1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> 2<html> 3<head> 4<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 5<title>Using the library</title> 6<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css"> 7<meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> 8<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset"> 9<link rel="up" href="../lambda.html" title="Chapter 20. Boost.Lambda"> 10<link rel="prev" href="s03.html" title="Introduction"> 11<link rel="next" href="le_in_details.html" title="Lambda expressions in details"> 12</head> 13<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> 14<table cellpadding="2" width="100%"><tr> 15<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td> 16<td align="center"><a href="../../../index.html">Home</a></td> 17<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td> 18<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> 19<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> 20<td align="center"><a href="../../../more/index.htm">More</a></td> 21</tr></table> 22<hr> 23<div class="spirit-nav"> 24<a accesskey="p" href="s03.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="le_in_details.html"><img src="../../../doc/src/images/next.png" alt="Next"></a> 25</div> 26<div class="section"> 27<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 28<a name="lambda.using_library"></a>Using the library</h2></div></div></div> 29<div class="toc"><dl class="toc"> 30<dt><span class="section"><a href="using_library.html#lambda.introductory_examples">Introductory Examples</a></span></dt> 31<dt><span class="section"><a href="using_library.html#lambda.parameter_and_return_types">Parameter and return types of lambda functors</a></span></dt> 32<dt><span class="section"><a href="using_library.html#lambda.actual_arguments_to_lambda_functors">About actual arguments to lambda functors</a></span></dt> 33<dt><span class="section"><a href="using_library.html#lambda.storing_bound_arguments">Storing bound arguments in lambda functions</a></span></dt> 34</dl></div> 35<p> 36The purpose of this section is to introduce the basic functionality of the library. 37There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections. 38 39 40 </p> 41<div class="section"> 42<div class="titlepage"><div><div><h3 class="title"> 43<a name="lambda.introductory_examples"></a>Introductory Examples</h3></div></div></div> 44<p> 45 In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations. 46 We start with some simple expressions and work up. 47 First, we initialize the elements of a container, say, a <code class="literal">list</code>, to the value <code class="literal">1</code>: 48 49 50 </p> 51<pre class="programlisting"> 52list<int> v(10); 53for_each(v.begin(), v.end(), _1 = 1);</pre> 54<p> 55 56 The expression <code class="literal">_1 = 1</code> creates a lambda functor which assigns the value <code class="literal">1</code> to every element in <code class="literal">v</code>.<a href="#ftn.id-1.3.21.6.3.2.7" class="footnote" name="id-1.3.21.6.3.2.7"><sup class="footnote">[7]</sup></a> 57 </p> 58<p> 59 Next, we create a container of pointers and make them point to the elements in the first container <code class="literal">v</code>: 60 61 </p> 62<pre class="programlisting"> 63vector<int*> vp(10); 64transform(v.begin(), v.end(), vp.begin(), &_1);</pre> 65<p> 66 67The expression <code class="literal">&_1</code> creates a function object for getting the address of each element in <code class="literal">v</code>. 68The addresses get assigned to the corresponding elements in <code class="literal">vp</code>. 69 </p> 70<p> 71 The next code fragment changes the values in <code class="literal">v</code>. 72 For each element, the function <code class="literal">foo</code> is called. 73The original value of the element is passed as an argument to <code class="literal">foo</code>. 74The result of <code class="literal">foo</code> is assigned back to the element: 75 76 77 </p> 78<pre class="programlisting"> 79int foo(int); 80for_each(v.begin(), v.end(), _1 = bind(foo, _1));</pre> 81<p> 82 </p> 83<p> 84 The next step is to sort the elements of <code class="literal">vp</code>: 85 86 </p> 87<pre class="programlisting">sort(vp.begin(), vp.end(), *_1 > *_2);</pre> 88<p> 89 90 In this call to <code class="literal">sort</code>, we are sorting the elements by their contents in descending order. 91 </p> 92<p> 93 Finally, the following <code class="literal">for_each</code> call outputs the sorted content of <code class="literal">vp</code> separated by line breaks: 94 95</p> 96<pre class="programlisting"> 97for_each(vp.begin(), vp.end(), cout << *_1 << '\n'); 98</pre> 99<p> 100 101Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately. 102This may cause surprises. 103For instance, if the previous example is rewritten as 104</p> 105<pre class="programlisting"> 106for_each(vp.begin(), vp.end(), cout << '\n' << *_1); 107</pre> 108<p> 109the subexpression <code class="literal">cout << '\n'</code> is evaluated immediately and the effect is to output a single line break, followed by the elements of <code class="literal">vp</code>. 