• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Lambert W function</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../special.html" title="Chapter 8. Special Functions">
9<link rel="prev" href="jacobi/jacobi_sn.html" title="Jacobi Elliptic Function sn">
10<link rel="next" href="zetas.html" title="Zeta Functions">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="jacobi/jacobi_sn.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.lambert_w"></a><a class="link" href="lambert_w.html" title="Lambert W function">Lambert <span class="emphasis"><em>W</em></span>
28    function</a>
29</h2></div></div></div>
30<h5>
31<a name="math_toolkit.lambert_w.h0"></a>
32      <span class="phrase"><a name="math_toolkit.lambert_w.synopsis"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.synopsis">Synopsis</a>
33    </h5>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35</pre>
36<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
37
38  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
39  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                        <span class="comment">// W0 branch, default policy.</span>
40  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
41  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                       <span class="comment">// W-1 branch, default policy.</span>
42  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
43  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                  <span class="comment">// W0 branch 1st derivative.</span>
44  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
45  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                 <span class="comment">// W-1 branch 1st derivative.</span>
46
47  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
48  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>         <span class="comment">// W0 with policy.</span>
49  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
50  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>        <span class="comment">// W-1 with policy.</span>
51  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
52  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>   <span class="comment">// W0 derivative with policy.</span>
53  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
54  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>  <span class="comment">// W-1 derivative with policy.</span>
55
56 <span class="special">}</span> <span class="comment">// namespace boost</span>
57 <span class="special">}</span> <span class="comment">// namespace math</span>
58</pre>
59<h5>
60<a name="math_toolkit.lambert_w.h1"></a>
61      <span class="phrase"><a name="math_toolkit.lambert_w.description"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.description">Description</a>
62    </h5>
63<p>
64      The <a href="http://en.wikipedia.org/wiki/Lambert_W_function" target="_top">Lambert W
65      function</a> is the solution of the equation <span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)<span class="emphasis"><em>e</em></span><sup><span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)</sup> =
66      <span class="emphasis"><em>z</em></span>. It is also called the Omega function, the inverse of
67      <span class="emphasis"><em>f</em></span>(<span class="emphasis"><em>W</em></span>) = <span class="emphasis"><em>We</em></span><sup><span class="emphasis"><em>W</em></span></sup>.
68    </p>
69<p>
70      On the interval [0, ∞), there is just one real solution. On the interval (-<span class="emphasis"><em>e</em></span><sup>-1</sup>,
71      0), there are two real solutions, generating two branches which we will denote
72      by <span class="emphasis"><em>W</em></span><sub>0</sub> and <span class="emphasis"><em>W</em></span><sub>-1</sub>. In Boost.Math, we call
73      these principal branches <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
74      and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>; their derivatives
75      are labelled <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
76      and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>.
77    </p>
78<div class="blockquote"><blockquote class="blockquote"><p>
79        <span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph.svg" align="middle"></span>
80
81      </p></blockquote></div>
82<div class="blockquote"><blockquote class="blockquote"><p>
83        <span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph_big_w.svg" align="middle"></span>
84
85      </p></blockquote></div>
86<div class="blockquote"><blockquote class="blockquote"><p>
87        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_prime_graph.svg" align="middle"></span>
88
89      </p></blockquote></div>
90<div class="blockquote"><blockquote class="blockquote"><p>
91        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_prime_graph.svg" align="middle"></span>
92
93      </p></blockquote></div>
94<p>
95      There is a singularity where the branches meet at <span class="emphasis"><em>e</em></span><sup>-1</sup> ≅ <code class="literal">-0.367879</code>.
96      Approaching this point, the condition number of function evaluation tends to
97      infinity, and the only method of recovering high accuracy is use of higher
98      precision.
99    </p>
100<p>
101      This implementation computes the two real branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
102      <span class="emphasis"><em>W</em></span><sub>-1</sub>
103with the functions <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
104      and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>, and their
105      derivatives, <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
106      and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>. Complex
107      arguments are not supported.
