• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2
3<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
4  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
5<html xmlns="http://www.w3.org/1999/xhtml">
6  <head>
7    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
8
9    <title>Tutorial: Image Gradient - Boost.GIL  documentation</title>
10    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
11    <link rel="stylesheet" href="../_static/style.css" type="text/css" />
12    <script type="text/javascript">
13      var DOCUMENTATION_OPTIONS = {
14          URL_ROOT:    '../',
15          VERSION:     '',
16          COLLAPSE_MODINDEX: false,
17          FILE_SUFFIX: '.html'
18      };
19    </script>
20    <script type="text/javascript" src="../_static/jquery.js"></script>
21    <script type="text/javascript" src="../_static/underscore.js"></script>
22    <script type="text/javascript" src="../_static/doctools.js"></script>
23    <link rel="index" title="Index" href="../genindex.html" />
24    <link rel="search" title="Search" href="../search.html" />
25    <link rel="top" title="Boost.GIL  documentation" href="../index.html" />
26    <link rel="next" title="Naming Conventions" href="../naming.html" />
27    <link rel="prev" title="Tutorial: Histogram" href="histogram.html" />
28  </head>
29  <body>
30    <div class="header">
31    <table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
32    "header">
33      <tr>
34        <td valign="top" width="300">
35          <h3><a href="../index.html"><img
36          alt="C++ Boost" src="../_static/gil.png" border="0"></a></h3>
37        </td>
38
39        <td >
40          <h1 align="center"><a href="../index.html"></a></h1>
41        </td>
42	<td>
43      <div id="searchbox" style="display: none">
44        <form class="search" action="../search.html" method="get">
45          <input type="text" name="q" size="18" />
46          <input type="submit" value="Search" />
47          <input type="hidden" name="check_keywords" value="yes" />
48          <input type="hidden" name="area" value="default" />
49        </form>
50      </div>
51      <script type="text/javascript">$('#searchbox').show(0);</script>
52	</td>
53      </tr>
54    </table>
55    </div>
56    <hr/>
57    <div class="content">
58    <div class="navbar" style="text-align:right;">
59
60
61      <a class="prev" title="Tutorial: Histogram" href="histogram.html"><img src="../_static/prev.png" alt="prev"/></a>
62      <a class="next" title="Naming Conventions" href="../naming.html"><img src="../_static/next.png" alt="next"/></a>
63
64    </div>
65
66  <div class="section" id="tutorial-image-gradient">
67<h1>Tutorial: Image Gradient</h1>
68<div class="contents local topic" id="contents">
69<ul class="simple">
70<li><a class="reference internal" href="#interface-and-glue-code" id="id1">Interface and Glue Code</a></li>
71<li><a class="reference internal" href="#first-implementation" id="id2">First Implementation</a></li>
72<li><a class="reference internal" href="#using-locators" id="id3">Using Locators</a></li>
73<li><a class="reference internal" href="#creating-a-generic-version-of-gil-algorithms" id="id4">Creating a Generic Version of GIL Algorithms</a></li>
74<li><a class="reference internal" href="#image-view-transformations" id="id5">Image View Transformations</a></li>
75<li><a class="reference internal" href="#d-pixel-iterators" id="id6">1D pixel iterators</a></li>
76<li><a class="reference internal" href="#stl-equivalent-algorithms" id="id7">STL Equivalent Algorithms</a></li>
77<li><a class="reference internal" href="#color-conversion" id="id8">Color Conversion</a></li>
78<li><a class="reference internal" href="#image" id="id9">Image</a></li>
79<li><a class="reference internal" href="#virtual-image-views" id="id10">Virtual Image Views</a></li>
80<li><a class="reference internal" href="#run-time-specified-images-and-image-views" id="id11">Run-Time Specified Images and Image Views</a></li>
81<li><a class="reference internal" href="#conclusion" id="id12">Conclusion</a></li>
82</ul>
83</div>
84<p>This comprehensive (and long) tutorial will walk you through an example of
85using GIL to compute the image gradients.</p>
86<p>We will start with some very simple and non-generic code and make it more
87generic as we go along.  Let us start with a horizontal gradient and use the
88simplest possible approximation to a gradient - central difference.</p>
89<p>The gradient at pixel x can be approximated with the half-difference of its
90two neighboring pixels:</p>
91<div class="highlight-c++"><div class="highlight"><pre><span class="n">D</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">I</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">I</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span>
92</pre></div>
93</div>
94<p>For simplicity, we will also ignore the boundary cases - the pixels along the
95edges of the image for which one of the neighbors is not defined. The focus of
96this document is how to use GIL, not how to create a good gradient generation
97algorithm.</p>
98<div class="section" id="interface-and-glue-code">
99<h2><a class="toc-backref" href="#id1">Interface and Glue Code</a></h2>
100<p>Let us first start with 8-bit unsigned grayscale image as the input and 8-bit
101signed grayscale image as the output.</p>
102<p>Here is how the interface to our algorithm looks like:</p>
103<div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/gil.hpp&gt;</span><span class="cp"></span>
104<span class="k">using</span> <span class="k">namespace</span> <span class="n">boost</span><span class="o">::</span><span class="n">gil</span><span class="p">;</span>
105
106<span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
107<span class="p">{</span>
108  <span class="n">assert</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">()</span> <span class="o">==</span> <span class="n">dst</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
109  <span class="p">...</span>    <span class="c1">// compute the gradient</span>
110<span class="p">}</span>
111</pre></div>
112</div>
113<p><code class="docutils literal"><span class="pre">gray8c_view_t</span></code> is the type of the source image view - an 8-bit grayscale
114view, whose pixels are read-only (denoted by the &#8220;c&#8221;).</p>
115<p>The output is a grayscale view with a 8-bit signed (denoted by the &#8220;s&#8221;)
116integer channel type. See Appendix 1 for the complete convention GIL uses to
117name concrete types.</p>
118<p>GIL makes a distinction between an image and an image view.
119A GIL <strong>image view</strong>, is a shallow, lightweight view of a rectangular grid of
120pixels. It provides access to the pixels but does not own the pixels.
121Copy-constructing a view does not deep-copy the pixels. Image views do not
122propagate their constness to the pixels and should always be taken by a const
123reference. Whether a view is mutable or read-only (immutable) is a property of
124the view type.</p>
125<p>A GIL <cite>image</cite>, on the other hand, is a view with associated ownership.
