• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2<html>
3<head>
4<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5<title>Lambda expressions in details</title>
6<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
7<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
8<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
9<link rel="up" href="../lambda.html" title="Chapter 20. Boost.Lambda">
10<link rel="prev" href="using_library.html" title="Using the library">
11<link rel="next" href="extending.html" title="Extending return type deduction system">
12</head>
13<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
14<table cellpadding="2" width="100%"><tr>
15<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
16<td align="center"><a href="../../../index.html">Home</a></td>
17<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
18<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
19<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
20<td align="center"><a href="../../../more/index.htm">More</a></td>
21</tr></table>
22<hr>
23<div class="spirit-nav">
24<a accesskey="p" href="using_library.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="extending.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
25</div>
26<div class="section">
27<div class="titlepage"><div><div><h2 class="title" style="clear: both">
28<a name="lambda.le_in_details"></a>Lambda expressions in details</h2></div></div></div>
29<div class="toc"><dl class="toc">
30<dt><span class="section"><a href="le_in_details.html#lambda.placeholders">Placeholders</a></span></dt>
31<dt><span class="section"><a href="le_in_details.html#lambda.operator_expressions">Operator expressions</a></span></dt>
32<dt><span class="section"><a href="le_in_details.html#lambda.bind_expressions">Bind expressions</a></span></dt>
33<dt><span class="section"><a href="le_in_details.html#lambda.overriding_deduced_return_type">Overriding the deduced return type</a></span></dt>
34<dt><span class="section"><a href="le_in_details.html#lambda.delaying_constants_and_variables">Delaying constants and variables</a></span></dt>
35<dt><span class="section"><a href="le_in_details.html#lambda.lambda_expressions_for_control_structures">Lambda expressions for control structures</a></span></dt>
36<dt><span class="section"><a href="le_in_details.html#lambda.exceptions">Exceptions</a></span></dt>
37<dt><span class="section"><a href="le_in_details.html#lambda.construction_and_destruction">Construction and destruction</a></span></dt>
38<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.11">Special lambda expressions</a></span></dt>
39<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.12">Casts, sizeof and typeid</a></span></dt>
40<dt><span class="section"><a href="le_in_details.html#lambda.nested_stl_algorithms">Nesting STL algorithm invocations</a></span></dt>
41</dl></div>
42<p>
43This section describes different categories of lambda expressions in details.
44We devote a separate section for each of the possible forms of a lambda expression.
45
46
47</p>
48<div class="section">
49<div class="titlepage"><div><div><h3 class="title">
50<a name="lambda.placeholders"></a>Placeholders</h3></div></div></div>
51<p>
52The BLL defines three placeholder types: <code class="literal">placeholder1_type</code>, <code class="literal">placeholder2_type</code> and <code class="literal">placeholder3_type</code>.
53BLL has a predefined placeholder variable for each placeholder type: <code class="literal">_1</code>, <code class="literal">_2</code> and <code class="literal">_3</code>.
54However, the user is not forced to use these placeholders.
55It is easy to define placeholders with alternative names.
56This is done by defining new variables of placeholder types.
57For example:
58
59</p>
60<pre class="programlisting">boost::lambda::placeholder1_type X;
61boost::lambda::placeholder2_type Y;
62boost::lambda::placeholder3_type Z;
63</pre>
64<p>
65
66With these variables defined, <code class="literal">X += Y * Z</code> is equivalent to <code class="literal">_1 += _2 * _3</code>.
67</p>
68<p>
69The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary.
70The highest placeholder index is decisive. For example:
71
72</p>
73<pre class="programlisting">
74_1 + 5              // unary
75_1 * _1 + _1        // unary
76_1 + _2             // binary
77bind(f, _1, _2, _3) // 3-ary
78_3 + 10             // 3-ary
79</pre>
80<p>
81
82Note that the last line creates a 3-ary function, which adds <code class="literal">10</code> to its <span class="emphasis"><em>third</em></span> argument.
83The first two arguments are discarded.
84Furthermore, lambda functors only have a minimum arity.
85One can always provide more arguments (up the number of supported placeholders)
86that is really needed.
87The remaining arguments are just discarded.
88For example:
89
90</p>
91<pre class="programlisting">
92int i, j, k;
93_1(i, j, k)        // returns i, discards j and k
94(_2 + _2)(i, j, k) // returns j+j, discards i and k
95</pre>
96<p>
97
98See
99<a class="xref" href="s10.html#lambda.why_weak_arity" title="Lambda functor arity">the section called “
100Lambda functor arity
101”</a> for the design rationale behind this
102functionality.
103
104</p>
105<p>
106In addition to these three placeholder types, there is also a fourth placeholder type <code class="literal">placeholderE_type</code>.
107The use of this placeholder is defined in <a class="xref" href="le_in_details.html#lambda.exceptions" title="Exceptions">the section called “Exceptions”</a> describing exception handling in lambda expressions.
108</p>
109<p>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference.
110This means that any side-effects to the placeholder are reflected to the actual argument.
111For example:
112
113
114</p>
115<pre class="programlisting">
116int i = 1;
117(_1 += 2)(i);         // i is now 3
118(++_1, cout &lt;&lt; _1)(i) // i is now 4, outputs 4
119</pre>
120<p>
121</p>
122</div>
123<div class="section">
124<div class="titlepage"><div><div><h3 class="title">
125<a name="lambda.operator_expressions"></a>Operator expressions</h3></div></div></div>
126<div class="toc"><dl class="toc">
127<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.4.4">Operators that cannot be overloaded</a></span></dt>
128<dt><span class="section"><a href="le_in_details.html#lambda.assignment_and_subscript">Assignment and subscript operators</a></span></dt>
129<dt><span class="section"><a href="le_in_details.html#lambda.logical_operators">Logical operators</a></span></dt>
130<dt><span class="section"><a href="le_in_details.html#lambda.comma_operator">Comma operator</a></span></dt>
131<dt><span class="section"><a href="le_in_details.html#lambda.function_call_operator">Function call operator</a></span></dt>
132<dt><span class="section"><a href="le_in_details.html#lambda.member_pointer_operator">Member pointer operator</a></span></dt>
133</dl></div>
134<p>
135The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression.
136Almost all overloadable operators are supported.
137For example, the following is a valid lambda expression:
138
139</p>
140<pre class="programlisting">cout &lt;&lt; _1, _2[_3] = _1 &amp;&amp; false</pre>
141<p>
142</p>
143<p>
144However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases.
145</p>
146<div class="section">
147<div class="titlepage"><div><div><h4 class="title">
148<a name="id-1.3.21.7.4.4"></a>Operators that cannot be overloaded</h4></div></div></div>
149<p>
150Some operators cannot be overloaded at all (<code class="literal">::</code>, <code class="literal">.</code>, <code class="literal">.*</code>).
151For some operators, the requirements on return types prevent them to be overloaded to create lambda functors.
152These operators are <code class="literal">-&gt;.</code>, <code class="literal">-&gt;</code>, <code class="literal">new</code>, <code class="literal">new[]</code>, <code class="literal">delete</code>, <code class="literal">delete[]</code> and <code class="literal">?:</code> (the conditional operator).
153</p>
154</div>
155<div class="section">
156<div class="titlepage"><div><div><h4 class="title">
157<a name="lambda.assignment_and_subscript"></a>Assignment and subscript operators</h4></div></div></div>
158<p>
159These operators must be implemented as class members.
160Consequently, the left operand must be a lambda expression. For example:
161
162</p>
163<pre class="programlisting">
164int i;
165_1 = i;      // ok
166i = _1;      // not ok. i is not a lambda expression
167</pre>
168<p>
169
170There is a simple solution around this limitation, described in <a class="xref" href="le_in_details.html#lambda.delaying_constants_and_variables" title="Delaying constants and variables">the section called “Delaying constants and variables”</a>.
171In short,
172the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <code class="literal">var</code> function:
173</p>
174<pre class="programlisting">
175var(i) = _1; // ok
176</pre>
177<p>
178
179</p>
180</div>
181<div class="section">
182<div class="titlepage"><div><div><h4 class="title">
183<a name="lambda.logical_operators"></a>Logical operators</h4></div></div></div>
184<p>
185Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <code class="literal">i</code> is never incremented:
186</p>
187<pre class="programlisting">
188bool flag = true; int i = 0;
189(_1 || ++_2)(flag, i);
190</pre>
191<p>
192</p>
193</div>
194<div class="section">
195<div class="titlepage"><div><div><h4 class="title">
196<a name="lambda.comma_operator"></a>Comma operator</h4></div></div></div>
197<p>
198Comma operator is the <span class="quote">“<span class="quote">statement separator</span>”</span> in lambda expressions.
199Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed:
200
201</p>
202<pre class="programlisting">
203for_each(a.begin(), a.end(), (++_1, cout &lt;&lt; _1));
204</pre>
205<p>
206
207Without the extra parenthesis around <code class="literal">++_1, cout &lt;&lt; _1</code>, the code would be interpreted as an attempt to call <code class="literal">for_each</code> with four arguments.
208</p>
209<p>
210The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one.
211In the above example, each element of <code class="literal">a</code> is first incremented, then written to the stream.
212</p>
213</div>
214<div class="section">
215<div class="titlepage"><div><div><h4 class="title">
216<a name="lambda.function_call_operator"></a>Function call operator</h4></div></div></div>
217<p>
218The function call operators have the effect of evaluating the lambda
219functor.
220Calls with too few arguments lead to a compile time error.
221</p>
222</div>
223<div class="section">
224<div class="titlepage"><div><div><h4 class="title">
225<a name="lambda.member_pointer_operator"></a>Member pointer operator</h4></div></div></div>
226<p>
227The member pointer operator <code class="literal">operator-&gt;*</code> can be overloaded freely.
228Hence, for user defined types, member pointer operator is no special case.
229The built-in meaning, however, is a somewhat more complicated case.
230The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <code class="literal">A</code>, and the right hand argument is a pointer to a member of <code class="literal">A</code>, or a pointer to a member of a class from which <code class="literal">A</code> derives.
231We must separate two cases:
232
233</p>
234<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
235<li class="listitem">
236<p>The right hand argument is a pointer to a data member.
237In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to.
238For example:
239</p>
240<pre class="programlisting">
241struct A { int d; };
242A* a = new A();
243  ...
244(a -&gt;* &amp;A::d);     // returns a reference to a-&gt;d
245(_1 -&gt;* &amp;A::d)(a); // likewise
246</pre>
247<p>
248</p>
249</li>
250<li class="listitem">
251<p>
252The right hand argument is a pointer to a member function.
253For a built-in call like this, the result is kind of a delayed member function call.
254Such an expression must be followed by a function argument list, with which the delayed member function call is performed.
255For example:
256</p>
257<pre class="programlisting">
258struct B { int foo(int); };
259B* b = new B();
260  ...
261(b -&gt;* &amp;B::foo)         // returns a delayed call to b-&gt;foo
262                        // a function argument list must follow
263(b -&gt;* &amp;B::foo)(1)      // ok, calls b-&gt;foo(1)
264
265(_1 -&gt;* &amp;B::foo)(b);    // returns a delayed call to b-&gt;foo,
266                        // no effect as such
267(_1 -&gt;* &amp;B::foo)(b)(1); // calls b-&gt;foo(1)
268</pre>
269<p>
270</p>
271</li>
272</ul></div>
273<p>
274</p>
275</div>
276</div>
277<div class="section">
278<div class="titlepage"><div><div><h3 class="title">
279<a name="lambda.bind_expressions"></a>Bind expressions</h3></div></div></div>
280<div class="toc"><dl class="toc">
281<dt><span class="section"><a href="le_in_details.html#lambda.function_pointers_as_targets">Function pointers or references as targets</a></span></dt>
282<dt><span class="section"><a href="le_in_details.html#member_functions_as_targets">Member functions as targets</a></span></dt>
283<dt><span class="section"><a href="le_in_details.html#lambda.members_variables_as_targets">Member variables as targets</a></span></dt>
284<dt><span class="section"><a href="le_in_details.html#lambda.function_objects_as_targets">Function objects as targets</a></span></dt>
285</dl></div>
286<p>
287Bind expressions can have two forms:
288
289
290</p>
291<pre class="programlisting">
292bind(<em class="parameter"><code>target-function</code></em>, <em class="parameter"><code>bind-argument-list</code></em>)
293bind(<em class="parameter"><code>target-member-function</code></em>, <em class="parameter"><code>object-argument</code></em>, <em class="parameter"><code>bind-argument-list</code></em>)
294</pre>
295<p>
296
297A bind expression delays the call of a function.
298If this <span class="emphasis"><em>target function</em></span> is <span class="emphasis"><em>n</em></span>-ary, then the <code class="literal"><span class="emphasis"><em>bind-argument-list</em></span></code> must contain <span class="emphasis"><em>n</em></span> arguments as well.
299In the current version of the BLL, 0 &lt;= n &lt;= 9 must hold.
300For member functions, the number of arguments must be at most 8, as the object argument takes one argument position.
301
302Basically, the
303<span class="emphasis"><em><code class="literal">bind-argument-list</code></em></span> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression.
304Note that also the target function can be a lambda expression.
305
306The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <span class="emphasis"><em><code class="literal">bind-argument-list</code></em></span> (see <a class="xref" href="le_in_details.html#lambda.placeholders" title="Placeholders">the section called “Placeholders”</a>).
307</p>
308<p>
309The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example:
310</p>
311<pre class="programlisting">
312bind&lt;<span class="emphasis"><em>RET</em></span>&gt;(<span class="emphasis"><em>target-function</em></span>, <span class="emphasis"><em>bind-argument-list</em></span>)
313</pre>
314<p>
315This is only necessary if the return type of the target function cannot be deduced.
316</p>
317<p>
318The following sections describe the different types of bind expressions.
319</p>
320<div class="section">
321<div class="titlepage"><div><div><h4 class="title">
322<a name="lambda.function_pointers_as_targets"></a>Function pointers or references as targets</h4></div></div></div>
323<p>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example:
324</p>
325<pre class="programlisting">
326X foo(A, B, C); A a; B b; C c;
327bind(foo, _1, _2, c)(a, b);
328bind(&amp;foo, _1, _2, c)(a, b);
329bind(_1, a, b, c)(foo);
330</pre>
331<p>
332
333The return type deduction always succeeds with this type of bind expressions.
334</p>
335<p>
336Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used.
337This means that overloaded functions cannot be used in bind expressions directly, e.g.:
338</p>
339<pre class="programlisting">
340void foo(int);
341void foo(float);
342int i;
343  ...
344bind(&amp;foo, _1)(i);                            // error
345  ...
346void (*pf1)(int) = &amp;foo;
347bind(pf1, _1)(i);                             // ok
348bind(static_cast&lt;void(*)(int)&gt;(&amp;foo), _1)(i); // ok
349</pre>
350<p>
351</p>
352</div>
353<div class="section">
354<div class="titlepage"><div><div><h4 class="title">
355<a name="member_functions_as_targets"></a>Member functions as targets</h4></div></div></div>
356<p>
357The syntax for using pointers to member function in bind expression is:
358</p>
359<pre class="programlisting">
360bind(<em class="parameter"><code>target-member-function</code></em>, <em class="parameter"><code>object-argument</code></em>, <em class="parameter"><code>bind-argument-list</code></em>)
361</pre>
362<p>
363
364The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface:
365
366</p>
367<pre class="programlisting">
368bool A::foo(int) const;
369A a;
370vector&lt;int&gt; ints;
371  ...
372find_if(ints.begin(), ints.end(), bind(&amp;A::foo, a, _1));
373find_if(ints.begin(), ints.end(), bind(&amp;A::foo, &amp;a, _1));
374</pre>
375<p>
376
377Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference:
378
379</p>
380<pre class="programlisting">
381bool A::foo(int);
382list&lt;A&gt; refs;
383list&lt;A*&gt; pointers;
384  ...
385find_if(refs.begin(), refs.end(), bind(&amp;A::foo, _1, 1));
386find_if(pointers.begin(), pointers.end(), bind(&amp;A::foo, _1, 1));
387</pre>
388<p>
389
390</p>
391<p>
392Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument.
393The differences stem from the way <code class="literal">bind</code>-functions take their parameters, and how the bound parameters are stored within the lambda functor.
394The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <a class="xref" href="using_library.html#lambda.storing_bound_arguments" title="Storing bound arguments in lambda functions">the section called “Storing bound arguments in lambda functions”</a>); it is passed as a const reference and stored as a const copy in the lambda functor.