108    </p>
109<p>
110      The final <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
111      be used to control how the function deals with errors. Refer to <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policies</a>
112      for more details and see examples below.
113    </p>
114<h6>
115<a name="math_toolkit.lambert_w.h2"></a>
116      <span class="phrase"><a name="math_toolkit.lambert_w.applications"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.applications">Applications
117      of the Lambert <span class="emphasis"><em>W</em></span> function</a>
118    </h6>
119<p>
120      The Lambert <span class="emphasis"><em>W</em></span> function has a myriad of applications.
121      <a href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf" target="_top">Corless
122      et al.</a> provide a summary of applications, from the mathematical, like
123      iterated exponentiation and asymptotic roots of trinomials, to the real-world,
124      such as the range of a jet plane, enzyme kinetics, water movement in soil,
125      epidemics, and diode current (an example replicated <a href="../../../example/lambert_w_diode.cpp" target="_top">here</a>).
126      Since the publication of their landmark paper, there have been many more applications,
127      and also many new implementations of the function, upon which this implementation
128      builds.
129    </p>
130<h5>
131<a name="math_toolkit.lambert_w.h3"></a>
132      <span class="phrase"><a name="math_toolkit.lambert_w.examples"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.examples">Examples</a>
133    </h5>
134<p>
135      The most basic usage of the Lambert-<span class="emphasis"><em>W</em></span> function is demonstrated
136      below:
137    </p>
138<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For lambert_w function.</span>
139
140<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w0</span><span class="special">;</span>
141<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special">;</span>
142</pre>
143<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
144<span class="comment">// Show all potentially significant decimal digits,</span>
145<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
146<span class="comment">// and show significant trailing zeros too.</span>
147
148<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.</span><span class="special">;</span>
149<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy for double.</span>
150<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
151<span class="comment">// lambert_w0(z) = 1.7455280027406994</span>
152</pre>
153<p>
154      Other floating-point types can be used too, here <code class="computeroutput"><span class="keyword">float</span></code>,
155      including user-defined types like <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
156      It is convenient to use a function like <code class="computeroutput"><span class="identifier">show_value</span></code>
157      to display all (and only) potentially significant decimal digits, including
158      any significant trailing zeros, (<code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code>) for the type <code class="computeroutput"><span class="identifier">T</span></code>.
159    </p>
160<pre class="programlisting"><span class="keyword">float</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.F</span><span class="special">;</span>
161<span class="keyword">float</span> <span class="identifier">r</span><span class="special">;</span>
162<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>        <span class="comment">// Default policy digits10 = 7, digits2 = 24</span>
163<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
164<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
165<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span>
166<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
167<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>   <span class="comment">// lambert_w0(10.0000000) = 1.74552798</span>
168</pre>
169<p>
170      Example of an integer argument to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>,
171      showing that an <code class="computeroutput"><span class="keyword">int</span></code> literal is
172      correctly promoted to a <code class="computeroutput"><span class="keyword">double</span></code>.
173    </p>
174<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
175<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>                           <span class="comment">// Pass an int argument "10" that should be promoted to double argument.</span>
176<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>  <span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
177<span class="keyword">double</span> <span class="identifier">rp</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>
178<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">rp</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
179<span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
180<span class="keyword">auto</span> <span class="identifier">rr</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>                            <span class="comment">// C++11 needed.</span>
181<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">rr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
182<span class="comment">// lambert_w0(10) = 1.7455280027406994 too, showing that rr has been promoted to double.</span>
183</pre>
184<p>
185      Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
186      types to get much higher precision is painless.