126It is a container of pixels; its constructor/destructor allocates/deallocates
127the pixels, its copy-constructor performs deep-copy of the pixels and its
128<code class="docutils literal"><span class="pre">operator==</span></code> performs deep-compare of the pixels. Images also propagate
129their constness to their pixels - a constant reference to an image will not
130allow for modifying its pixels.</p>
131<p>Most GIL algorithms operate on image views; images are rarely
132needed. GIL&#8217;s design is very similar to that of the STL. The STL
133equivalent of GIL&#8217;s image is a container, like <code class="docutils literal"><span class="pre">std::vector</span></code>,
134whereas GIL&#8217;s image view corresponds to STL range, which is often
135represented with a pair of iterators. STL algorithms operate on
136ranges, just like GIL algorithms operate on image views.</p>
137<p>GIL&#8217;s image views can be constructed from raw data - the dimensions,
138the number of bytes per row and the pixels, which for chunky views are
139represented with one pointer. Here is how to provide the glue between
140your code and GIL:</p>
141<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">ComputeXGradientGray8</span><span class="p">(</span>
142    <span class="kt">unsigned</span> <span class="kt">char</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
143    <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
144    <span class="kt">signed</span> <span class="kt">char</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
145<span class="p">{</span>
146  <span class="n">gray8c_view_t</span> <span class="n">src</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray8_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
147  <span class="n">gray8s_view_t</span> <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray8s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
148  <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">);</span>
149<span class="p">}</span>
150</pre></div>
151</div>
152<p>This glue code is very fast and views are lightweight - in the above example
153the views have a size of 16 bytes. They consist of a pointer to the top left
154pixel and three integers - the width, height, and number of bytes per row.</p>
155</div>
156<div class="section" id="first-implementation">
157<h2><a class="toc-backref" href="#id2">First Implementation</a></h2>
158<p>Focusing on simplicity at the expense of speed, we can compute the horizontal
159gradient like this:</p>
160<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
161<span class="p">{</span>
162  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
163      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
164          <span class="n">dst</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src</span><span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="o">-</span> <span class="n">src</span><span class="p">(</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
165<span class="p">}</span>
166</pre></div>
167</div>
168<p>We use image view&#8217;s <code class="docutils literal"><span class="pre">operator(x,y)</span></code> to get a reference to the pixel at a
169given location and we set it to the half-difference of its left and right
170neighbors.  <code class="docutils literal"><span class="pre">operator()</span></code> returns a reference to a grayscale pixel.
171A grayscale pixel is convertible to its channel type (<code class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></code> for
172<code class="docutils literal"><span class="pre">src</span></code>) and it can be copy-constructed from a channel.
173(This is only true for grayscale pixels).</p>
174<p>While the above code is easy to read, it is not very fast, because the binary
175<code class="docutils literal"><span class="pre">operator()</span></code> computes the location of the pixel in a 2D grid, which involves
176addition and multiplication. Here is a faster version of the above:</p>
177<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
178<span class="p">{</span>
179  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
180  <span class="p">{</span>
181      <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
182      <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
183
184      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="o">=</span><span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
185          <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
186  <span class="p">}</span>
187<span class="p">}</span>
188</pre></div>
189</div>
190<p>We use pixel iterators initialized at the beginning of each row. GIL&#8217;s
191iterators are Random Access Traversal iterators. If you are not
192familiar with random access iterators, think of them as if they were
193pointers. In fact, in the above example the two iterator types are raw
194C pointers and their <code class="docutils literal"><span class="pre">operator[]</span></code> is a fast pointer indexing
195operator.</p>
196<p>The code to compute gradient in the vertical direction is very
197similar:</p>
198<p>Instead of looping over the rows, we loop over each column and create a
199<code class="docutils literal"><span class="pre">y_iterator</span></code>, an iterator moving vertically. In this case a simple pointer
200cannot be used because the distance between two adjacent pixels equals the
201number of bytes in each row of the image. GIL uses here a special step
202iterator class whose size is 8 bytes - it contains a raw C pointer and a step.
203Its <code class="docutils literal"><span class="pre">operator[]</span></code> multiplies the index by its step.</p>
204<p>The above version of <code class="docutils literal"><span class="pre">y_gradient</span></code>, however, is much slower (easily an order
205of magnitude slower) than <code class="docutils literal"><span class="pre">x_gradient</span></code> because of the memory access pattern;
206traversing an image vertically results in lots of cache misses. A much more
207efficient and cache-friendly version will iterate over the columns in the inner
208loop:</p>
209<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
210<span class="p">{</span>
211  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
212  <span class="p">{</span>
213      <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src1_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="o">-</span><span class="mi">1</span><span class="p">);</span>
214      <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src2_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="o">+</span><span class="mi">1</span><span class="p">);</span>
215      <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
216
217      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
218      <span class="p">{</span>
219          <span class="o">*</span><span class="n">dst_it</span> <span class="o">=</span> <span class="p">((</span><span class="o">*</span><span class="n">src1_it</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="o">*</span><span class="n">src2_it</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
220          <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
221          <span class="o">++</span><span class="n">src1_it</span><span class="p">;</span>
222          <span class="o">++</span><span class="n">src2_it</span><span class="p">;</span>
223      <span class="p">}</span>
224  <span class="p">}</span>
225<span class="p">}</span>
226</pre></div>
227</div>
228<p>This sample code also shows an alternative way of using pixel iterators -
229instead of <code class="docutils literal"><span class="pre">operator[]</span></code> one could use increments and dereferences.</p>
230</div>
231<div class="section" id="using-locators">
232<h2><a class="toc-backref" href="#id3">Using Locators</a></h2>
233<p>Unfortunately this cache-friendly version requires the extra hassle of
234maintaining two separate iterators in the source view. For every pixel, we
235want to access its neighbors above and below it. Such relative access can be
236done with GIL locators:</p>
237<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
238<span class="p">{</span>
239  <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span> <span class="n">src_loc</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">xy_at</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
240  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
241  <span class="p">{</span>
242      <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span>  <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
243
244      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
245  <span class="p">{</span>
246          <span class="p">(</span><span class="o">*</span><span class="n">dst_it</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
247          <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
248          <span class="o">++</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">();</span> <span class="c1">// each dimension can be advanced separately</span>
249      <span class="p">}</span>
250      <span class="n">src_loc</span><span class="o">+=</span><span class="n">point</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span><span class="p">(</span><span class="o">-</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">(),</span> <span class="mi">1</span><span class="p">);</span> <span class="c1">// carriage return</span>
251  <span class="p">}</span>
252<span class="p">}</span>
253</pre></div>
254</div>
255<p>The first line creates a locator pointing to the first pixel of the
256second row of the source view. A GIL pixel locator is very similar to
257an iterator, except that it can move both horizontally and
258vertically. <code class="docutils literal"><span class="pre">src_loc.x()</span></code> and <code class="docutils literal"><span class="pre">src_loc.y()</span></code> return references to a
259horizontal and a vertical iterator respectively, which can be used to
260move the locator along the desired dimension, as shown
261above. Additionally, the locator can be advanced in both dimensions
262simultaneously using its <code class="docutils literal"><span class="pre">operator+=</span></code> and <code class="docutils literal"><span class="pre">operator-=</span></code>. Similar to
263image views, locators provide binary <code class="docutils literal"><span class="pre">operator()</span></code> which returns a
264reference to a pixel with a relative offset to the current locator
265position. For example, <code class="docutils literal"><span class="pre">src_loc(0,1)</span></code> returns a reference to the
266neighbor below the current pixel.  Locators are very lightweight
267objects - in the above example the locator has a size of 8 bytes - it
268consists of a raw pointer to the current pixel and an int indicating
269the number of bytes from one row to the next (which is the step when