395This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example:
396</p>
397<pre class="programlisting">
398class A {
399  int i; mutable int j;
400public:
401
402  A(int ii, int jj) : i(ii), j(jj) {};
403  void set_i(int x) { i = x; };
404  void set_j(int x) const { j = x; };
405};
406</pre>
407<p>
408
409When a pointer is used, the behavior is what the programmer might expect:
410
411</p>
412<pre class="programlisting">
413A a(0,0); int k = 1;
414bind(&amp;A::set_i, &amp;a, _1)(k); // a.i == 1
415bind(&amp;A::set_j, &amp;a, _1)(k); // a.j == 1
416</pre>
417<p>
418
419Even though a const copy of the object argument is stored, the original object <code class="literal">a</code> is still modified.
420This is since the object argument is a pointer, and the pointer is copied, not the object it points to.
421When we use a reference, the behaviour is different:
422
423</p>
424<pre class="programlisting">
425A a(0,0); int k = 1;
426bind(&amp;A::set_i, a, _1)(k); // error; a const copy of a is stored.
427                           // Cannot call a non-const function set_i
428bind(&amp;A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified
429</pre>
430<p>
431</p>
432<p>
433To prevent the copying from taking place, one can use the <code class="literal">ref</code> or <code class="literal">cref</code> wrappers (<code class="literal">var</code> and <code class="literal">constant_ref</code> would do as well):
434</p>
435<pre class="programlisting">
436bind(&amp;A::set_i, ref(a), _1)(k); // a.j == 1
437bind(&amp;A::set_j, cref(a), _1)(k); // a.j == 1
438</pre>
439<p>
440</p>
441<p>Note that the preceding discussion is relevant only for bound arguments.
442If the object argument is unbound, the parameter passing mode is always by reference.
443Hence, the argument <code class="literal">a</code> is not copied in the calls to the two lambda functors below:
444</p>
445<pre class="programlisting">
446A a(0,0);
447bind(&amp;A::set_i, _1, 1)(a); // a.i == 1
448bind(&amp;A::set_j, _1, 1)(a); // a.j == 1
449</pre>
450<p>
451</p>
452</div>
453<div class="section">
454<div class="titlepage"><div><div><h4 class="title">
455<a name="lambda.members_variables_as_targets"></a>Member variables as targets</h4></div></div></div>
456<p>
457A pointer to a member variable is not really a function, but
458the first argument to the <code class="literal">bind</code> function can nevertheless
459be a pointer to a member variable.
460Invoking such a bind expression returns a reference to the data member.
461For example:
462
463</p>
464<pre class="programlisting">
465struct A { int data; };
466A a;
467bind(&amp;A::data, _1)(a) = 1;     // a.data == 1
468</pre>
469<p>
470
471The cv-qualifiers of the object whose member is accessed are respected.
472For example, the following tries to write into a const location:
473</p>
474<pre class="programlisting">
475const A ca = a;
476bind(&amp;A::data, _1)(ca) = 1;     // error
477</pre>
478<p>
479
480</p>
481</div>
482<div class="section">
483<div class="titlepage"><div><div><h4 class="title">
484<a name="lambda.function_objects_as_targets"></a>Function objects as targets</h4></div></div></div>
485<p>
486
487Function objects, that is, class objects which have the function call
488operator defined, can be used as target functions.
489
490In general, BLL cannot deduce the return type of an arbitrary function object.
491
492However, there are two methods for giving BLL this capability for a certain
493function object class.
494
495</p>
496<div class="simplesect">
497<div class="titlepage"><div><div><h5 class="title">
498<a name="id-1.3.21.7.5.8.3"></a>The result_type typedef</h5></div></div></div>
499<p>
500
501The BLL supports the standard library convention of declaring the return type
502of a function object with a member typedef named <code class="literal">result_type</code> in the
503function object class.
504
505Here is a simple example:
506</p>
507<pre class="programlisting">
508struct A {
509  typedef B result_type;
510  B operator()(X, Y, Z);
511};
512</pre>
513<p>
514
515If a function object does not define a <code class="literal">result_type</code> typedef,
516the method described below (<code class="literal">sig</code> template)
517is attempted to resolve the return type of the
518function object. If a function object defines both <code class="literal">result_type</code>
519and <code class="literal">sig</code>, <code class="literal">result_type</code> takes precedence.
520
521</p>
522</div>
523<div class="simplesect">
524<div class="titlepage"><div><div><h5 class="title">
525<a name="id-1.3.21.7.5.8.4"></a>The sig template</h5></div></div></div>
526<p>
527Another mechanism that make BLL aware of the return type(s) of a function object is defining
528member template struct
529<code class="literal">sig&lt;Args&gt;</code> with a typedef
530<code class="literal">type</code> that specifies the return type.
531
532Here is a simple example:
533</p>
534<pre class="programlisting">
535struct A {
536  template &lt;class Args&gt; struct sig { typedef B type; }
537  B operator()(X, Y, Z);
538};
539</pre>
540<p>
541
542The template argument <code class="literal">Args</code> is a
543<code class="literal">tuple</code> (or more precisely a <code class="literal">cons</code> list)
544type <a class="xref" href="../lambda.html#cit:boost::tuple" title="The Boost Tuple Library">[<abbr class="abbrev">tuple</abbr>]</a>, where the first element
545is the function
546object type itself, and the remaining elements are the types of
547the arguments, with which the function object is being called.
548
549This may seem overly complex compared to defining the <code class="literal">result_type</code> typedef.
550Howver, there are two significant restrictions with using just a simple
551typedef to express the return type:
552</p>
553<div class="orderedlist"><ol class="orderedlist" type="1">
554<li class="listitem"><p>
555If the function object defines several function call operators, there is no way to specify different result types for them.
556</p></li>
557<li class="listitem"><p>
558If the function call operator is a template, the result type may
559depend on the template parameters.
560Hence, the typedef ought to be a template too, which the C++ language
561does not support.
562</p></li>
563</ol></div>
564<p>
565
566The following code shows an example, where the return type depends on the type
567of one of the arguments, and how that dependency can be expressed with the
568<code class="literal">sig</code> template:
569
570</p>
571<pre class="programlisting">
572struct A {
573
574  // the return type equals the third argument type:
575  template&lt;class T1, class T2, class T3&gt;
576  T3 operator()(const T1&amp; t1, const T2&amp; t2, const T3&amp; t3) const;
577
578  template &lt;class Args&gt;
579  class sig {
580    // get the third argument type (4th element)
581    typedef typename
582      boost::tuples::element&lt;3, Args&gt;::type T3;
583  public:
584    typedef typename
585      boost::remove_cv&lt;T3&gt;::type type;
586  };
587};
588</pre>
589<p>
590
591
592The elements of the <code class="literal">Args</code> tuple are always
593non-reference types.
594
595Moreover, the element types can have a const or volatile qualifier
596(jointly referred to as <span class="emphasis"><em>cv-qualifiers</em></span>), or both.
597This is since the cv-qualifiers in the arguments can affect the return type.
598The reason for including the potentially cv-qualified function object
599type itself into the <code class="literal">Args</code> tuple, is that the function
600object class can contain both const and non-const (or volatile, even
601const volatile) function call operators, and they can each have a different
602return type.
603</p>
604<p>
605The <code class="literal">sig</code> template can be seen as a
606<span class="emphasis"><em>meta-function</em></span> that maps the argument type tuple to
607the result type of the call made with arguments of the types in the tuple.
608
609As the example above demonstrates, the template can end up being somewhat
610complex.
611Typical tasks to be performed are the extraction of the relevant types
612from the tuple, removing cv-qualifiers etc.
613See the Boost type_traits <a class="xref" href="../lambda.html#cit:boost::type_traits" title="The Boost type_traits">[<abbr class="abbrev">type_traits</abbr>]</a> and
614Tuple <a class="xref" href="../lambda.html#cit:boost::type_traits" title="The Boost type_traits">[<abbr class="abbrev">type_traits</abbr>]</a> libraries
615for tools that can aid in these tasks.
616The <code class="literal">sig</code> templates are a refined version of a similar
617mechanism first introduced in the FC++ library
618<a class="xref" href="../lambda.html#cit:fc++" title="The FC++ library: Functional Programming in C++">[<abbr class="abbrev">fc++</abbr>]</a>.
619</p>
620</div>
621</div>
622</div>
623<div class="section">
624<div class="titlepage"><div><div><h3 class="title">
625<a name="lambda.overriding_deduced_return_type"></a>Overriding the deduced return type</h3></div></div></div>
626<div class="toc"><dl class="toc"><dt><span class="section"><a href="le_in_details.html#lambda.nullary_functors_and_ret">Nullary lambda functors and ret</a></span></dt></dl></div>
627<p>
628The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects.