110The BLL provides functions <code class="literal">constant</code> and <code class="literal">var</code> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions: 111</p> 112<pre class="programlisting"> 113for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1); 114</pre> 115<p> 116These functions are described more thoroughly in <a class="xref" href="le_in_details.html#lambda.delaying_constants_and_variables" title="Delaying constants and variables">the section called “Delaying constants and variables”</a> 117 118</p> 119</div> 120<div class="section"> 121<div class="titlepage"><div><div><h3 class="title"> 122<a name="lambda.parameter_and_return_types"></a>Parameter and return types of lambda functors</h3></div></div></div> 123<p> 124 During the invocation of a lambda functor, the actual arguments are substituted for the placeholders. 125 The placeholders do not dictate the type of these actual arguments. 126 The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression. 127 As an example, the expression 128 <code class="literal">_1 + _2</code> creates a binary lambda functor. 129 It can be called with two objects of any types <code class="literal">A</code> and <code class="literal">B</code> for which <code class="literal">operator+(A,B)</code> is defined (and for which BLL knows the return type of the operator, see below). 130 </p> 131<p> 132 C++ lacks a mechanism to query a type of an expression. 133 However, this precise mechanism is crucial for the implementation of C++ lambda expressions. 134 Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions. 135 It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types. 136 Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types. 137 </p> 138<p> 139 There are, however, cases when the return type cannot be deduced. For example, suppose you have defined: 140 141 </p> 142<pre class="programlisting">C operator+(A, B);</pre> 143<p> 144 145 The following lambda function invocation fails, since the return type cannot be deduced: 146 147 </p> 148<pre class="programlisting">A a; B b; (_1 + _2)(a, b);</pre> 149<p> 150 </p> 151<p> 152 There are two alternative solutions to this. 153 The first is to extend the BLL type deduction system to cover your own types (see <a class="xref" href="extending.html" title="Extending return type deduction system">the section called “Extending return type deduction system”</a>). 154 The second is to use a special lambda expression (<code class="literal">ret</code>) which defines the return type in place (see <a class="xref" href="le_in_details.html#lambda.overriding_deduced_return_type" title="Overriding the deduced return type">the section called “Overriding the deduced return type”</a>): 155 156 </p> 157<pre class="programlisting">A a; B b; ret<C>(_1 + _2)(a, b);</pre> 158<p> 159 </p> 160<p> 161 For bind expressions, the return type can be defined as a template argument of the bind function as well: 162 </p> 163<pre class="programlisting">bind<int>(foo, _1, _2);</pre> 164<p> 165 166 167 </p> 168</div> 169<div class="section"> 170<div class="titlepage"><div><div><h3 class="title"> 171<a name="lambda.actual_arguments_to_lambda_functors"></a>About actual arguments to lambda functors</h3></div></div></div> 172<p>A general restriction for the actual arguments is that they cannot be non-const rvalues. 173 For example: 174 175</p> 176<pre class="programlisting"> 177int i = 1; int j = 2; 178(_1 + _2)(i, j); // ok 179(_1 + _2)(1, 2); // error (!) 180</pre> 181<p> 182 183 This restriction is not as bad as it may look. 184 Since the lambda functors are most often called inside STL-algorithms, 185 the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues. 186 And for the cases where they do, there are workarounds discussed in 187<a class="xref" href="le_in_details.html#lambda.rvalues_as_actual_arguments" title="Rvalues as actual arguments to lambda functors">the section called “Rvalues as actual arguments to lambda functors”</a>. 188 189 190 </p> 191</div> 192<div class="section"> 193<div class="titlepage"><div><div><h3 class="title"> 194<a name="lambda.storing_bound_arguments"></a>Storing bound arguments in lambda functions</h3></div></div></div> 195<p> 196 197By default, temporary const copies of the bound arguments are stored 198in the lambda functor. 199 200This means that the value of a bound argument is fixed at the time of the 201creation of the lambda function and remains constant during the lifetime 202of the lambda function object. 203For example: 204</p> 205<pre class="programlisting"> 206int i = 1; 207(_1 = 2, _1 + i)(i); 208</pre> 209<p> 210The comma operator is overloaded to combine lambda expressions into a sequence; 211the resulting unary lambda functor first assigns 2 to its argument, 212then adds the value of <code class="literal">i</code> to it. 213The value of the expression in the last line is 3, not 4. 214In other words, the lambda expression that is created is 215<code class="literal">lambda x.(x = 2, x + 1)</code> rather than 216<code class="literal">lambda x.(x = 2, x + i)</code>. 217 218</p> 219<p> 220 221As said, this is the default behavior for which there are exceptions. 222The exact rules are as follows: 223 224</p> 225<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "> 226<li class="listitem"> 227<p> 228 229The programmer can control the storing mechanism with <code class="literal">ref</code> 230and <code class="literal">cref</code> wrappers <a class="xref" href="../lambda.html#cit:boost::ref" title="Boost ref">[<abbr class="abbrev">ref</abbr>]</a>. 