270moving vertically). The call to <code class="docutils literal"><span class="pre">++src_loc.x()</span></code> corresponds to a
271single C pointer increment.  However, the example above performs more
272computations than necessary. The code <code class="docutils literal"><span class="pre">src_loc(0,1)</span></code> has to compute
273the offset of the pixel in two dimensions, which is slow.  Notice
274though that the offset of the two neighbors is the same, regardless of
275the pixel location. To improve the performance, GIL can cache and
276reuse this offset:</p>
277<div class="highlight-c++"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
278<span class="p">{</span>
279  <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span> <span class="n">src_loc</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">xy_at</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
280  <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span><span class="o">::</span><span class="n">cached_location_t</span> <span class="n">above</span> <span class="o">=</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">cache_location</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">);</span>
281  <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span><span class="o">::</span><span class="n">cached_location_t</span> <span class="n">below</span> <span class="o">=</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">cache_location</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">);</span>
282
283  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
284  <span class="p">{</span>
285      <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
286
287      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
288  <span class="p">{</span>
289          <span class="p">(</span><span class="o">*</span><span class="n">dst_it</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">[</span><span class="n">above</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">[</span><span class="n">below</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
290          <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
291          <span class="o">++</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">();</span>
292      <span class="p">}</span>
293      <span class="n">src_loc</span><span class="o">+=</span><span class="n">point</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span><span class="p">(</span><span class="o">-</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">(),</span> <span class="mi">1</span><span class="p">);</span>
294  <span class="p">}</span>
295<span class="p">}</span>
296</pre></div>
297</div>
298<p>In this example <code class="docutils literal"><span class="pre">src_loc[above]</span></code> corresponds to a fast pointer indexing
299operation and the code is efficient.</p>
300</div>
301<div class="section" id="creating-a-generic-version-of-gil-algorithms">
302<h2><a class="toc-backref" href="#id4">Creating a Generic Version of GIL Algorithms</a></h2>
303<p>Let us make our <code class="docutils literal"><span class="pre">x_gradient</span></code> more generic. It should work with any image
304views, as long as they have the same number of channels. The gradient
305operation is to be computed for each channel independently.</p>
306<p>Here is how the new interface looks like:</p>
307<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
308<span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
309<span class="p">{</span>
310  <span class="n">gil_function_requires</span><span class="o">&lt;</span><span class="n">ImageViewConcept</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;</span> <span class="o">&gt;</span><span class="p">();</span>
311  <span class="n">gil_function_requires</span><span class="o">&lt;</span><span class="n">MutableImageViewConcept</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;</span> <span class="o">&gt;</span><span class="p">();</span>
312  <span class="n">gil_function_requires</span>
313  <span class="o">&lt;</span>
314    <span class="n">ColorSpacesCompatibleConcept</span>
315    <span class="o">&lt;</span>
316      <span class="k">typename</span> <span class="n">color_space_type</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">,</span>
317      <span class="k">typename</span> <span class="n">color_space_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span>
318    <span class="o">&gt;</span>
319  <span class="o">&gt;</span><span class="p">();</span>
320
321  <span class="p">...</span> <span class="c1">// compute the gradient</span>
322<span class="p">}</span>
323</pre></div>
324</div>
325<p>The new algorithm now takes the types of the input and output image
326views as template parameters.  That allows using both built-in GIL
327image views, as well as any user-defined image view classes.  The
328first three lines are optional; they use <code class="docutils literal"><span class="pre">boost::concept_check</span></code> to
329ensure that the two arguments are valid GIL image views, that the
330second one is mutable and that their color spaces are compatible
331(i.e. have the same set of channels).</p>
332<p>GIL does not require using its own built-in constructs. You are free
333to use your own channels, color spaces, iterators, locators, views and
334images.  However, to work with the rest of GIL they have to satisfy a
335set of requirements; in other words, they have to e model the
336corresponding GIL _concept_.  GIL&#8217;s concepts are defined in the user
337guide.</p>
338<p>One of the biggest drawbacks of using templates and generic
339programming in C++ is that compile errors can be very difficult to
340comprehend.  This is a side-effect of the lack of early type
341checking - a generic argument may not satisfy the requirements of a
342function, but the incompatibility may be triggered deep into a nested
343call, in code unfamiliar and hardly related to the problem.  GIL uses
344<code class="docutils literal"><span class="pre">boost::concept_check</span></code> to mitigate this problem. The above three
345lines of code check whether the template parameters are valid models
346of their corresponding concepts.  If a model is incorrect, the compile
347error will be inside <code class="docutils literal"><span class="pre">gil_function_requires</span></code>, which is much closer
348to the problem and easier to track. Furthermore, such checks get
349compiled out and have zero performance overhead. The disadvantage of
350using concept checks is the sometimes severe impact they have on
351compile time. This is why GIL performs concept checks only in debug
352mode, and only if <code class="docutils literal"><span class="pre">BOOST_GIL_USE_CONCEPT_CHECK</span></code> is defined (off by
353default).</p>
354<p>The body of the generic function is very similar to that of the
355concrete one. The biggest difference is that we need to loop over the
356channels of the pixel and compute the gradient for each channel:</p>
357<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
358<span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
359<span class="p">{</span>
360  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
361  <span class="p">{</span>
362      <span class="k">typename</span> <span class="n">SrcView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
363      <span class="k">typename</span> <span class="n">DstView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
364
365      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
366          <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">c</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">c</span> <span class="o">&lt;</span> <span class="n">num_channels</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">value</span><span class="p">;</span> <span class="o">++</span><span class="n">c</span><span class="p">)</span>
367              <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
368  <span class="p">}</span>
369<span class="p">}</span>
370</pre></div>
371</div>
372<p>Having an explicit loop for each channel could be a performance problem.
373GIL allows us to abstract out such per-channel operations:</p>
374<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">Out</span><span class="o">&gt;</span>
375<span class="k">struct</span> <span class="n">halfdiff_cast_channels</span>
376<span class="p">{</span>
377  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">Out</span> <span class="k">operator</span><span class="p">()(</span><span class="n">T</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">in1</span><span class="p">,</span> <span class="n">T</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">in2</span><span class="p">)</span> <span class="k">const</span>
378  <span class="p">{</span>
379      <span class="k">return</span> <span class="n">Out</span><span class="p">((</span><span class="n">in1</span> <span class="o">-</span> <span class="n">in2</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">);</span>
380  <span class="p">}</span>
381<span class="p">};</span>
382
383<span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
384<span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
385<span class="p">{</span>
386  <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">dst_channel_t</span><span class="p">;</span>
387
388  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
389  <span class="p">{</span>
390      <span class="k">typename</span> <span class="n">SrcView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
391      <span class="k">typename</span> <span class="n">DstView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
392
393      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="o">=</span><span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
394      <span class="p">{</span>
395          <span class="n">static_transform</span><span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">],</span> <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">],</span>
396              <span class="n">halfdiff_cast_channels</span><span class="o">&lt;</span><span class="n">dst_channel_t</span><span class="o">&gt;</span><span class="p">());</span>
397      <span class="p">}</span>
398  <span class="p">}</span>
399<span class="p">}</span>
400</pre></div>
401</div>
402<p>The <code class="docutils literal"><span class="pre">static_transform</span></code> is an example of a channel-level GIL algorithm.
403Other such algorithms are <code class="docutils literal"><span class="pre">static_generate</span></code>, <code class="docutils literal"><span class="pre">static_fill</span></code> and
404<code class="docutils literal"><span class="pre">static_for_each</span></code>. They are the channel-level equivalents of STL
405<code class="docutils literal"><span class="pre">generate</span></code>, <code class="docutils literal"><span class="pre">transform</span></code>, <code class="docutils literal"><span class="pre">fill</span></code> and <code class="docutils literal"><span class="pre">for_each</span></code> respectively.