629
630A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system.
631To state that the return type of the lambda functor defined by the lambda expression <code class="literal">e</code> is <code class="literal">T</code>, you can write:
632
633</p>
634<pre class="programlisting">ret&lt;T&gt;(e);</pre>
635<p>
636
637The effect is that the return type deduction is not performed for the lambda expression <code class="literal">e</code> at all, but instead, <code class="literal">T</code> is used as the return type.
638Obviously <code class="literal">T</code> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <code class="literal">T</code>.
639For example:
640
641</p>
642<pre class="programlisting">
643A a; B b;
644C operator+(A, B);
645int operator*(A, B);
646  ...
647ret&lt;D&gt;(_1 + _2)(a, b);     // error (C cannot be converted to D)
648ret&lt;C&gt;(_1 + _2)(a, b);     // ok
649ret&lt;float&gt;(_1 * _2)(a, b); // ok (int can be converted to float)
650  ...
651struct X {
652  Y operator(int)();
653};
654  ...
655X x; int i;
656bind(x, _1)(i);            // error, return type cannot be deduced
657ret&lt;Y&gt;(bind(x, _1))(i);    // ok
658</pre>
659<p>
660For bind expressions, there is a short-hand notation that can be used instead of <code class="literal">ret</code>.
661The last line could alternatively be written as:
662
663</p>
664<pre class="programlisting">bind&lt;Z&gt;(x, _1)(i);</pre>
665<p>
666This feature is modeled after the Boost Bind library <a class="xref" href="../lambda.html#cit:boost::bind" title="Boost Bind Library">[<abbr class="abbrev">bind</abbr>]</a>.
667
668</p>
669<p>Note that within nested lambda expressions,
670the <code class="literal">ret</code> must be used at each subexpression where
671the deduction would otherwise fail.
672For example:
673</p>
674<pre class="programlisting">
675A a; B b;
676C operator+(A, B); D operator-(C);
677  ...
678ret&lt;D&gt;( - (_1 + _2))(a, b); // error
679ret&lt;D&gt;( - ret&lt;C&gt;(_1 + _2))(a, b); // ok
680</pre>
681<p>
682</p>
683<p>If you find yourself using  <code class="literal">ret</code> repeatedly with the same types, it is worth while extending the return type deduction (see <a class="xref" href="extending.html" title="Extending return type deduction system">the section called “Extending return type deduction system”</a>).
684</p>
685<div class="section">
686<div class="titlepage"><div><div><h4 class="title">
687<a name="lambda.nullary_functors_and_ret"></a>Nullary lambda functors and ret</h4></div></div></div>
688<p>
689As stated above, the effect of <code class="literal">ret</code> is to prevent the return type deduction to be performed.
690However, there is an exception.
691Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors.
692This introduces a slight problem with <code class="literal">ret</code>, best described with an example:
693
694</p>
695<pre class="programlisting">
696struct F { int operator()(int i) const; };
697F f;
698  ...
699bind(f, _1);           // fails, cannot deduce the return type
700ret&lt;int&gt;(bind(f, _1)); // ok
701  ...
702bind(f, 1);            // fails, cannot deduce the return type
703ret&lt;int&gt;(bind(f, 1));  // fails as well!
704</pre>
705<p>
706The BLL cannot deduce the return types of the above bind calls, as <code class="literal">F</code> does not define the typedef <code class="literal">result_type</code>.
707One would expect <code class="literal">ret</code> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work.
708The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error.
709</p>
710<p>The solution to this is not to use the <code class="literal">ret</code> function, but rather define the return type as an explicitly specified template parameter in the <code class="literal">bind</code> call:
711</p>
712<pre class="programlisting">
713bind&lt;int&gt;(f, 1);       // ok
714</pre>
715<p>
716
717The lambda functors created with
718<code class="literal">ret&lt;<em class="parameter"><code>T</code></em>&gt;(bind(<em class="parameter"><code>arg-list</code></em>))</code> and
719<code class="literal">bind&lt;<em class="parameter"><code>T</code></em>&gt;(<em class="parameter"><code>arg-list</code></em>)</code> have the exact same functionality —
720apart from the fact that for some nullary lambda functors the former does not work while the latter does.
721</p>
722</div>
723</div>
724<div class="section">
725<div class="titlepage"><div><div><h3 class="title">
726<a name="lambda.delaying_constants_and_variables"></a>Delaying constants and variables</h3></div></div></div>
727<p>
728The unary functions <code class="literal">constant</code>,
729<code class="literal">constant_ref</code> and <code class="literal">var</code> turn their argument into a lambda functor, that implements an identity mapping.
730The former two are for constants, the latter for variables.
731The use of these <span class="emphasis"><em>delayed</em></span> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions.
732For example:
733</p>
734<pre class="programlisting">
735for_each(a.begin(), a.end(), cout &lt;&lt; _1 &lt;&lt; ' ');
736for_each(a.begin(), a.end(), cout &lt;&lt; ' ' &lt;&lt; _1);
737</pre>
738<p>
739The first line outputs the elements of <code class="literal">a</code> separated by spaces, while the second line outputs a space followed by the elements of <code class="literal">a</code> without any separators.
740The reason for this is that neither of the operands of
741<code class="literal">cout &lt;&lt; ' '</code> is a lambda expression, hence <code class="literal">cout &lt;&lt; ' '</code> is evaluated immediately.
742
743To delay the evaluation of <code class="literal">cout &lt;&lt; ' '</code>, one of the operands must be explicitly marked as a lambda expression.
744This is accomplished with the <code class="literal">constant</code> function:
745</p>
746<pre class="programlisting">
747for_each(a.begin(), a.end(), cout &lt;&lt; constant(' ') &lt;&lt; _1);
748</pre>
749<p>
750
751The call <code class="literal">constant(' ')</code> creates a nullary lambda functor which stores the character constant <code class="literal">' '</code>
752and returns a reference to it when invoked.
753The function <code class="literal">constant_ref</code> is similar, except that it
754stores a constant reference to its argument.
755
756The <code class="literal">constant</code> and <code class="literal">consant_ref</code> are only
757needed when the operator call has side effects, like in the above example.
758</p>
759<p>
760Sometimes we need to delay the evaluation of a variable.
761Suppose we wanted to output the elements of a container in a numbered list:
762
763</p>
764<pre class="programlisting">
765int index = 0;
766for_each(a.begin(), a.end(), cout &lt;&lt; ++index &lt;&lt; ':' &lt;&lt; _1 &lt;&lt; '\n');
767for_each(a.begin(), a.end(), cout &lt;&lt; ++var(index) &lt;&lt; ':' &lt;&lt; _1 &lt;&lt; '\n');
768</pre>
769<p>
770
771The first <code class="literal">for_each</code> invocation does not do what we want; <code class="literal">index</code> is incremented only once, and its value is written into the output stream only once.
772By using <code class="literal">var</code> to make <code class="literal">index</code> a lambda expression, we get the desired effect.
773
774</p>
775<p>
776In sum, <code class="literal">var(x)</code> creates a nullary lambda functor,
777which stores a reference to the variable <code class="literal">x</code>.
778When the lambda functor is invoked, a reference to <code class="literal">x</code> is returned.
779</p>
780<div class="simplesect">
781<div class="titlepage"><div><div><h4 class="title">
782<a name="id-1.3.21.7.7.5"></a>Naming delayed constants and variables</h4></div></div></div>
783<p>
784It is possible to predefine and name a delayed variable or constant outside a lambda expression.
785The templates <code class="literal">var_type</code>, <code class="literal">constant_type</code>
786and <code class="literal">constant_ref_type</code> serve for this purpose.
787They are used as:
788</p>
789<pre class="programlisting">
790var_type&lt;T&gt;::type delayed_i(var(i));
791constant_type&lt;T&gt;::type delayed_c(constant(c));
792</pre>
793<p>
794The first line defines the variable <code class="literal">delayed_i</code> which is a delayed version of the variable <code class="literal">i</code> of type <code class="literal">T</code>.
795Analogously, the second line defines the constant <code class="literal">delayed_c</code> as a delayed version of the constant <code class="literal">c</code>.
