocator_type())
super_type(comp,alloc)543       : super_type(comp, alloc) {
544     insert(b, e);
545   }
546 
547   // Initializer list constructor.
548   btree_multiset_container(std::initializer_list<init_type> init,
549                            const key_compare &comp = key_compare(),
550                            const allocator_type &alloc = allocator_type())
551       : btree_multiset_container(init.begin(), init.end(), comp, alloc) {}
552 
553   // Lookup routines.
554   template <typename K = key_type>
count(const key_arg<K> & key)555   size_type count(const key_arg<K> &key) const {
556     return this->tree_.count_multi(key);
557   }
558 
559   // Insertion routines.
insert(const value_type & v)560   iterator insert(const value_type &v) { return this->tree_.insert_multi(v); }
insert(value_type && v)561   iterator insert(value_type &&v) {
562     return this->tree_.insert_multi(std::move(v));
563   }
insert(const_iterator hint,const value_type & v)564   iterator insert(const_iterator hint, const value_type &v) {
565     return this->tree_.insert_hint_multi(iterator(hint), v);
566   }
insert(const_iterator hint,value_type && v)567   iterator insert(const_iterator hint, value_type &&v) {
568     return this->tree_.insert_hint_multi(iterator(hint), std::move(v));
569   }
570   template <typename InputIterator>
insert(InputIterator b,InputIterator e)571   void insert(InputIterator b, InputIterator e) {
572     this->tree_.insert_iterator_multi(b, e);
573   }
insert(std::initializer_list<init_type> init)574   void insert(std::initializer_list<init_type> init) {
575     this->tree_.insert_iterator_multi(init.begin(), init.end());
576   }
577   template <typename... Args>
emplace(Args &&...args)578   iterator emplace(Args &&... args) {
579     return this->tree_.insert_multi(init_type(std::forward<Args>(args)...));
580   }
581   template <typename... Args>
emplace_hint(const_iterator hint,Args &&...args)582   iterator emplace_hint(const_iterator hint, Args &&... args) {
583     return this->tree_.insert_hint_multi(
584         iterator(hint), init_type(std::forward<Args>(args)...));
585   }
insert(node_type && node)586   iterator insert(node_type &&node) {
587     if (!node) return this->end();
588     iterator res =
589         this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)),
590                                  CommonAccess::GetSlot(node));
591     CommonAccess::Destroy(&node);
592     return res;
593   }
insert(const_iterator hint,node_type && node)594   iterator insert(const_iterator hint, node_type &&node) {
595     if (!node) return this->end();
596     iterator res = this->tree_.insert_hint_multi(
597         iterator(hint),
598         std::move(params_type::element(CommonAccess::GetSlot(node))));
599     CommonAccess::Destroy(&node);
600     return res;
601   }
602 
603   // Deletion routines.
604   template <typename K = key_type>
erase(const key_arg<K> & key)605   size_type erase(const key_arg<K> &key) {
606     return this->tree_.erase_multi(key);
607   }
608   using super_type::erase;
609 
610   // Node extraction routines.
611   template <typename K = key_type>
extract(const key_arg<K> & key)612   node_type extract(const key_arg<K> &key) {
613     auto it = this->find(key);
614     return it == this->end() ? node_type() : extract(it);
615   }
616   using super_type::extract;
617 
618   // Merge routines.
619   // Moves all elements from `src` into `this`.
620   template <
621       typename T,
622       typename absl::enable_if_t<
623           absl::conjunction<
624               std::is_same<value_type, typename T::value_type>,
625               std::is_same<allocator_type, typename T::allocator_type>,
626               std::is_same<typename params_type::is_map_container,
627                            typename T::params_type::is_map_container>>::value,
628           int> = 0>
merge(btree_container<T> & src)629   void merge(btree_container<T> &src) {  // NOLINT
630     insert(std::make_move_iterator(src.begin()),
631            std::make_move_iterator(src.end()));
632     src.clear();
633   }
634 
635   template <
636       typename T,
637       typename absl::enable_if_t<
638           absl::conjunction<
639               std::is_same<value_type, typename T::value_type>,
640               std::is_same<allocator_type, typename T::allocator_type>,
641               std::is_same<typename params_type::is_map_container,
642                            typename T::params_type::is_map_container>>::value,
643           int> = 0>
merge(btree_container<T> && src)644   void merge(btree_container<T> &&src) {
645     merge(src);
646   }
647 };
648 
649 // A base class for btree_multimap.
650 template <typename Tree>
651 class btree_multimap_container : public btree_multiset_container<Tree> {
652   using super_type = btree_multiset_container<Tree>;
653   using params_type = typename Tree::params_type;
654 
655  public:
656   using mapped_type = typename params_type::mapped_type;
657 
658   // Inherit constructors.
659   using super_type::super_type;
btree_multimap_container()660   btree_multimap_container() {}
661 };
662 
663 }  // namespace container_internal
664 ABSL_NAMESPACE_END
665 }  // namespace absl
666 
667 #endif  // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
668