406GIL channel algorithms use static recursion to unroll the loops; they never
407loop over the channels explicitly.</p>
408<p>Note that sometimes modern compilers (at least Visual Studio 8) already unroll
409channel-level loops, such as the one above. However, another advantage of
410using GIL&#8217;s channel-level algorithms is that they pair the channels
411semantically, not based on their order in memory. For example, the above
412example will properly match an RGB source with a BGR destination.</p>
413<p>Here is how we can use our generic version with images of different types:</p>
414<div class="highlight-cpp"><div class="highlight"><pre><span class="c1">// Calling with 16-bit grayscale data</span>
415<span class="kt">void</span> <span class="nf">XGradientGray16_Gray32</span><span class="p">(</span>
416    <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
417    <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
418    <span class="kt">signed</span> <span class="kt">int</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
419<span class="p">{</span>
420  <span class="n">gray16c_view_t</span> <span class="n">src</span><span class="o">=</span><span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray16_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
421  <span class="n">gray32s_view_t</span> <span class="n">dst</span><span class="o">=</span><span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray32s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
422  <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span><span class="n">dst</span><span class="p">);</span>
423<span class="p">}</span>
424
425<span class="c1">// Calling with 8-bit RGB data into 16-bit BGR</span>
426<span class="kt">void</span> <span class="nf">XGradientRGB8_BGR16</span><span class="p">(</span>
427    <span class="kt">unsigned</span> <span class="kt">char</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
428    <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
429    <span class="kt">signed</span> <span class="kt">short</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
430<span class="p">{</span>
431  <span class="n">rgb8c_view_t</span>  <span class="n">src</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">rgb8_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
432  <span class="n">bgr16s_view_t</span> <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">bgr16s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
433  <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">);</span>
434<span class="p">}</span>
435
436<span class="c1">// Either or both the source and the destination could be planar - the gradient code does not change</span>
437<span class="kt">void</span> <span class="nf">XGradientPlanarRGB8_RGB32</span><span class="p">(</span>
438    <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_r</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_g</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_b</span><span class="p">,</span>
439    <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span> <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
440    <span class="kt">signed</span> <span class="kt">int</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
441<span class="p">{</span>
442  <span class="n">rgb16c_planar_view_t</span> <span class="n">src</span> <span class="o">=</span> <span class="n">planar_rgb_view</span> <span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">src_r</span><span class="p">,</span> <span class="n">src_g</span><span class="p">,</span> <span class="n">src_b</span><span class="p">,</span>        <span class="n">src_row_bytes</span><span class="p">);</span>
443  <span class="n">rgb32s_view_t</span>        <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,(</span><span class="n">rgb32s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
444  <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span><span class="n">dst</span><span class="p">);</span>
445<span class="p">}</span>
446</pre></div>
447</div>
448<p>As these examples illustrate, both the source and the destination can be
449interleaved or planar, of any channel depth (assuming the destination channel
450is assignable to the source), and of any compatible color spaces.</p>
451<p>GIL 2.1 can also natively represent images whose channels are not
452byte-aligned, such as 6-bit RGB222 image or a 1-bit Gray1 image.
453GIL algorithms apply to these images natively. See the design guide or sample
454files for more on using such images.</p>
455</div>
456<div class="section" id="image-view-transformations">
457<h2><a class="toc-backref" href="#id5">Image View Transformations</a></h2>
458<p>One way to compute the y-gradient is to rotate the image by 90 degrees,
459compute the x-gradient and rotate the result back.
460Here is how to do this in GIL:</p>
461<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
462<span class="kt">void</span> <span class="n">y_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
463<span class="p">{</span>
464  <span class="n">x_gradient</span><span class="p">(</span><span class="n">rotated90ccw_view</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">rotated90ccw_view</span><span class="p">(</span><span class="n">dst</span><span class="p">));</span>
465<span class="p">}</span>
466</pre></div>
467</div>
468<p><code class="docutils literal"><span class="pre">rotated90ccw_view</span></code> takes an image view and returns an image view
469representing 90-degrees counter-clockwise rotation of its input. It is
470an example of a GIL view transformation function. GIL provides a
471variety of transformation functions that can perform any axis-aligned
472rotation, transpose the view, flip it vertically or horizontally,
473extract a rectangular subimage, perform color conversion, subsample
474view, etc. The view transformation functions are fast and shallow -
475they don&#8217;t copy the pixels, they just change the &#8220;coordinate system&#8221;
476of accessing the pixels. <code class="docutils literal"><span class="pre">rotated90cw_view</span></code>, for example, returns a
477view whose horizontal iterators are the vertical iterators of the
478original view. The above code to compute <code class="docutils literal"><span class="pre">y_gradient</span></code> is slow
479because of the memory access pattern; using <code class="docutils literal"><span class="pre">rotated90cw_view</span></code> does
480not make it any slower.</p>
481<p>Another example: suppose we want to compute the gradient of the N-th
482channel of a color image. Here is how to do that:</p>
483<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
484<span class="kt">void</span> <span class="n">nth_channel_x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="kt">int</span> <span class="n">n</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
485<span class="p">{</span>
486  <span class="n">x_gradient</span><span class="p">(</span><span class="n">nth_channel_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
487<span class="p">}</span>
488</pre></div>
489</div>
490<p><code class="docutils literal"><span class="pre">nth_channel_view</span></code> is a view transformation function that takes any
491view and returns a single-channel (grayscale) view of its N-th
492channel.  For interleaved RGB view, for example, the returned view is
493a step view - a view whose horizontal iterator skips over two channels
494when incremented.  If applied on a planar RGB view, the returned type
495is a simple grayscale view whose horizontal iterator is a C pointer.
496Image view transformation functions can be piped together. For
497example, to compute the y gradient of the second channel of the even
498pixels in the view, use:</p>
499<div class="highlight-cpp"><div class="highlight"><pre><span class="n">y_gradient</span><span class="p">(</span><span class="n">subsampled_view</span><span class="p">(</span><span class="n">nth_channel_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
500</pre></div>
501</div>
502<p>GIL can sometimes simplify piped views. For example, two nested
503subsampled views (views that skip over pixels in X and in Y) can be
504represented as a single subsampled view whose step is the product of
505the steps of the two views.</p>
506</div>
507<div class="section" id="d-pixel-iterators">
508<h2><a class="toc-backref" href="#id6">1D pixel iterators</a></h2>
509<p>Let&#8217;s go back to <code class="docutils literal"><span class="pre">x_gradient</span></code> one more time.  Many image view
510algorithms apply the same operation for each pixel and GIL provides an
511abstraction to handle them. However, our algorithm has an unusual
512access pattern, as it skips the first and the last column. It would be
513nice and instructional to see how we can rewrite it in canonical
514form. The way to do that in GIL is to write a version that works for
515every pixel, but apply it only on the subimage that excludes the first
516and last column:</p>
517<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
518<span class="p">{</span>
519  <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
520  <span class="p">{</span>
521      <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
522      <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
523
524      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
525          <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
526  <span class="p">}</span>
527<span class="p">}</span>
528
529<span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
530<span class="p">{</span>