796For example:
797
798</p>
799<pre class="programlisting">
800int i = 0; int j;
801for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j)));
802</pre>
803<p>
804is equivalent to:
805</p>
806<pre class="programlisting">
807int i = 0; int j;
808var_type&lt;int&gt;::type vi(var(i)), vj(var(j));
809for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));
810</pre>
811<p>
812</p>
813<p>
814Here is an example of naming a delayed constant:
815</p>
816<pre class="programlisting">
817constant_type&lt;char&gt;::type space(constant(' '));
818for_each(a.begin(),a.end(), cout &lt;&lt; space &lt;&lt; _1);
819</pre>
820<p>
821</p>
822</div>
823<div class="simplesect">
824<div class="titlepage"><div><div><h4 class="title">
825<a name="id-1.3.21.7.7.6"></a>About assignment and subscript operators</h4></div></div></div>
826<p>
827As described in <a class="xref" href="le_in_details.html#lambda.assignment_and_subscript" title="Assignment and subscript operators">the section called “Assignment and subscript operators”</a>, assignment and subscripting operators are always defined as member functions.
828This means, that for expressions of the form
829<code class="literal">x = y</code> or <code class="literal">x[y]</code> to be interpreted as lambda expressions, the left-hand operand <code class="literal">x</code> must be a lambda expression.
830Consequently, it is sometimes necessary to use <code class="literal">var</code> for this purpose.
831We repeat the example from <a class="xref" href="le_in_details.html#lambda.assignment_and_subscript" title="Assignment and subscript operators">the section called “Assignment and subscript operators”</a>:
832
833</p>
834<pre class="programlisting">
835int i;
836i = _1;       // error
837var(i) = _1;  // ok
838</pre>
839<p>
840</p>
841<p>
842
843Note that the compound assignment operators <code class="literal">+=</code>, <code class="literal">-=</code> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression.
844Nevertheless, it is perfectly ok to delay the left operand explicitly.
845For example, <code class="literal">i += _1</code> is equivalent to <code class="literal">var(i) += _1</code>.
846</p>
847</div>
848</div>
849<div class="section">
850<div class="titlepage"><div><div><h3 class="title">
851<a name="lambda.lambda_expressions_for_control_structures"></a>Lambda expressions for control structures</h3></div></div></div>
852<div class="toc"><dl class="toc"><dt><span class="section"><a href="le_in_details.html#lambda.switch_statement">Switch statement</a></span></dt></dl></div>
853<p>
854BLL defines several functions to create lambda functors that represent control structures.
855They all take lambda functors as parameters and return <code class="literal">void</code>.
856To start with an example, the following code outputs all even elements of some container <code class="literal">a</code>:
857
858</p>
859<pre class="programlisting">
860for_each(a.begin(), a.end(),
861         if_then(_1 % 2 == 0, cout &lt;&lt; _1));
862</pre>
863<p>
864</p>
865<p>
866The BLL supports the following function templates for control structures:
867
868</p>
869<pre class="programlisting">
870if_then(condition, then_part)
871if_then_else(condition, then_part, else_part)
872if_then_else_return(condition, then_part, else_part)
873while_loop(condition, body)
874while_loop(condition) // no body case
875do_while_loop(condition, body)
876do_while_loop(condition) // no body case
877for_loop(init, condition, increment, body)
878for_loop(init, condition, increment) // no body case
879switch_statement(...)
880</pre>
881<p>
882
883The return types of all control construct lambda functor is
884<code class="literal">void</code>, except for <code class="literal">if_then_else_return</code>,
885which wraps a call to the conditional operator
886</p>
887<pre class="programlisting">
888condition ? then_part : else_part
889</pre>
890<p>
891The return type rules for this operator are somewhat complex.
892Basically, if the branches have the same type, this type is the return type.
893If the type of the branches differ, one branch, say of type
894<code class="literal">A</code>, must be convertible to the other branch,
895say of type <code class="literal">B</code>.
896In this situation, the result type is <code class="literal">B</code>.
897Further, if the common type is an lvalue, the return type will be an lvalue
898too.
899</p>
900<p>
901Delayed variables tend to be commonplace in control structure lambda expressions.
902For instance, here we use the <code class="literal">var</code> function to turn the arguments of <code class="literal">for_loop</code> into lambda expressions.
903The effect of the code is to add 1 to each element of a two-dimensional array:
904
905</p>
906<pre class="programlisting">
907int a[5][10]; int i;
908for_each(a, a+5,
909  for_loop(var(i)=0, var(i)&lt;10, ++var(i),
910           _1[var(i)] += 1));
911</pre>
912<p>
913
914
915</p>
916<p>
917The BLL supports an alternative syntax for control expressions, suggested
918by Joel de Guzmann.
919By overloading the <code class="literal">operator[]</code> we can
920get a closer resemblance with the built-in control structures:
921
922</p>
923<pre class="programlisting">
924if_(condition)[then_part]
925if_(condition)[then_part].else_[else_part]
926while_(condition)[body]
927do_[body].while_(condition)
928for_(init, condition, increment)[body]
929</pre>
930<p>
931
932For example, using this syntax the <code class="literal">if_then</code> example above
933can be written as:
934</p>
935<pre class="programlisting">
936for_each(a.begin(), a.end(),
937         if_(_1 % 2 == 0)[ cout &lt;&lt; _1 ])
938</pre>
939<p>
940
941As more experience is gained, we may end up deprecating one or the other
942of these syntaces.
943
944</p>
945<div class="section"><div class="titlepage"><div><div><h4 class="title">
946<a name="lambda.switch_statement"></a>Switch statement</h4></div></div></div></div>
947<p>
948The lambda expressions for <code class="literal">switch</code> control structures are more complex since the number of cases may vary.
949The general form of a switch lambda expression is:
950
951</p>
952<pre class="programlisting">
953switch_statement(<em class="parameter"><code>condition</code></em>,
954  case_statement&lt;<em class="parameter"><code>label</code></em>&gt;(<em class="parameter"><code>lambda expression</code></em>),
955  case_statement&lt;<em class="parameter"><code>label</code></em>&gt;(<em class="parameter"><code>lambda expression</code></em>),
956  ...
957  default_statement(<em class="parameter"><code>lambda expression</code></em>)
958)
959</pre>
960<p>
961
962The <code class="literal"><em class="parameter"><code>condition</code></em></code> argument must be a lambda expression that creates a lambda functor with an integral return type.
963The different cases are created with the <code class="literal">case_statement</code> functions, and the optional default case with the <code class="literal">default_statement</code> function.
964The case labels are given as explicitly specified template arguments to <code class="literal">case_statement</code> functions and
965<code class="literal">break</code> statements are implicitly part of each case.
966For example, <code class="literal">case_statement&lt;1&gt;(a)</code>, where <code class="literal">a</code> is some lambda functor,  generates the code:
967
968</p>
969<pre class="programlisting">
970case 1:
971  <em class="parameter"><code>evaluate lambda functor</code></em> a;
972  break;
973</pre>
974<p>
975The <code class="literal">switch_statement</code> function is specialized for up to 9 case statements.
976
977</p>
978<p>
979As a concrete example, the following code iterates over some container <code class="literal">v</code> and ouptuts <span class="quote">“<span class="quote">zero</span>”</span> for each <code class="literal">0</code>, <span class="quote">“<span class="quote">one</span>”</span> for each <code class="literal">1</code>, and <span class="quote">“<span class="quote">other: <em class="parameter"><code>n</code></em></span>”</span> for any other value <em class="parameter"><code>n</code></em>.
980Note that another lambda expression is sequenced after the <code class="literal">switch_statement</code> to output a line break after each element:
981
982</p>
983<pre class="programlisting">
984std::for_each(v.begin(), v.end(),
985  (
986    switch_statement(
987      _1,
988      case_statement&lt;0&gt;(std::cout &lt;&lt; constant("zero")),
989      case_statement&lt;1&gt;(std::cout &lt;&lt; constant("one")),
990      default_statement(cout &lt;&lt; constant("other: ") &lt;&lt; _1)
991    ),
992    cout &lt;&lt; constant("\n")
993  )
994);
995</pre>
996<p>
997</p>
998</div>
999<div class="section">
1000<div class="titlepage"><div><div><h3 class="title">
1001<a name="lambda.exceptions"></a>Exceptions</h3></div></div></div>
1002<p>
1003The BLL provides lambda functors that throw and catch exceptions.
1004Lambda functors for throwing exceptions are created with the unary function <code class="literal">throw_exception</code>.
1005The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown.
1006A lambda functor for rethrowing exceptions is created with the nullary <code class="literal">rethrow</code> function.
1007</p>
1008<p>
1009Lambda expressions for handling exceptions are somewhat more complex.