187    </p>
188<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10"</span><span class="special">);</span>
189<span class="comment">// Note construction using a decimal digit string "10",</span>
190<span class="comment">// NOT a floating-point double literal 10.</span>
191<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
192<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
193<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span>
194<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
195<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
196<span class="comment">// lambert_w0(10.000000000000000000000000000000000000000000000000000000000000000000000000000000) =</span>
197<span class="comment">//   1.7455280027406993830743012648753899115352881290809413313533156980404446940000000</span>
198</pre>
199<div class="warning"><table border="0" summary="Warning">
200<tr>
201<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
202<th align="left">Warning</th>
203</tr>
204<tr><td align="left" valign="top"><p>
205        When using multiprecision, take very great care not to construct or assign
206        non-integers from <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">float</span></code> ... silently losing precision. Use
207        <code class="computeroutput"><span class="string">"1.2345678901234567890123456789"</span></code>
208        rather than <code class="computeroutput"><span class="number">1.2345678901234567890123456789</span></code>.
209      </p></td></tr>
210</table></div>
211<p>
212      Using multiprecision types, it is all too easy to get multiprecision precision
213      wrong!
214    </p>
215<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.7777777777777777777777777777777777777777777777777777777777777777777777777</span><span class="special">);</span>
216<span class="comment">// Compiler evaluates the nearest double-precision binary representation,</span>
217<span class="comment">// from the max_digits10 of the floating_point literal double 0.7777777777777777777777777777...,</span>
218<span class="comment">// so any extra digits in the multiprecision type</span>
219<span class="comment">// beyond max_digits10 (usually 17) are random and meaningless.</span>
220<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
221<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
222<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
223<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
224<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
225<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
226<span class="comment">// lambert_w0(0.77777777777777779011358916250173933804035186767578125000000000000000000000000000)</span>
227<span class="comment">//   = 0.48086152073210493501934682309060873341910109230469724725005039758139532631901386</span>
228</pre>
229<div class="note"><table border="0" summary="Note">
230<tr>
231<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
232<th align="left">Note</th>
233</tr>
234<tr><td align="left" valign="top"><p>
235        See spurious non-seven decimal digits appearing after digit #17 in the argument
236        0.7777777777777777...!
237      </p></td></tr>
238</table></div>
239<p>
240      And similarly constructing from a literal <code class="computeroutput"><span class="keyword">double</span>
241      <span class="number">0.9</span></code>, with more random digits after digit
242      number 17.
243    </p>
244<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span> <span class="comment">// Construct from floating_point literal double 0.9.</span>
245<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
246<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span>
247<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
248<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
249<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
250<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
251<span class="comment">// lambert_w0(0.90000000000000002220446049250313080847263336181640625000000000000000000000000000)</span>
252<span class="comment">//   = 0.52983296563343440510607251781038939952850341796875000000000000000000000000000000</span>
253<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(0.9) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">0.9</span><span class="special">))</span>
254<span class="comment">// lambert_w0(0.9)</span>
255<span class="comment">//   = 0.52983296563343441</span>
256  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
257</pre>
258<p>
259      Note how the <code class="computeroutput"><span class="identifier">cpp_float_dec_50</span></code>
260      result is only as correct as from a <code class="computeroutput"><span class="keyword">double</span>
261      <span class="special">=</span> <span class="number">0.9</span></code>.
262    </p>
263<p>
264      Now see the correct result for all 50 decimal digits constructing from a decimal
265      digit string "0.9":
266    </p>
267<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"0.9"</span><span class="special">);</span>     <span class="comment">// Construct from decimal digit string.</span>
268<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
269<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
270<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
271<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
272<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
273<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
274<span class="comment">// 0.90000000000000000000000000000000000000000000000000000000000000000000000000000000)</span>
275<span class="comment">// = 0.52983296563343441213336643954546304857788132269804249284012528304239956413801252</span>
276</pre>
277<p>
278      Note the expected zeros for all places up to 50 - and the correct Lambert
279      <span class="emphasis"><em>W</em></span> result!
280    </p>
281<p>
282      (It is just as easy to compute even higher precisions, at least to thousands
283      of decimal digits, but not shown here for brevity. See <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
284      for comparison of an evaluation at 1000 decimal digit precision with <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>).