531  <span class="n">assert</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">&gt;=</span><span class="mi">2</span><span class="p">);</span>
532  <span class="n">x_gradient_unguarded</span><span class="p">(</span><span class="n">subimage_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()),</span>
533                       <span class="n">subimage_view</span><span class="p">(</span><span class="n">dst</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()));</span>
534<span class="p">}</span>
535</pre></div>
536</div>
537<p><code class="docutils literal"><span class="pre">subimage_view</span></code> is another example of a GIL view transformation
538function. It takes a source view and a rectangular region (in this
539case, defined as x_min,y_min,width,height) and returns a view
540operating on that region of the source view. The above implementation
541has no measurable performance degradation from the version that
542operates on the original views.</p>
543<p>Now that <code class="docutils literal"><span class="pre">x_gradient_unguarded</span></code> operates on every pixel, we can
544rewrite it more compactly:</p>
545<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
546<span class="p">{</span>
547  <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">begin</span><span class="p">();</span>
548  <span class="k">for</span> <span class="p">(</span><span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">begin</span><span class="p">();</span> <span class="n">dst_it</span><span class="o">!=</span><span class="n">dst</span><span class="p">.</span><span class="n">end</span><span class="p">();</span> <span class="o">++</span><span class="n">dst_it</span><span class="p">,</span> <span class="o">++</span><span class="n">src_it</span><span class="p">)</span>
549      <span class="o">*</span><span class="n">dst_it</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
550<span class="p">}</span>
551</pre></div>
552</div>
553<p>GIL image views provide <code class="docutils literal"><span class="pre">begin()</span></code> and <code class="docutils literal"><span class="pre">end()</span></code> methods that return
554one dimensional pixel iterators which iterate over each pixel in the
555view, left to right and top to bottom. They do a proper &#8220;carriage
556return&#8221; - they skip any unused bytes at the end of a row. As such,
557they are slightly suboptimal, because they need to keep track of their
558current position with respect to the end of the row. Their increment
559operator performs one extra check (are we at the end of the row?), a
560check that is avoided if two nested loops are used instead. These
561iterators have a method <code class="docutils literal"><span class="pre">x()</span></code> which returns the more lightweight
562horizontal iterator that we used previously. Horizontal iterators have
563no notion of the end of rows. In this case, the horizontal iterators
564are raw C pointers. In our example, we must use the horizontal
565iterators to access the two neighbors properly, since they could
566reside outside the image view.</p>
567</div>
568<div class="section" id="stl-equivalent-algorithms">
569<h2><a class="toc-backref" href="#id7">STL Equivalent Algorithms</a></h2>
570<p>GIL provides STL equivalents of many algorithms. For example,
571<code class="docutils literal"><span class="pre">std::transform</span></code> is an STL algorithm that sets each element in a
572destination range the result of a generic function taking the
573corresponding element of the source range. In our example, we want to
574assign to each destination pixel the value of the half-difference of
575the horizontal neighbors of the corresponding source pixel.  If we
576abstract that operation in a function object, we can use GIL&#8217;s
577<code class="docutils literal"><span class="pre">transform_pixel_positions</span></code> to do that:</p>
578<div class="highlight-cpp"><div class="highlight"><pre><span class="k">struct</span> <span class="n">half_x_difference</span>
579<span class="p">{</span>
580  <span class="kt">int</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">gray8c_loc_t</span><span class="o">&amp;</span> <span class="n">src_loc</span><span class="p">)</span> <span class="k">const</span>
581  <span class="p">{</span>
582      <span class="k">return</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
583  <span class="p">}</span>
584<span class="p">};</span>
585
586<span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
587<span class="p">{</span>
588  <span class="n">transform_pixel_positions</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">,</span> <span class="n">half_x_difference</span><span class="p">());</span>
589<span class="p">}</span>
590</pre></div>
591</div>
592<p>GIL provides the algorithms <code class="docutils literal"><span class="pre">for_each_pixel</span></code> and
593<code class="docutils literal"><span class="pre">transform_pixels</span></code> which are image view equivalents of STL
594<code class="docutils literal"><span class="pre">std::for_each</span></code> and <code class="docutils literal"><span class="pre">std::transform</span></code>. It also provides
595<code class="docutils literal"><span class="pre">for_each_pixel_position</span></code> and <code class="docutils literal"><span class="pre">transform_pixel_positions</span></code>, which
596instead of references to pixels, pass to the generic function pixel
597locators. This allows for more powerful functions that can use the
598pixel neighbors through the passed locators.  GIL algorithms iterate
599through the pixels using the more efficient two nested loops (as
600opposed to the single loop using 1-D iterators)</p>
601</div>
602<div class="section" id="color-conversion">
603<h2><a class="toc-backref" href="#id8">Color Conversion</a></h2>
604<p>Instead of computing the gradient of each color plane of an image, we
605often want to compute the gradient of the luminosity. In other words,
606we want to convert the color image to grayscale and compute the
607gradient of the result. Here how to compute the luminosity gradient of
608a 32-bit float RGB image:</p>
609<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_rgb_luminosity</span><span class="p">(</span><span class="n">rgb32fc_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
610<span class="p">{</span>
611  <span class="n">x_gradient</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
612<span class="p">}</span>
613</pre></div>
614</div>
615<p><code class="docutils literal"><span class="pre">color_converted_view</span></code> is a GIL view transformation function that
616takes any image view and returns a view in a target color space and
617channel depth (specified as template parameters). In our example, it
618constructs an 8-bit integer grayscale view over 32-bit float RGB
619pixels. Like all other view transformation functions,
620<code class="docutils literal"><span class="pre">color_converted_view</span></code> is very fast and shallow. It doesn&#8217;t copy the
621data or perform any color conversion. Instead it returns a view that
622performs color conversion every time its pixels are accessed.</p>
623<p>In the generic version of this algorithm we might like to convert the
624color space to grayscale, but keep the channel depth the same. We do
625that by constructing the type of a GIL grayscale pixel with the same
626channel as the source, and color convert to that pixel type:</p>
627<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
628<span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">SrcView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">DstView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
629<span class="p">{</span>
630  <span class="k">using</span> <span class="n">gray_pixel_t</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;</span><span class="p">;</span>
631  <span class="n">x_gradient</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
632<span class="p">}</span>
633</pre></div>
634</div>
635<p>When the destination color space and channel type happens to be the
636same as the source one, color conversion is unnecessary. GIL detects
637this case and avoids calling the color conversion code at all -
638i.e. <code class="docutils literal"><span class="pre">color_converted_view</span></code> returns back the source view unchanged.</p>
639</div>
640<div class="section" id="image">
641<h2><a class="toc-backref" href="#id9">Image</a></h2>
642<p>The above example has a performance problem - <code class="docutils literal"><span class="pre">x_gradient</span></code>
643dereferences most source pixels twice, which will cause the above code
644to perform color conversion twice.  Sometimes it may be more efficient
645to copy the color converted image into a temporary buffer and use it
646to compute the gradient - that way color conversion is invoked once
647per pixel. Using our non-generic version we can do it like this:</p>
648<div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_luminosity_gradient</span><span class="p">(</span><span class="n">rgb32fc_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
649<span class="p">{</span>
650  <span class="n">gray8_image_t</span> <span class="n">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
651  <span class="n">copy_pixels</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
652
653  <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
654<span class="p">}</span>
655</pre></div>
656</div>
657<p>First we construct an 8-bit grayscale image with the same dimensions