231 232Wrapping an argument with <code class="literal">ref</code>, or <code class="literal">cref</code>, 233instructs the library to store the argument as a reference, 234or as a reference to const respectively. 235 236For example, if we rewrite the previous example and wrap the variable 237<code class="literal">i</code> with <code class="literal">ref</code>, 238we are creating the lambda expression <code class="literal">lambda x.(x = 2, x + i)</code> 239and the value of the expression in the last line will be 4: 240 241</p> 242<pre class="programlisting"> 243i = 1; 244(_1 = 2, _1 + ref(i))(i); 245</pre> 246<p> 247 248Note that <code class="literal">ref</code> and <code class="literal">cref</code> are different 249from <code class="literal">var</code> and <code class="literal">constant</code>. 250 251While the latter ones create lambda functors, the former do not. 252For example: 253 254</p> 255<pre class="programlisting"> 256int i; 257var(i) = 1; // ok 258ref(i) = 1; // not ok, ref(i) is not a lambda functor 259</pre> 260<p> 261 262The functions <code class="literal">ref</code> and <code class="literal">cref</code> mostly 263exist for historical reasons, 264and <code class="literal">ref</code> can always 265be replaced with <code class="literal">var</code>, and <code class="literal">cref</code> with 266<code class="literal">constant_ref</code>. 267See <a class="xref" href="le_in_details.html#lambda.delaying_constants_and_variables" title="Delaying constants and variables">the section called “Delaying constants and variables”</a> for details. 268The <code class="literal">ref</code> and <code class="literal">cref</code> functions are 269general purpose utility functions in Boost, and hence defined directly 270in the <code class="literal">boost</code> namespace. 271 272</p> 273</li> 274<li class="listitem"><p> 275Array types cannot be copied, they are thus stored as const reference by default. 276</p></li> 277<li class="listitem"> 278<p> 279For some expressions it makes more sense to store the arguments as references. 280 281For example, the obvious intention of the lambda expression 282<code class="literal">i += _1</code> is that calls to the lambda functor affect the 283value of the variable <code class="literal">i</code>, 284rather than some temporary copy of it. 285 286As another example, the streaming operators take their leftmost argument 287as non-const references. 288 289The exact rules are: 290 291</p> 292<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; "> 293<li class="listitem"><p>The left argument of compound assignment operators (<code class="literal">+=</code>, <code class="literal">*=</code>, etc.) are stored as references to non-const.</p></li> 294<li class="listitem"><p>If the left argument of <code class="literal"><<</code> or <code class="literal">>></code> operator is derived from an instantiation of <code class="literal">basic_ostream</code> or respectively from <code class="literal">basic_istream</code>, the argument is stored as a reference to non-const. 295For all other types, the argument is stored as a copy. 296</p></li> 297<li class="listitem"><p> 298In pointer arithmetic expressions, non-const array types are stored as non-const references. 299This is to prevent pointer arithmetic making non-const arrays const. 300 301</p></li> 302</ul></div> 303<p> 304 305</p> 306</li> 307</ul></div> 308<p> 309</p> 310</div> 311<div class="footnotes"> 312<br><hr style="width:100; text-align:left;margin-left: 0"> 313<div id="ftn.id-1.3.21.6.3.2.7" class="footnote"><p><a href="#id-1.3.21.6.3.2.7" class="para"><sup class="para">[7] </sup></a> 314Strictly taken, the C++ standard defines <code class="literal">for_each</code> as a <span class="emphasis"><em>non-modifying sequence operation</em></span>, and the function object passed to <code class="literal">for_each</code> should not modify its argument. 315The requirements for the arguments of <code class="literal">for_each</code> are unnecessary strict, since as long as the iterators are <span class="emphasis"><em>mutable</em></span>, <code class="literal">for_each</code> accepts a function object that can have side-effects on their argument. 316Nevertheless, it is straightforward to provide another function template with the functionality of<code class="literal">std::for_each</code> but more fine-grained requirements for its arguments. 317</p></div> 318</div> 319</div> 320<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> 321<td align="left"></td> 322<td align="right"><div class="copyright-footer">Copyright © 1999-2004 Jaakko Järvi, Gary Powell<p>Use, modification and distribution is subject to the Boost 323 Software License, Version 1.0. (See accompanying file 324 <code class="filename">LICENSE_1_0.txt</code> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)</p> 325</div></td> 326</tr></table> 327<hr> 328<div class="spirit-nav"> 329<a accesskey="p" href="s03.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="le_in_details.html"><img src="../../../doc/src/images/next.png" alt="Next"></a> 330</div> 331</body> 332</html> 333