• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_Y0_HPP
7 #define BOOST_MATH_BESSEL_Y0_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #pragma warning(push)
12 #pragma warning(disable:4702) // Unreachable code (release mode only warning)
13 #endif
14 
15 #include <boost/math/special_functions/detail/bessel_j0.hpp>
16 #include <boost/math/constants/constants.hpp>
17 #include <boost/math/tools/rational.hpp>
18 #include <boost/math/tools/big_constant.hpp>
19 #include <boost/math/policies/error_handling.hpp>
20 #include <boost/assert.hpp>
21 
22 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
23 //
24 // This is the only way we can avoid
25 // warning: non-standard suffix on floating constant [-Wpedantic]
26 // when building with -Wall -pedantic.  Neither __extension__
27 // nor #pragma diagnostic ignored work :(
28 //
29 #pragma GCC system_header
30 #endif
31 
32 // Bessel function of the second kind of order zero
33 // x <= 8, minimax rational approximations on root-bracketing intervals
34 // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
35 
36 namespace boost { namespace math { namespace detail{
37 
38 template <typename T, typename Policy>
39 T bessel_y0(T x, const Policy&);
40 
41 template <class T, class Policy>
42 struct bessel_y0_initializer
43 {
44    struct init
45    {
initboost::math::detail::bessel_y0_initializer::init46       init()
47       {
48          do_init();
49       }
do_initboost::math::detail::bessel_y0_initializer::init50       static void do_init()
51       {
52          bessel_y0(T(1), Policy());
53       }
force_instantiateboost::math::detail::bessel_y0_initializer::init54       void force_instantiate()const{}
55    };
56    static const init initializer;
force_instantiateboost::math::detail::bessel_y0_initializer57    static void force_instantiate()
58    {
59       initializer.force_instantiate();
60    }
61 };
62 
63 template <class T, class Policy>
64 const typename bessel_y0_initializer<T, Policy>::init bessel_y0_initializer<T, Policy>::initializer;
65 
66 template <typename T, typename Policy>
bessel_y0(T x,const Policy & pol)67 T bessel_y0(T x, const Policy& pol)
68 {
69     bessel_y0_initializer<T, Policy>::force_instantiate();
70 
71     static const T P1[] = {
72          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)),
73         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)),
74          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)),
75         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)),
76          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)),
77         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)),
78     };
79     static const T Q1[] = {
80          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)),
81          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)),
82          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)),
83          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)),
84          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)),
85          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
86     };
87     static const T P2[] = {
88         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)),
89         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)),
90          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)),
91         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)),
92          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)),
93         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)),
94          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)),
95     };
96     static const T Q2[] = {
97          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)),
98          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)),
99          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)),
100          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)),
101          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)),
102          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)),
103          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
104     };
105     static const T P3[] = {
106         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)),
107          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)),
108         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)),
109         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)),
110          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)),
111         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)),
112          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)),
113         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)),
114     };
115     static const T Q3[] = {
116          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)),
117          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)),
118          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)),
119          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)),
120          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)),
121          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)),
122          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)),
123          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
124     };
125     static const T PC[] = {
126          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
127          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
128          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
129          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
130          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
131          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)),
132     };
133     static const T QC[] = {
134          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
135          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
136          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
137          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
138          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
139          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
140     };
141     static const T PS[] = {
142         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
143         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
144         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
145         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
146         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
147         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)),
148     };
149     static const T QS[] = {
150          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
151          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
152          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
153          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
154          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
155          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
156     };
157     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)),
158                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)),
159                    x3  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)),
160                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)),
161                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)),
162                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)),
163                    x22 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)),
164                    x31 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)),
165                    x32 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04))
166     ;
167     T value, factor, r, rc, rs;
168 
169     BOOST_MATH_STD_USING
170     using namespace boost::math::tools;
171     using namespace boost::math::constants;
172 
173     static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)";
174 
175     if (x < 0)
176     {
177        return policies::raise_domain_error<T>(function,
178             "Got x = %1% but x must be non-negative, complex result not supported.", x, pol);
179     }
180     if (x == 0)
181     {
182        return -policies::raise_overflow_error<T>(function, 0, pol);
183     }
184     if (x <= 3)                       // x in (0, 3]
185     {
186         T y = x * x;
187         T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>();
188         r = evaluate_rational(P1, Q1, y);
189         factor = (x + x1) * ((x - x11/256) - x12);
190         value = z + factor * r;
191     }
192     else if (x <= 5.5f)                  // x in (3, 5.5]
193     {
194         T y = x * x;
195         T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>();
196         r = evaluate_rational(P2, Q2, y);
197         factor = (x + x2) * ((x - x21/256) - x22);
198         value = z + factor * r;
199     }
200     else if (x <= 8)                  // x in (5.5, 8]
201     {
202         T y = x * x;
203         T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>();
204         r = evaluate_rational(P3, Q3, y);
205         factor = (x + x3) * ((x - x31/256) - x32);
206         value = z + factor * r;
207     }
208     else                                // x in (8, \infty)
209     {
210         T y = 8 / x;
211         T y2 = y * y;
212         rc = evaluate_rational(PC, QC, y2);
213         rs = evaluate_rational(PS, QS, y2);
214         factor = constants::one_div_root_pi<T>() / sqrt(x);
215         //
216         // The following code is really just:
217         //
218         // T z = x - 0.25f * pi<T>();
219         // value = factor * (rc * sin(z) + y * rs * cos(z));
220         //
221         // But using the sin/cos addition formulae and constant values for
222         // sin/cos of PI/4 which then cancel part of the "factor" term as they're all
223         // 1 / sqrt(2):
224         //
225         T sx = sin(x);
226         T cx = cos(x);
227         value = factor * (rc * (sx - cx) + y * rs * (cx + sx));
228     }
229 
230     return value;
231 }
232 
233 }}} // namespaces
234 
235 #ifdef _MSC_VER
236 #pragma warning(pop)
237 #endif
238 
239 #endif // BOOST_MATH_BESSEL_Y0_HPP
240 
241