658as our source. Then we copy a color-converted view of the source into
659the temporary image.  Finally we use a read-only view of the temporary
660image in our <code class="docutils literal"><span class="pre">x_gradient</span> <span class="pre">algorithm</span></code>. As the example shows, GIL
661provides global functions <code class="docutils literal"><span class="pre">view</span></code> and <code class="docutils literal"><span class="pre">const_view</span></code> that take an
662image and return a mutable or an immutable view of its pixels.</p>
663<p>Creating a generic version of the above is a bit trickier:</p>
664<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
665<span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
666<span class="p">{</span>
667  <span class="k">using</span> <span class="n">d_channel_t</span> <span class="o">=</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">;</span>
668  <span class="k">using</span> <span class="n">channel_t</span> <span class="o">=</span> <span class="k">typename</span> <span class="n">channel_convert_to_unsigned</span><span class="o">&lt;</span><span class="n">d_channel_t</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">;</span>
669  <span class="k">using</span> <span class="n">gray_pixel_t</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">&lt;</span><span class="n">channel_t</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;</span><span class="p">;</span>
670  <span class="k">using</span> <span class="n">gray_image_t</span> <span class="o">=</span> <span class="n">image</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="p">,</span> <span class="nb">false</span><span class="o">&gt;</span><span class="p">;</span>
671
672  <span class="n">gray_image_t</span> <span class="nf">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
673  <span class="n">copy_pixels</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
674  <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
675<span class="p">}</span>
676</pre></div>
677</div>
678<p>First we use the <code class="docutils literal"><span class="pre">channel_type</span></code> metafunction to get the channel type
679of the destination view. A metafunction is a function operating on
680types. In GIL metafunctions are class templates (declared with
681<code class="docutils literal"><span class="pre">struct</span></code> type specifier) which take their parameters as template
682parameters and return their result in a nested typedef called
683<code class="docutils literal"><span class="pre">type</span></code>. In this case, <code class="docutils literal"><span class="pre">channel_type</span></code> is a unary metafunction which
684in this example is called with the type of an image view and returns
685the type of the channel associated with that image view.</p>
686<p>GIL constructs that have an associated pixel type, such as pixels,
687pixel iterators, locators, views and images, all model
688<code class="docutils literal"><span class="pre">PixelBasedConcept</span></code>, which means that they provide a set of
689metafunctions to query the pixel properties, such as <code class="docutils literal"><span class="pre">channel_type</span></code>,
690<code class="docutils literal"><span class="pre">color_space_type</span></code>, <code class="docutils literal"><span class="pre">channel_mapping_type</span></code>, and <code class="docutils literal"><span class="pre">num_channels</span></code>.</p>
691<p>After we get the channel type of the destination view, we use another
692metafunction to remove its sign (if it is a signed integral type) and
693then use it to generate the type of a grayscale pixel. From the pixel
694type we create the image type. GIL&#8217;s image class is specialized over
695the pixel type and a boolean indicating whether the image should be
696planar or interleaved.  Single-channel (grayscale) images in GIL must
697always be interleaved. There are multiple ways of constructing types
698in GIL. Instead of instantiating the classes directly we could have
699used type factory metafunctions. The following code is equivalent:</p>
700<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
701<span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">SrcView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">DstView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
702<span class="p">{</span>
703  <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">d_channel_t</span><span class="p">;</span>
704  <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_convert_to_unsigned</span><span class="o">&lt;</span><span class="n">d_channel_t</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">channel_t</span><span class="p">;</span>
705  <span class="k">typedef</span> <span class="k">typename</span> <span class="n">image_type</span><span class="o">&lt;</span><span class="n">channel_t</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">gray_image_t</span><span class="p">;</span>
706  <span class="k">typedef</span> <span class="k">typename</span> <span class="n">gray_image_t</span><span class="o">::</span><span class="n">value_type</span> <span class="n">gray_pixel_t</span><span class="p">;</span>
707
708  <span class="n">gray_image_t</span> <span class="nf">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
709  <span class="n">copy_and_convert_pixels</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
710  <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
711<span class="p">}</span>
712</pre></div>
713</div>
714<p>GIL provides a set of metafunctions that generate GIL types -
715<code class="docutils literal"><span class="pre">image_type</span></code> is one such meta-function that constructs the type of
716an image from a given channel type, color layout, and
717planar/interleaved option (the default is interleaved). There are also
718similar meta-functions to construct the types of pixel references,
719iterators, locators and image views. GIL also has metafunctions
720<code class="docutils literal"><span class="pre">derived_pixel_reference_type</span></code>, <code class="docutils literal"><span class="pre">derived_iterator_type</span></code>,
721<code class="docutils literal"><span class="pre">derived_view_type</span></code> and <code class="docutils literal"><span class="pre">derived_image_type</span></code> that construct the
722type of a GIL construct from a given source one by changing one or
723more properties of the type and keeping the rest.</p>
724<p>From the image type we can use the nested typedef <code class="docutils literal"><span class="pre">value_type</span></code> to
725obtain the type of a pixel. GIL images, image views and locators have
726nested typedefs <code class="docutils literal"><span class="pre">value_type</span></code> and <code class="docutils literal"><span class="pre">reference</span></code> to obtain the type of
727the pixel and a reference to the pixel. If you have a pixel iterator,
728you can get these types from its <code class="docutils literal"><span class="pre">iterator_traits</span></code>. Note also the
729algorithm <code class="docutils literal"><span class="pre">copy_and_convert_pixels</span></code>, which is an abbreviated version
730of <code class="docutils literal"><span class="pre">copy_pixels</span></code> with a color converted source view.</p>
731</div>
732<div class="section" id="virtual-image-views">
733<h2><a class="toc-backref" href="#id10">Virtual Image Views</a></h2>
734<p>So far we have been dealing with images that have pixels stored in
735memory. GIL allows you to create an image view of an arbitrary image,
736including a synthetic function. To demonstrate this, let us create a
737view of the Mandelbrot set.  First, we need to create a function
738object that computes the value of the Mandelbrot set at a given
739location (x,y) in the image:</p>
740<div class="highlight-cpp"><div class="highlight"><pre><span class="c1">// models PixelDereferenceAdaptorConcept</span>
741<span class="k">struct</span> <span class="n">mandelbrot_fn</span>
742<span class="p">{</span>
743  <span class="k">typedef</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span>   <span class="n">point_t</span><span class="p">;</span>
744
745  <span class="k">typedef</span> <span class="n">mandelbrot_fn</span>       <span class="n">const_t</span><span class="p">;</span>
746  <span class="k">typedef</span> <span class="n">gray8_pixel_t</span>       <span class="n">value_type</span><span class="p">;</span>
747  <span class="k">typedef</span> <span class="n">value_type</span>          <span class="n">reference</span><span class="p">;</span>
748  <span class="k">typedef</span> <span class="n">value_type</span>          <span class="n">const_reference</span><span class="p">;</span>
749  <span class="k">typedef</span> <span class="n">point_t</span>             <span class="n">argument_type</span><span class="p">;</span>
750  <span class="k">typedef</span> <span class="n">reference</span>           <span class="n">result_type</span><span class="p">;</span>
751  <span class="k">static</span> <span class="kt">bool</span> <span class="k">constexpr</span> <span class="n">is_mutable</span> <span class="o">=</span> <span class="nb">false</span><span class="p">;</span>
752
753  <span class="n">mandelbrot_fn</span><span class="p">()</span> <span class="p">{}</span>
754  <span class="n">mandelbrot_fn</span><span class="p">(</span><span class="k">const</span> <span class="n">point_t</span><span class="o">&amp;</span> <span class="n">sz</span><span class="p">)</span> <span class="o">:</span> <span class="n">_img_size</span><span class="p">(</span><span class="n">sz</span><span class="p">)</span> <span class="p">{}</span>