285    </p>
286<p>
287      Policies can be used to control what action to take on errors:
288    </p>
289<pre class="programlisting"><span class="comment">// Define an error handling policy:</span>
290<span class="keyword">typedef</span> <span class="identifier">policy</span><span class="special">&lt;</span>
291  <span class="identifier">domain_error</span><span class="special">&lt;</span><span class="identifier">throw_on_error</span><span class="special">&gt;,</span>
292  <span class="identifier">overflow_error</span><span class="special">&lt;</span><span class="identifier">ignore_error</span><span class="special">&gt;</span> <span class="comment">// possibly unwise?</span>
293<span class="special">&gt;</span> <span class="identifier">my_throw_policy</span><span class="special">;</span>
294
295<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
296<span class="comment">// Show all potentially significant decimal digits,</span>
297<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
298<span class="comment">// and show significant trailing zeros too.</span>
299<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1</span><span class="special">;</span>
300<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
301<span class="comment">// Lambert W (1.0000000000000000) = 0.56714329040978384</span>
302<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\nLambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">", my_throw_policy()) = "</span>
303  <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">my_throw_policy</span><span class="special">())</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
304<span class="comment">// Lambert W (1.0000000000000000, my_throw_policy()) = 0.56714329040978384</span>
305</pre>
306<p>
307      An example error message:
308    </p>
309<pre class="programlisting"><span class="identifier">Error</span> <span class="identifier">in</span> <span class="identifier">function</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;(&lt;</span><span class="identifier">RealType</span><span class="special">&gt;):</span>
310<span class="identifier">Argument</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">1</span> <span class="identifier">is</span> <span class="identifier">out</span> <span class="identifier">of</span> <span class="identifier">range</span> <span class="special">(</span><span class="identifier">z</span> <span class="special">&lt;=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">for</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="identifier">branch</span><span class="special">!</span> <span class="special">(</span><span class="identifier">Try</span> <span class="identifier">Lambert</span> <span class="identifier">W0</span> <span class="identifier">branch</span><span class="special">?)</span>
311</pre>
312<p>
313      Showing an error reported if a value is passed to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
314      that is out of range, (and was probably meant to be passed to <code class="computeroutput"><span class="identifier">lambert_wm1</span></code> instead).
315    </p>
316<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1.</span><span class="special">;</span>
317<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
318<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_wm1(+1.) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
319</pre>
320<p>
321      The full source of these examples is at <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
322    </p>
323<h6>
324<a name="math_toolkit.lambert_w.h4"></a>
325      <span class="phrase"><a name="math_toolkit.lambert_w.diode_resistance"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diode_resistance">Diode
326      Resistance Example</a>
327    </h6>
328<p>
329      A typical example of a practical application is estimating the current flow
330      through a diode with series resistance from a paper by Banwell and Jayakumar.
331    </p>
332<p>
333      Having the Lambert <span class="emphasis"><em>W</em></span> function available makes it simple
334      to reproduce the plot in their paper (Fig 2) comparing estimates using with
335      Lambert <span class="emphasis"><em>W</em></span> function and some actual measurements. The colored
336      curves show the effect of various series resistance on the current compared
337      to an extrapolated line in grey with no internal (or external) resistance.
