• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Quaternion Creation Functions</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../quaternions.html" title="Chapter 16. Quaternions">
9<link rel="prev" href="value_op.html" title="Quaternion Value Operations">
10<link rel="next" href="trans.html" title="Quaternion Transcendentals">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="value_op.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.create"></a><a class="link" href="create.html" title="Quaternion Creation Functions">Quaternion Creation Functions</a>
28</h2></div></div></div>
29<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">spherical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">rho</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">phi1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">phi2</span><span class="special">);</span>
30<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">semipolar</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">rho</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">alpha</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">theta1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">theta2</span><span class="special">);</span>
31<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">multipolar</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">rho1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">theta1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">rho2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">theta2</span><span class="special">);</span>
32<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">cylindrospherical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">t</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">radius</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">longitude</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">latitude</span><span class="special">);</span>
33<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">cylindrical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">angle</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">h1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">h2</span><span class="special">);</span>
34</pre>
35<p>
36      These build quaternions in a way similar to the way polar builds complex numbers,
37      as there is no strict equivalent to polar coordinates for quaternions.
38    </p>
39<p>
40      <a name="math_quaternions.creation_spherical"></a><code class="computeroutput"><span class="identifier">spherical</span></code>
41      is a simple transposition of <code class="computeroutput"><span class="identifier">polar</span></code>,
42      it takes as inputs a (positive) magnitude and a point on the hypersphere, given
43      by three angles. The first of these, <code class="computeroutput"><span class="identifier">theta</span></code>
44      has a natural range of <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span></code>
45      to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span></code>,
46      and the other two have natural ranges of <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code>
47      to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> (as is the
48      case with the usual spherical coordinates in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>).
49      Due to the many symmetries and periodicities, nothing untoward happens if the
50      magnitude is negative or the angles are outside their natural ranges. The expected
51      degeneracies (a magnitude of zero ignores the angles settings...) do happen
52      however.
53    </p>
54<p>
55      <a name="math_quaternions.creation_cylindrical"></a><code class="computeroutput"><span class="identifier">cylindrical</span></code>
56      is likewise a simple transposition of the usual cylindrical coordinates in
57      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>, which in turn is another
58      derivative of planar polar coordinates. The first two inputs are the polar
59      coordinates of the first <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
60      component of the quaternion. The third and fourth inputs are placed into the
61      third and fourth <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span> components
62      of the quaternion, respectively.
63    </p>
64<p>
65      <a name="math_quaternions.creation_multipolar"></a><code class="computeroutput"><span class="identifier">multipolar</span></code>
66      is yet another simple generalization of polar coordinates. This time, both
67      <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span> components of the quaternion
68      are given in polar coordinates.
69    </p>
70<p>
71      <a name="math_quaternions.creation_cylindrospherical"></a><code class="computeroutput"><span class="identifier">cylindrospherical</span></code>
72      is specific to quaternions. It is often interesting to consider <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span> as the cartesian product of <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span> by <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
73      (the quaternionic multiplication as then a special form, as given here). This
74      function therefore builds a quaternion from this representation, with the
75      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span> component given in usual
76      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span> spherical coordinates.
77    </p>
78<p>
79      <a name="math_quaternions.creation_semipolar"></a><code class="computeroutput"><span class="identifier">semipolar</span></code>
80      is another generator which is specific to quaternions. It takes as a first
81      input the magnitude of the quaternion, as a second input an angle in the range
82      <code class="computeroutput"><span class="number">0</span></code> to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code>
83      such that magnitudes of the first two <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
84      components of the quaternion are the product of the first input and the sine
85      and cosine of this angle, respectively, and finally as third and fourth inputs
86      angles in the range <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> which represent the arguments of the first
87      and second <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span> components
88      of the quaternion, respectively. As usual, nothing untoward happens if what
89      should be magnitudes are negative numbers or angles are out of their natural
90      ranges, as symmetries and periodicities kick in.
91    </p>
92<p>
93      In this version of our implementation of quaternions, there is no analogue
94      of the complex value operation <code class="computeroutput"><span class="identifier">arg</span></code>
95      as the situation is somewhat more complicated. Unit quaternions are linked
96      both to rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
97      and in <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>, and the correspondences
98      are not too complicated, but there is currently a lack of standard (de facto
99      or de jure) matrix library with which the conversions could work. This should
100      be remedied in a further revision. In the mean time, an example of how this
101      could be done is presented here for <a href="../../../example/HSO3.hpp" target="_top"><span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span></a>, and here for <a href="../../../example/HSO4.hpp" target="_top"><span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span></a> (<a href="../../../example/HSO3SO4.cpp" target="_top">example
102      test file</a>).
103    </p>
104</div>
105<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
106<td align="left"></td>
107<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
108      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
109      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
110      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
111      Daryle Walker and Xiaogang Zhang<p>
112        Distributed under the Boost Software License, Version 1.0. (See accompanying
113        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
114      </p>
115</div></td>
116</tr></table>
117<hr>
118<div class="spirit-nav">
119<a accesskey="p" href="value_op.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
120</div>
121</body>
122</html>
123