755
756  <span class="n">result_type</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">point_t</span><span class="o">&amp;</span> <span class="n">p</span><span class="p">)</span> <span class="k">const</span>
757  <span class="p">{</span>
758      <span class="c1">// normalize the coords to (-2..1, -1.5..1.5)</span>
759      <span class="kt">double</span> <span class="n">t</span><span class="o">=</span><span class="n">get_num_iter</span><span class="p">(</span><span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span><span class="p">(</span><span class="n">p</span><span class="p">.</span><span class="n">x</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">_img_size</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="mi">3</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">p</span><span class="p">.</span><span class="n">y</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">_img_size</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="mi">3</span><span class="o">-</span><span class="mf">1.5f</span><span class="p">));</span>
760      <span class="k">return</span> <span class="nf">value_type</span><span class="p">((</span><span class="n">bits8</span><span class="p">)(</span><span class="n">pow</span><span class="p">(</span><span class="n">t</span><span class="p">,</span><span class="mf">0.2</span><span class="p">)</span><span class="o">*</span><span class="mi">255</span><span class="p">));</span>   <span class="c1">// raise to power suitable for viewing</span>
761  <span class="p">}</span>
762<span class="k">private</span><span class="o">:</span>
763  <span class="n">point_t</span> <span class="n">_img_size</span><span class="p">;</span>
764
765  <span class="kt">double</span> <span class="nf">get_num_iter</span><span class="p">(</span><span class="k">const</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;&amp;</span> <span class="n">p</span><span class="p">)</span> <span class="k">const</span>
766  <span class="p">{</span>
767      <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span> <span class="n">Z</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">);</span>
768      <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o">&lt;</span><span class="mi">100</span><span class="p">;</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span>  <span class="c1">// 100 iterations</span>
769  <span class="p">{</span>
770          <span class="n">Z</span> <span class="o">=</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span><span class="p">(</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span> <span class="o">-</span> <span class="n">Z</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">+</span> <span class="n">p</span><span class="p">.</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">+</span> <span class="n">p</span><span class="p">.</span><span class="n">y</span><span class="p">);</span>
771          <span class="k">if</span> <span class="p">(</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span> <span class="o">+</span> <span class="n">Z</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">&gt;</span> <span class="mi">4</span><span class="p">)</span>
772              <span class="k">return</span> <span class="n">i</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="mi">100</span><span class="p">;</span>
773      <span class="p">}</span>
774      <span class="k">return</span> <span class="mi">0</span><span class="p">;</span>
775  <span class="p">}</span>
776<span class="p">};</span>
777</pre></div>
778</div>
779<p>We can now use GIL&#8217;s <code class="docutils literal"><span class="pre">virtual_2d_locator</span></code> with this function object
780to construct a Mandelbrot view of size 200x200 pixels:</p>
781<div class="highlight-cpp"><div class="highlight"><pre><span class="k">typedef</span> <span class="n">mandelbrot_fn</span><span class="o">::</span><span class="n">point_t</span> <span class="n">point_t</span><span class="p">;</span>
782<span class="k">typedef</span> <span class="n">virtual_2d_locator</span><span class="o">&lt;</span><span class="n">mandelbrot_fn</span><span class="p">,</span><span class="nb">false</span><span class="o">&gt;</span> <span class="n">locator_t</span><span class="p">;</span>
783<span class="k">typedef</span> <span class="n">image_view</span><span class="o">&lt;</span><span class="n">locator_t</span><span class="o">&gt;</span> <span class="n">my_virt_view_t</span><span class="p">;</span>
784
785<span class="n">point_t</span> <span class="nf">dims</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">);</span>
786
787<span class="c1">// Construct a Mandelbrot view with a locator, taking top-left corner (0,0) and step (1,1)</span>
788<span class="n">my_virt_view_t</span> <span class="nf">mandel</span><span class="p">(</span><span class="n">dims</span><span class="p">,</span> <span class="n">locator_t</span><span class="p">(</span><span class="n">point_t</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="n">point_t</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="n">mandelbrot_fn</span><span class="p">(</span><span class="n">dims</span><span class="p">)));</span>
789</pre></div>
790</div>
791<p>We can treat the synthetic view just like a real one. For example,
792let&#8217;s invoke our <code class="docutils literal"><span class="pre">x_gradient</span></code> algorithm to compute the gradient of
793the 90-degree rotated view of the Mandelbrot set and save the original
794and the result:</p>
795<div class="highlight-cpp"><div class="highlight"><pre><span class="n">gray8s_image_t</span> <span class="nf">img</span><span class="p">(</span><span class="n">dims</span><span class="p">);</span>
796<span class="n">x_gradient</span><span class="p">(</span><span class="n">rotated90cw_view</span><span class="p">(</span><span class="n">mandel</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">img</span><span class="p">));</span>
797
798<span class="c1">// Save the Mandelbrot set and its 90-degree rotated gradient (jpeg cannot save signed char; must convert to unsigned char)</span>
799<span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;mandel.jpg&quot;</span><span class="p">,</span><span class="n">mandel</span><span class="p">);</span>
800<span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;mandel_grad.jpg&quot;</span><span class="p">,</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">img</span><span class="p">)));</span>
801</pre></div>
802</div>
803<p>Here is what the two files look like:</p>
804<img alt="../_images/mandel.jpg" src="../_images/mandel.jpg" />
805</div>
806<div class="section" id="run-time-specified-images-and-image-views">
807<h2><a class="toc-backref" href="#id11">Run-Time Specified Images and Image Views</a></h2>
808<p>So far we have created a generic function that computes the image
809gradient of an image view template specialization.  Sometimes,
810however, the properties of an image view, such as its color space and
811channel depth, may not be available at compile time.  GIL&#8217;s
812<code class="docutils literal"><span class="pre">dynamic_image</span></code> extension allows for working with GIL constructs
813that are specified at run time, also called _variants_. GIL provides
814models of a run-time instantiated image, <code class="docutils literal"><span class="pre">any_image</span></code>, and a run-time
815instantiated image view, <code class="docutils literal"><span class="pre">any_image_view</span></code>. The mechanisms are in
816place to create other variants, such as <code class="docutils literal"><span class="pre">any_pixel</span></code>,
817<code class="docutils literal"><span class="pre">any_pixel_iterator</span></code>, etc.  Most of GIL&#8217;s algorithms and all of the
818view transformation functions also work with run-time instantiated
819image views and binary algorithms, such as <code class="docutils literal"><span class="pre">copy_pixels</span></code> can have
820either or both arguments be variants.</p>
821<p>Lets make our <code class="docutils literal"><span class="pre">x_luminosity_gradient</span></code> algorithm take a variant image
822view. For simplicity, let&#8217;s assume that only the source view can be a
823variant.  (As an example of using multiple variants, see GIL&#8217;s image
824view algorithm overloads taking multiple variants.)</p>
825<p>First, we need to make a function object that contains the templated
826destination view and has an application operator taking a templated
827source view:</p>
828<div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/gil/extension/dynamic_image/dynamic_image_all.hpp&gt;</span><span class="cp"></span>
829
830<span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
831<span class="k">struct</span> <span class="n">x_gradient_obj</span>
832<span class="p">{</span>
833  <span class="k">typedef</span> <span class="kt">void</span> <span class="n">result_type</span><span class="p">;</span>        <span class="c1">// required typedef</span>
834
835  <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">_dst</span><span class="p">;</span>
836  <span class="n">x_gradient_obj</span><span class="p">(</span><span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span> <span class="o">:</span> <span class="n">_dst</span><span class="p">(</span><span class="n">dst</span><span class="p">)</span> <span class="p">{}</span>
837
838  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="o">&gt;</span>