338    </p>
339<p>
340      Two formulae relating the diode current and effect of series resistance can
341      be combined, but yield an otherwise intractable equation relating the current
342      versus voltage with a varying series resistance. This was reformulated as a
343      generalized equation in terms of the Lambert W function:
344    </p>
345<p>
346      Banwell and Jakaumar equation 5
347    </p>
348<div class="blockquote"><blockquote class="blockquote"><p>
349        <span class="serif_italic">I(V) = μ V<sub>T</sub>/ R <sub>S</sub> ․ W<sub>0</sub>(I<sub>0</sub> R<sub>S</sub> / (μ V<sub>T</sub>))</span>
350      </p></blockquote></div>
351<p>
352      Using these variables
353    </p>
354<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="comment">// Assumed ideal.</span>
355<span class="keyword">double</span> <span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">v_thermal</span><span class="special">(</span><span class="number">25</span><span class="special">);</span> <span class="comment">// v thermal, Shockley equation, expect about 25 mV at room temperature.</span>
356<span class="keyword">double</span> <span class="identifier">boltzmann_k</span> <span class="special">=</span> <span class="number">1.38e-23</span><span class="special">;</span> <span class="comment">// joules/kelvin</span>
357<span class="keyword">double</span> <span class="identifier">temp</span> <span class="special">=</span> <span class="number">273</span> <span class="special">+</span> <span class="number">25</span><span class="special">;</span>
358<span class="keyword">double</span> <span class="identifier">charge_q</span> <span class="special">=</span> <span class="number">1.6e-19</span><span class="special">;</span> <span class="comment">// column</span>
359<span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">boltzmann_k</span> <span class="special">*</span> <span class="identifier">temp</span> <span class="special">/</span> <span class="identifier">charge_q</span><span class="special">;</span>
360<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"V thermal "</span> <span class="special">&lt;&lt;</span> <span class="identifier">vt</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// V thermal 0.0257025 = 25 mV</span>
361<span class="keyword">double</span> <span class="identifier">rsat</span> <span class="special">=</span> <span class="number">0.</span><span class="special">;</span>
362<span class="keyword">double</span> <span class="identifier">isat</span> <span class="special">=</span> <span class="number">25.e-15</span><span class="special">;</span> <span class="comment">//  25 fA;</span>
363<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Isat = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">isat</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
364<span class="keyword">double</span> <span class="identifier">re</span> <span class="special">=</span> <span class="number">0.3</span><span class="special">;</span>  <span class="comment">// Estimated from slope of straight section of graph (equation 6).</span>
365<span class="keyword">double</span> <span class="identifier">v</span> <span class="special">=</span> <span class="number">0.9</span><span class="special">;</span>
366<span class="keyword">double</span> <span class="identifier">icalc</span> <span class="special">=</span> <span class="identifier">iv</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">vt</span><span class="special">,</span> <span class="number">249.</span><span class="special">,</span> <span class="identifier">re</span><span class="special">,</span> <span class="identifier">isat</span><span class="special">);</span>
367<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"voltage = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">v</span> <span class="special">&lt;&lt;</span> <span class="string">", current = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">icalc</span> <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">icalc</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// voltage = 0.9, current = 0.00108485, -6.82631</span>
368</pre>
369<p>
370      the formulas can be rendered in C++
371    </p>
372<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">iv</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">v</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">vt</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">rsat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">re</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">isat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.</span><span class="special">)</span>
373<span class="special">{</span>
374  <span class="comment">// V thermal 0.0257025 = 25 mV</span>
375  <span class="comment">// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.</span>
376
377  <span class="identifier">rsat</span> <span class="special">=</span> <span class="identifier">rsat</span> <span class="special">+</span> <span class="identifier">re</span><span class="special">;</span>
378  <span class="keyword">double</span> <span class="identifier">i</span> <span class="special">=</span> <span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span> <span class="special">/</span> <span class="identifier">rsat</span><span class="special">;</span>