1010The general form of a lambda expression for try catch blocks is as follows:
1011
1012</p>
1013<pre class="programlisting">
1014try_catch(
1015  <em class="parameter"><code>lambda expression</code></em>,
1016  catch_exception&lt;<em class="parameter"><code>type</code></em>&gt;(<em class="parameter"><code>lambda expression</code></em>),
1017  catch_exception&lt;<em class="parameter"><code>type</code></em>&gt;(<em class="parameter"><code>lambda expression</code></em>),
1018  ...
1019  catch_all(<em class="parameter"><code>lambda expression</code></em>)
1020)
1021</pre>
1022<p>
1023
1024The first lambda expression is the try block.
1025Each <code class="literal">catch_exception</code> defines a catch block where the
1026explicitly specified template argument defines the type of the exception
1027to catch.
1028
1029The lambda expression within the <code class="literal">catch_exception</code> defines
1030the actions to take if the exception is caught.
1031
1032Note that the resulting exception handlers catch the exceptions as
1033references, i.e., <code class="literal">catch_exception&lt;T&gt;(...)</code>
1034results in the catch block:
1035
1036</p>
1037<pre class="programlisting">
1038catch(T&amp; e) { ... }
1039</pre>
1040<p>
1041
1042The last catch block can alternatively be a call to
1043<code class="literal">catch_exception&lt;<em class="parameter"><code>type</code></em>&gt;</code>
1044or to
1045<code class="literal">catch_all</code>, which is the lambda expression equivalent to
1046<code class="literal">catch(...)</code>.
1047
1048</p>
1049<p>
1050
1051The <a class="xref" href="le_in_details.html#ex:exceptions" title="Example 20.1. Throwing and handling exceptions in lambda expressions.">Example 20.1, “Throwing and handling exceptions in lambda expressions.”</a> demonstrates the use of the BLL
1052exception handling tools.
1053The first handler catches exceptions of type <code class="literal">foo_exception</code>.
1054Note the use of <code class="literal">_1</code> placeholder in the body of the handler.
1055</p>
1056<p>
1057The second handler shows how to throw exceptions, and demonstrates the
1058use of the <span class="emphasis"><em>exception placeholder</em></span> <code class="literal">_e</code>.
1059
1060It is a special placeholder, which refers to the caught exception object
1061within the handler body.
1062
1063Here we are handling an exception of type <code class="literal">std::exception</code>,
1064which carries a string explaining the cause of the exception.
1065
1066This explanation can be queried with the zero-argument member
1067function <code class="literal">what</code>.
1068
1069The expression
1070<code class="literal">bind(&amp;std::exception::what, _e)</code> creates the lambda
1071function for making that call.
1072
1073Note that <code class="literal">_e</code> cannot be used outside of an exception handler lambda expression.
1074
1075
1076The last line of the second handler constructs a new exception object and
1077throws that with <code class="literal">throw exception</code>.
1078
1079Constructing and destructing objects within lambda expressions is
1080explained in <a class="xref" href="le_in_details.html#lambda.construction_and_destruction" title="Construction and destruction">the section called “Construction and destruction”</a>
1081</p>
1082<p>
1083Finally, the third handler (<code class="literal">catch_all</code>) demonstrates
1084rethrowing exceptions.
1085</p>
1086<div class="example">
1087<a name="ex:exceptions"></a><p class="title"><b>Example 20.1. Throwing and handling exceptions in lambda expressions.</b></p>
1088<div class="example-contents"><pre class="programlisting">
1089for_each(
1090  a.begin(), a.end(),
1091  try_catch(
1092    bind(foo, _1),                 // foo may throw
1093    catch_exception&lt;foo_exception&gt;(
1094      cout &lt;&lt; constant("Caught foo_exception: ")
1095           &lt;&lt; "foo was called with argument = " &lt;&lt; _1
1096    ),
1097    catch_exception&lt;std::exception&gt;(
1098      cout &lt;&lt; constant("Caught std::exception: ")
1099           &lt;&lt; bind(&amp;std::exception::what, _e),
1100      throw_exception(bind(constructor&lt;bar_exception&gt;(), _1)))
1101    ),
1102    catch_all(
1103      (cout &lt;&lt; constant("Unknown"), rethrow())
1104    )
1105  )
1106);
1107</pre></div>
1108</div>
1109<br class="example-break">
1110</div>
1111<div class="section">
1112<div class="titlepage"><div><div><h3 class="title">
1113<a name="lambda.construction_and_destruction"></a>Construction and destruction</h3></div></div></div>
1114<p>
1115Operators <code class="literal">new</code> and <code class="literal">delete</code> can be
1116overloaded, but their return types are fixed.
1117
1118Particularly, the return types cannot be lambda functors,
1119which prevents them to be overloaded for lambda expressions.
1120
1121It is not possible to take the address of a constructor,
1122hence constructors cannot be used as target functions in bind expressions.
1123
1124The same is true for destructors.
1125
1126As a way around these constraints, BLL defines wrapper classes for
1127<code class="literal">new</code> and <code class="literal">delete</code> calls,
1128as well as for constructors and destructors.
1129
1130Instances of these classes are function objects, that can be used as
1131target functions of bind expressions.
1132
1133For example:
1134
1135</p>
1136<pre class="programlisting">
1137int* a[10];
1138for_each(a, a+10, _1 = bind(new_ptr&lt;int&gt;()));
1139for_each(a, a+10, bind(delete_ptr(), _1));
1140</pre>
1141<p>
1142
1143The <code class="literal">new_ptr&lt;int&gt;()</code> expression creates
1144a function object that calls <code class="literal">new int()</code> when invoked,
1145and wrapping that inside <code class="literal">bind</code> makes it a lambda functor.
1146
1147In the same way, the expression <code class="literal">delete_ptr()</code> creates
1148a function object that invokes <code class="literal">delete</code> on its argument.
1149
1150Note that <code class="literal">new_ptr&lt;<em class="parameter"><code>T</code></em>&gt;()</code>
1151can take arguments as well.
1152
1153They are passed directly to the constructor invocation and thus allow
1154calls to constructors which take arguments.
1155
1156</p>
1157<p>
1158
1159As an example of constructor calls in lambda expressions,
1160the following code reads integers from two containers <code class="literal">x</code>
1161and <code class="literal">y</code>,
1162constructs pairs out of them and inserts them into a third container:
1163
1164</p>
1165<pre class="programlisting">
1166vector&lt;pair&lt;int, int&gt; &gt; v;
1167transform(x.begin(), x.end(), y.begin(), back_inserter(v),
1168          bind(constructor&lt;pair&lt;int, int&gt; &gt;(), _1, _2));
1169</pre>
1170<p>
1171
1172<a class="xref" href="le_in_details.html#table:constructor_destructor_fos" title="Table 20.1. Construction and destruction related function objects.">Table 20.1, “Construction and destruction related function objects.”</a> lists all the function
1173objects related to creating and destroying objects,
1174 showing the expression to create and call the function object,
1175and the effect of evaluating that expression.
1176
1177</p>
1178<div class="table">
1179<a name="table:constructor_destructor_fos"></a><p class="title"><b>Table 20.1. Construction and destruction related function objects.</b></p>
1180<div class="table-contents"><table class="table" summary="Construction and destruction related function objects.">
1181<colgroup>
1182<col>
1183<col>
1184</colgroup>
1185<thead><tr>
1186<th>Function object call</th>
1187<th>Wrapped expression</th>
1188</tr></thead>
1189<tbody>
1190<tr>
1191<td><code class="literal">constructor&lt;T&gt;()(<em class="parameter"><code>arg_list</code></em>)</code></td>
1192<td>T(<em class="parameter"><code>arg_list</code></em>)</td>
1193</tr>
1194<tr>
1195<td><code class="literal">destructor()(a)</code></td>
1196<td>
1197<code class="literal">a.~A()</code>, where <code class="literal">a</code> is of type <code class="literal">A</code>
1198</td>
1199</tr>
1200<tr>
1201<td><code class="literal">destructor()(pa)</code></td>
1202<td>
1203<code class="literal">pa-&gt;~A()</code>, where <code class="literal">pa</code> is of type <code class="literal">A*</code>
1204</td>
1205</tr>
1206<tr>
1207<td><code class="literal">new_ptr&lt;T&gt;()(<em class="parameter"><code>arg_list</code></em>)</code></td>
1208<td><code class="literal">new T(<em class="parameter"><code>arg_list</code></em>)</code></td>
1209</tr>
1210<tr>
1211<td><code class="literal">new_array&lt;T&gt;()(sz)</code></td>
1212<td><code class="literal">new T[sz]</code></td>
1213</tr>
1214<tr>
1215<td><code class="literal">delete_ptr()(p)</code></td>
1216<td><code class="literal">delete p</code></td>
1217</tr>
1218<tr>
1219<td><code class="literal">delete_array()(p)</code></td>
1220<td><code class="literal">delete p[]</code></td>
1221</tr>
1222</tbody>
1223</table></div>
1224</div>
1225<br class="table-break">
1226</div>
1227<div class="section">
1228<div class="titlepage"><div><div><h3 class="title">
1229<a name="id-1.3.21.7.11"></a>Special lambda expressions</h3></div></div></div>
1230<div class="toc"><dl class="toc">
1231<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.11.2">Preventing argument substitution</a></span></dt>
1232<dt><span class="section"><a href="le_in_details.html#lambda.rvalues_as_actual_arguments">Rvalues as actual arguments to lambda functors</a></span></dt>
1233</dl></div>
1234<div class="section">
1235<div class="titlepage"><div><div><h4 class="title">
1236<a name="id-1.3.21.7.11.2"></a>Preventing argument substitution</h4></div></div></div>
1237<div class="toc"><dl class="toc">
1238<dt><span class="section"><a href="le_in_details.html#lambda.unlambda">Unlambda</a></span></dt>
1239<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.11.2.5">Protect</a></span></dt>
1240</dl></div>
1241<p>
1242When a lambda functor is called, the default behavior is to substitute
1243the actual arguments for the placeholders within all subexpressions.