839  <span class="kt">void</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">)</span> <span class="k">const</span> <span class="p">{</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">_dst</span><span class="p">);</span> <span class="p">}</span>
840<span class="p">};</span>
841</pre></div>
842</div>
843<p>The second step is to provide an overload of <code class="docutils literal"><span class="pre">x_luminosity_gradient</span></code> that
844takes image view variant and calls GIL&#8217;s <code class="docutils literal"><span class="pre">apply_operation</span></code> passing it the
845function object:</p>
846<div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcViews</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
847<span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">any_image_view</span><span class="o">&lt;</span><span class="n">SrcViews</span><span class="o">&gt;&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
848<span class="p">{</span>
849  <span class="n">apply_operation</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">x_gradient_obj</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;</span><span class="p">(</span><span class="n">dst</span><span class="p">));</span>
850<span class="p">}</span>
851</pre></div>
852</div>
853<p><code class="docutils literal"><span class="pre">any_image_view&lt;SrcViews&gt;</span></code> is the image view variant. It is
854templated over <code class="docutils literal"><span class="pre">SrcViews</span></code>, an enumeration of all possible view types
855the variant can take.  <code class="docutils literal"><span class="pre">src</span></code> contains inside an index of the
856currently instantiated type, as well as a block of memory containing
857the instance.  <code class="docutils literal"><span class="pre">apply_operation</span></code> goes through a switch statement
858over the index, each case of which casts the memory to the correct
859view type and invokes the function object with it. Invoking an
860algorithm on a variant has the overhead of one switch
861statement. Algorithms that perform an operation for each pixel in an
862image view have practically no performance degradation when used with
863a variant.</p>
864<p>Here is how we can construct a variant and invoke the algorithm:</p>
865<div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/mp11.hpp&gt;</span><span class="cp"></span>
866<span class="cp">#include</span> <span class="cpf">&lt;boost/gil/extension/io/jpeg/old.hpp&gt;</span><span class="cp"></span>
867
868<span class="k">typedef</span> <span class="n">mp11</span><span class="o">::</span><span class="n">mp_list</span><span class="o">&lt;</span><span class="n">gray8_image_t</span><span class="p">,</span> <span class="n">gray16_image_t</span><span class="p">,</span> <span class="n">rgb8_image_t</span><span class="p">,</span> <span class="n">rgb16_image_t</span><span class="o">&gt;</span> <span class="n">my_img_types</span><span class="p">;</span>
869<span class="n">any_image</span><span class="o">&lt;</span><span class="n">my_img_types</span><span class="o">&gt;</span> <span class="n">runtime_image</span><span class="p">;</span>
870<span class="n">jpeg_read_image</span><span class="p">(</span><span class="s">&quot;input.jpg&quot;</span><span class="p">,</span> <span class="n">runtime_image</span><span class="p">);</span>
871
872<span class="n">gray8s_image_t</span> <span class="nf">gradient</span><span class="p">(</span><span class="n">runtime_image</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
873<span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">runtime_image</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">gradient</span><span class="p">));</span>
874<span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;x_gradient.jpg&quot;</span><span class="p">,</span> <span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">gradient</span><span class="p">)));</span>
875</pre></div>
876</div>
877<p>In this example, we create an image variant that could be 8-bit or
87816-bit RGB or grayscale image. We then use GIL&#8217;s I/O extension to load
879the image from file in its native color space and channel depth. If
880none of the allowed image types matches the image on disk, an
881exception will be thrown.  We then construct a 8 bit signed
882(i.e. <code class="docutils literal"><span class="pre">char</span></code>) image to store the gradient and invoke <code class="docutils literal"><span class="pre">x_gradient</span></code>
883on it. Finally we save the result into another file.  We save the view
884converted to 8-bit unsigned, because JPEG I/O does not support signed
885char.</p>
886<p>Note how free functions and methods such as <code class="docutils literal"><span class="pre">jpeg_read_image</span></code>,
887<code class="docutils literal"><span class="pre">dimensions</span></code>, <code class="docutils literal"><span class="pre">view</span></code> and <code class="docutils literal"><span class="pre">const_view</span></code> work on both templated and
888variant types.  For templated images <code class="docutils literal"><span class="pre">view(img)</span></code> returns a templated
889view, whereas for image variants it returns a view variant.  For
890example, the return type of <code class="docutils literal"><span class="pre">view(runtime_image)</span></code> is
891<code class="docutils literal"><span class="pre">any_image_view&lt;Views&gt;</span></code> where <code class="docutils literal"><span class="pre">Views</span></code> enumerates four views
892corresponding to the four image types.  <code class="docutils literal"><span class="pre">const_view(runtime_image)</span></code>
893returns a <code class="docutils literal"><span class="pre">any_image_view</span></code> of the four read-only view types, etc.</p>
894<p>A warning about using variants: instantiating an algorithm with a
895variant effectively instantiates it with every possible type the
896variant can take.  For binary algorithms, the algorithm is
897instantiated with every possible combination of the two input types!
898This can take a toll on both the compile time and the executable size.</p>
899</div>
900<div class="section" id="conclusion">
901<h2><a class="toc-backref" href="#id12">Conclusion</a></h2>
902<p>This tutorial provides a glimpse at the challenges associated with
903writing generic and efficient image processing algorithms in GIL.  We
904have taken a simple algorithm and shown how to make it work with image
905representations that vary in bit depth, color space, ordering of the
906channels, and planar/interleaved structure. We have demonstrated that
907the algorithm can work with fully abstracted virtual images, and even
908images whose type is specified at run time. The associated video
909presentation also demonstrates that even for complex scenarios the
910generated assembly is comparable to that of a C version of the
911algorithm, hand-written for the specific image types.</p>
912<p>Yet, even for such a simple algorithm, we are far from making a fully
913generic and optimized code. In particular, the presented algorithms
914work on homogeneous images, i.e. images whose pixels have channels
915that are all of the same type. There are examples of images, such as a
916packed 565 RGB format, which contain channels of different
917types. While GIL provides concepts and algorithms operating on
918heterogeneous pixels, we leave the task of extending x_gradient as an
919exercise for the reader.  Second, after computing the value of the
920gradient we are simply casting it to the destination channel
921type. This may not always be the desired operation. For example, if
922the source channel is a float with range [0..1] and the destination is
923unsigned char, casting the half-difference to unsigned char will
924result in either 0 or 1. Instead, what we might want to do is scale
925the result into the range of the destination channel. GIL&#8217;s
926channel-level algorithms might be useful in such cases. For example,
927p channel_convert converts between channels by linearly scaling the
928source channel value into the range of the destination channel.</p>
929<p>There is a lot to be done in improving the performance as
930well. Channel-level operations, such as the half-difference, could be
931abstracted out into atomic channel-level algorithms and performance
932overloads could be provided for concrete channel
933types. Processor-specific operations could be used, for example, to
934perform the operation over an entire row of pixels simultaneously, or
935the data could be pre-fetched. All of these optimizations can be
936realized as performance specializations of the generic
937algorithm. Finally, compilers, while getting better over time, are
938still failing to fully optimize generic code in some cases, such as
939failing to inline some functions or put some variables into
940registers. If performance is an issue, it might be worth trying your
941code with different compilers.</p>
942</div>
943</div>
944
945
946    <div class="navbar" style="text-align:right;">
947
948
949      <a class="prev" title="Tutorial: Histogram" href="histogram.html"><img src="../_static/prev.png" alt="prev"/></a>
950      <a class="next" title="Naming Conventions" href="../naming.html"><img src="../_static/next.png" alt="next"/></a>
951
952    </div>
953    </div>
954    <div class="footer" role="contentinfo">
955      Last updated on 2020-08-11 15:08:48.
956      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.5.6.
957    </div>
958  </body>
959</html>