1244
1245This section describes the tools to prevent the substitution and
1246evaluation of a subexpression, and explains when these tools should be used.
1247</p>
1248<p>
1249The arguments to a bind expression can be arbitrary lambda expressions,
1250e.g., other bind expressions.
1251
1252For example:
1253
1254</p>
1255<pre class="programlisting">
1256int foo(int); int bar(int);
1257...
1258int i;
1259bind(foo, bind(bar, _1))(i);
1260</pre>
1261<p>
1262
1263The last line makes the call <code class="literal">foo(bar(i));</code>
1264
1265Note that the first argument in a bind expression, the target function,
1266is no exception, and can thus be a bind expression too.
1267
1268The innermost lambda functor just has to return something that can be used
1269as a target function: another lambda functor, function pointer,
1270pointer to member function etc.
1271
1272For example, in the following code the innermost lambda functor makes
1273a selection between two functions, and returns a pointer to one of them:
1274
1275</p>
1276<pre class="programlisting">
1277int add(int a, int b) { return a+b; }
1278int mul(int a, int b) { return a*b; }
1279
1280int(*)(int, int)  add_or_mul(bool x) {
1281  return x ? add : mul;
1282}
1283
1284bool condition; int i; int j;
1285...
1286bind(bind(&amp;add_or_mul, _1), _2, _3)(condition, i, j);
1287</pre>
1288<p>
1289
1290</p>
1291<div class="section">
1292<div class="titlepage"><div><div><h5 class="title">
1293<a name="lambda.unlambda"></a>Unlambda</h5></div></div></div>
1294<p>A nested bind expression may occur inadvertently,
1295if the target function is a variable with a type that depends on a
1296template parameter.
1297
1298Typically the target function could be a formal parameter of a
1299function template.
1300
1301In such a case, the programmer may not know whether the target function is a lambda functor or not.
1302</p>
1303<p>Consider the following function template:
1304
1305</p>
1306<pre class="programlisting">
1307template&lt;class F&gt;
1308int nested(const F&amp; f) {
1309  int x;
1310  ...
1311  bind(f, _1)(x);
1312  ...
1313}
1314</pre>
1315<p>
1316
1317Somewhere inside the function the formal parameter
1318<code class="literal">f</code> is used as a target function in a bind expression.
1319
1320In order for this <code class="literal">bind</code> call to be valid,
1321<code class="literal">f</code> must be a unary function.
1322
1323Suppose the following two calls to <code class="literal">nested</code> are made:
1324
1325</p>
1326<pre class="programlisting">
1327int foo(int);
1328int bar(int, int);
1329nested(&amp;foo);
1330nested(bind(bar, 1, _1));
1331</pre>
1332<p>
1333
1334Both are unary functions, or function objects, with appropriate argument
1335and return types, but the latter will not compile.
1336
1337In the latter call, the bind expression inside <code class="literal">nested</code>
1338will become:
1339
1340</p>
1341<pre class="programlisting">
1342bind(bind(bar, 1, _1), _1)
1343</pre>
1344<p>
1345
1346When this is invoked with <code class="literal">x</code>,
1347after substituitions we end up trying to call
1348
1349</p>
1350<pre class="programlisting">
1351bar(1, x)(x)
1352</pre>
1353<p>
1354
1355which is an error.
1356
1357The call to <code class="literal">bar</code> returns int,
1358not a unary function or function object.
1359</p>
1360<p>
1361In the example above, the intent of the bind expression in the
1362<code class="literal">nested</code> function is to treat <code class="literal">f</code>
1363as an ordinary function object, instead of a lambda functor.
1364
1365The BLL provides the function template <code class="literal">unlambda</code> to
1366express this: a lambda functor wrapped inside <code class="literal">unlambda</code>
1367is not a lambda functor anymore, and does not take part into the
1368argument substitution process.
1369
1370Note that for all other argument types <code class="literal">unlambda</code> is
1371an identity operation, except for making non-const objects const.
1372</p>
1373<p>
1374Using <code class="literal">unlambda</code>, the <code class="literal">nested</code>
1375function is written as:
1376
1377</p>
1378<pre class="programlisting">
1379template&lt;class F&gt;
1380int nested(const F&amp; f) {
1381  int x;
1382  ...
1383  bind(unlambda(f), _1)(x);
1384  ...
1385}
1386</pre>
1387<p>
1388
1389</p>
1390</div>
1391<div class="section">
1392<div class="titlepage"><div><div><h5 class="title">
1393<a name="id-1.3.21.7.11.2.5"></a>Protect</h5></div></div></div>
1394<p>
1395The <code class="literal">protect</code> function is related to unlambda.
1396
1397It is also used to prevent the argument substitution taking place,
1398but whereas <code class="literal">unlambda</code> turns a lambda functor into
1399an ordinary function object for good, <code class="literal">protect</code> does
1400this temporarily, for just one evaluation round.
1401
1402For example:
1403
1404</p>
1405<pre class="programlisting">
1406int x = 1, y = 10;
1407(_1 + protect(_1 + 2))(x)(y);
1408</pre>
1409<p>
1410
1411The first call substitutes <code class="literal">x</code> for the leftmost
1412<code class="literal">_1</code>, and results in another lambda functor
1413<code class="literal">x + (_1 + 2)</code>, which after the call with
1414<code class="literal">y</code> becomes <code class="literal">x + (y + 2)</code>,
1415and thus finally 13.
1416</p>
1417<p>
1418Primary motivation for including <code class="literal">protect</code> into the library,
1419was to allow nested STL algorithm invocations
1420(<a class="xref" href="le_in_details.html#lambda.nested_stl_algorithms" title="Nesting STL algorithm invocations">the section called “Nesting STL algorithm invocations”</a>).
1421</p>
1422</div>
1423</div>
1424<div class="section">
1425<div class="titlepage"><div><div><h4 class="title">
1426<a name="lambda.rvalues_as_actual_arguments"></a>Rvalues as actual arguments to lambda functors</h4></div></div></div>
1427<p>
1428Actual arguments to the lambda functors cannot be non-const rvalues.
1429This is due to a deliberate design decision: either we have this restriction,
1430or there can be no side-effects to the actual arguments.
1431
1432There are ways around this limitation.
1433
1434We repeat the example from section
1435<a class="xref" href="using_library.html#lambda.actual_arguments_to_lambda_functors" title="About actual arguments to lambda functors">the section called “About actual arguments to lambda functors”</a> and list the
1436different solutions:
1437
1438</p>
1439<pre class="programlisting">
1440int i = 1; int j = 2;
1441(_1 + _2)(i, j); // ok
1442(_1 + _2)(1, 2); // error (!)
1443</pre>
1444<p>
1445
1446</p>
1447<div class="orderedlist"><ol class="orderedlist" type="1">
1448<li class="listitem"><p>
1449If the rvalue is of a class type, the return type of the function that
1450creates the rvalue should be defined as const.
1451Due to an unfortunate language restriction this does not work for
1452built-in types, as built-in rvalues cannot be const qualified.
1453</p></li>
1454<li class="listitem">
1455<p>
1456If the lambda function call is accessible, the <code class="literal">make_const</code>
1457function can be used to <span class="emphasis"><em>constify</em></span> the rvalue. E.g.:
1458
1459</p>
1460<pre class="programlisting">
1461(_1 + _2)(make_const(1), make_const(2)); // ok
1462</pre>
1463<p>
1464
1465Commonly the lambda function call site is inside a standard algorithm
1466function template, preventing this solution to be used.
1467
1468</p>
1469</li>
1470<li class="listitem">
1471<p>
1472If neither of the above is possible, the lambda expression can be wrapped
1473in a <code class="literal">const_parameters</code> function.
1474It creates another type of lambda functor, which takes its arguments as
1475const references. For example:
1476
1477</p>
1478<pre class="programlisting">
1479const_parameters(_1 + _2)(1, 2); // ok
1480</pre>
1481<p>
1482
1483Note that <code class="literal">const_parameters</code> makes all arguments const.
1484Hence, in the case were one of the arguments is a non-const rvalue,
1485and another argument needs to be passed as a non-const reference,
1486this approach cannot be used.
1487</p>
1488</li>
1489<li class="listitem">
1490<p>If none of the above is possible, there is still one solution,
1491which unfortunately can break const correctness.
1492
1493The solution is yet another lambda functor wrapper, which we have named
1494<code class="literal">break_const</code> to alert the user of the potential dangers
1495of this function.
1496
1497The <code class="literal">break_const</code> function creates a lambda functor that
1498takes its arguments as const, and casts away constness prior to the call
1499to the original wrapped lambda functor.
1500
1501For example:
1502</p>
1503<pre class="programlisting">
1504int i;
1505...
1506(_1 += _2)(i, 2);                 // error, 2 is a non-const rvalue
1507const_parameters(_1 += _2)(i, 2); // error, i becomes const
1508break_const(_1 += _2)(i, 2);      // ok, but dangerous
1509</pre>
1510<p>
1511
1512Note, that the results of <code class="literal"> break_const</code> or
1513<code class="literal">const_parameters</code> are not lambda functors,
1514so they cannot be used as subexpressions of lambda expressions. For instance:
1515
1516</p>
1517<pre class="programlisting">
1518break_const(_1 + _2) + _3; // fails.
1519const_parameters(_1 + _2) + _3; // fails.
1520</pre>
1521<p>
1522
1523However, this kind of code should never be necessary,
1524since calls to sub lambda functors are made inside the BLL,
1525and are not affected by the non-const rvalue problem.
1526</p>
1527</li>
1528</ol></div>
1529<p>
1530
1531</p>
1532</div>
1533</div>
1534<div class="section">
1535<div class="titlepage"><div><div><h3 class="title">
1536<a name="id-1.3.21.7.12"></a>Casts, sizeof and typeid</h3></div></div></div>
1537<div class="toc"><dl class="toc">
1538<dt><span class="section"><a href="le_in_details.html#lambda.cast_expressions">
1539Cast expressions
1540</a></span></dt>
1541<dt><span class="section"><a href="le_in_details.html#id-1.3.21.7.12.3">Sizeof and typeid</a></span></dt>
1542</dl></div>
1543<div class="section">
1544<div class="titlepage"><div><div><h4 class="title">
1545<a name="lambda.cast_expressions"></a>
1546Cast expressions
1547</h4></div></div></div>
1548<p>
1549The BLL defines its counterparts for the four cast expressions
1550<code class="literal">static_cast</code>, <code class="literal">dynamic_cast</code>,
1551<code class="literal">const_cast</code> and <code class="literal">reinterpret_cast</code>.
1552
1553The BLL versions of the cast expressions have the prefix
1554<code class="literal">ll_</code>.
1555
1556The type to cast to is given as an explicitly specified template argument,
1557and the sole argument is the expression from which to perform the cast.
1558
1559If the argument is a lambda functor, the lambda functor is evaluated first.
1560
1561For example, the following code uses <code class="literal">ll_dynamic_cast</code>
1562to count the number of <code class="literal">derived</code> instances in the container
1563<code class="literal">a</code>:
1564
1565</p>
1566<pre class="programlisting">
1567class base {};
1568class derived : public base {};
1569
1570vector&lt;base*&gt; a;
1571...
1572int count = 0;
1573for_each(a.begin(), a.end(),
1574         if_then(ll_dynamic_cast&lt;derived*&gt;(_1), ++var(count)));
1575</pre>
1576<p>
1577</p>
1578</div>
1579<div class="section">
1580<div class="titlepage"><div><div><h4 class="title">
1581<a name="id-1.3.21.7.12.3"></a>Sizeof and typeid</h4></div></div></div>
1582<p>
1583The BLL counterparts for these expressions are named
1584<code class="literal">ll_sizeof</code> and <code class="literal">ll_typeid</code>.
1585
1586Both take one argument, which can be a lambda expression.
1587The lambda functor created wraps the <code class="literal">sizeof</code> or
1588<code class="literal">typeid</code> call, and when the lambda functor is called
1589the wrapped operation is performed.
1590
1591For example:
1592
1593</p>
1594<pre class="programlisting">
1595vector&lt;base*&gt; a;
1596...
1597for_each(a.begin(), a.end(),
1598         cout &lt;&lt; bind(&amp;type_info::name, ll_typeid(*_1)));
1599</pre>
1600<p>
1601
1602Here <code class="literal">ll_typeid</code> creates a lambda functor for
1603calling <code class="literal">typeid</code> for each element.
1604
1605The result of a <code class="literal">typeid</code> call is an instance of
1606the <code class="literal">type_info</code> class, and the bind expression creates
1607a lambda functor for calling the <code class="literal">name</code> member
1608function of that class.
1609
1610</p>
1611</div>
1612</div>
1613<div class="section">
1614<div class="titlepage"><div><div><h3 class="title">
1615<a name="lambda.nested_stl_algorithms"></a>Nesting STL algorithm invocations</h3></div></div></div>
1616<p>
1617The BLL defines common STL algorithms as function object classes,
1618instances of which can be used as target functions in bind expressions.
1619For example, the following code iterates over the elements of a
1620two-dimensional array, and computes their sum.
1621
1622</p>
1623<pre class="programlisting">
1624int a[100][200];
1625int sum = 0;
1626
1627std::for_each(a, a + 100,
1628	      bind(ll::for_each(), _1, _1 + 200, protect(sum += _1)));
1629</pre>
1630<p>
1631
1632The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <code class="literal">std</code> namespace.
1633All these structs are placed in the subnamespace <code class="literal">boost::lambda:ll</code>.
1634
1635</p>
1636<p>
1637Note that there is no easy way to express an overloaded member function
1638call in a lambda expression.
1639
1640This limits the usefulness of nested STL algorithms, as for instance
1641the <code class="literal">begin</code> function has more than one overloaded
1642definitions in container templates.
1643
1644In general, something analogous to the pseudo-code below cannot be written:
1645
1646</p>
1647<pre class="programlisting">
1648std::for_each(a.begin(), a.end(),
1649	      bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1)));
1650</pre>
1651<p>
1652
1653Some aid for common special cases can be provided though.
1654
1655The BLL defines two helper function object classes,
1656<code class="literal">call_begin</code> and <code class="literal">call_end</code>,
1657which wrap a call to the <code class="literal">begin</code> and, respectively,
1658<code class="literal">end</code> functions of a container, and return the
1659<code class="literal">const_iterator</code> type of the container.
1660
1661With these helper templates, the above code becomes:
1662</p>
1663<pre class="programlisting">
1664std::for_each(a.begin(), a.end(),
1665	      bind(ll::for_each(),
1666                   bind(call_begin(), _1), bind(call_end(), _1),
1667                        protect(sum += _1)));
1668</pre>
1669<p>
1670
1671</p>
1672</div>
1673</div>
1674<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
1675<td align="left"></td>
1676<td align="right"><div class="copyright-footer">Copyright © 1999-2004 Jaakko Järvi, Gary Powell<p>Use, modification and distribution is subject to the Boost
1677    Software License, Version 1.0. (See accompanying file
1678    <code class="filename">LICENSE_1_0.txt</code> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)</p>
1679</div></td>
1680</tr></table>
1681<hr>
1682<div class="spirit-nav">
1683<a accesskey="p" href="using_library.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="extending.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
1684</div>
1685</body>
1686</html>
1687