379 <span class="comment">// std::cout &lt;&lt; "nu * vt / rsat = " &lt;&lt; i &lt;&lt; std::endl; // 0.000103223</span>
380
381  <span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
382<span class="comment">//  std::cout &lt;&lt; "isat * rsat / (nu * vt) = " &lt;&lt; x &lt;&lt; std::endl;</span>
383
384  <span class="keyword">double</span> <span class="identifier">eterm</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">v</span> <span class="special">+</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
385 <span class="comment">// std::cout &lt;&lt; "(v + isat * rsat) / (nu * vt) = " &lt;&lt; eterm &lt;&lt; std::endl;</span>
386
387  <span class="keyword">double</span> <span class="identifier">e</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">eterm</span><span class="special">);</span>
388<span class="comment">//  std::cout &lt;&lt; "exp(eterm) = " &lt;&lt; e &lt;&lt; std::endl;</span>
389
390  <span class="keyword">double</span> <span class="identifier">w0</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">x</span> <span class="special">*</span> <span class="identifier">e</span><span class="special">);</span>
391<span class="comment">//  std::cout &lt;&lt; "w0 = " &lt;&lt; w0 &lt;&lt; std::endl;</span>
392  <span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="identifier">isat</span><span class="special">;</span>
393<span class="special">}</span> <span class="comment">// double iv</span>
394</pre>
395<p>
396      to reproduce their Fig 2:
397    </p>
398<div class="blockquote"><blockquote class="blockquote"><p>
399        <span class="inlinemediaobject"><img src="../../graphs/diode_iv_plot.svg" align="middle"></span>
400
401      </p></blockquote></div>
402<p>
403      The plotted points for no external series resistance (derived from their published
404      plot as the raw data are not publicly available) are used to extrapolate back
405      to estimate the intrinsic emitter resistance as 0.3 ohm. The effect of external
406      series resistance is visible when the colored lines start to curve away from
407      the straight line as voltage increases.
408    </p>
409<p>
410      See <a href="../../../example/lambert_w_diode.cpp" target="_top">lambert_w_diode.cpp</a>
411      and <a href="../../../example/lambert_w_diode_graph.cpp" target="_top">lambert_w_diode_graph.cpp</a>
412      for details of the calculation.
413    </p>
414<h6>
415<a name="math_toolkit.lambert_w.h5"></a>
416      <span class="phrase"><a name="math_toolkit.lambert_w.implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementations">Existing
417      implementations</a>
418    </h6>
419<p>
420      The principal value of the Lambert <span class="emphasis"><em>W</em></span> function is implemented
421      in the <a href="http://mathworld.wolfram.com/LambertW-Function.html" target="_top">Wolfram
422      Language</a> as <code class="computeroutput"><span class="identifier">ProductLog</span><span class="special">[</span><span class="identifier">k</span><span class="special">,</span>
423      <span class="identifier">z</span><span class="special">]</span></code>,
424      where <code class="computeroutput"><span class="identifier">k</span></code> is the branch.
425    </p>
426<p>
427      The symbolic algebra program <a href="https://www.maplesoft.com" target="_top">Maple</a>
428      also computes Lambert <span class="emphasis"><em>W</em></span> to an arbitrary precision.
429    </p>
430<h5>
431<a name="math_toolkit.lambert_w.h6"></a>
432      <span class="phrase"><a name="math_toolkit.lambert_w.precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.precision">Controlling
433      the compromise between Precision and Speed</a>
434    </h5>
435<h6>
436<a name="math_toolkit.lambert_w.h7"></a>
437      <span class="phrase"><a name="math_toolkit.lambert_w.small_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_floats">Floating-point
438      types <code class="computeroutput"><span class="keyword">double</span></code> and <code class="computeroutput"><span class="keyword">float</span></code></a>
439    </h6>
440<p>
441      This implementation provides good precision and excellent speed for __fundamental
442      <code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code>.
443    </p>
444<p>
445      All the functions usually return values within a few <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
446      in the last place (ULP)</a> for the floating-point type, except for very
447      small arguments very near zero, and for arguments very close to the singularity
448      at the branch point.
449    </p>
450<p>
451      By default, this implementation provides the best possible speed. Very slightly
452      average higher precision and less bias might be obtained by adding a <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a> step refinement, but
453      at the cost of more than doubling the runtime.
454    </p>
455<h6>
456<a name="math_toolkit.lambert_w.h8"></a>
457      <span class="phrase"><a name="math_toolkit.lambert_w.big_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.big_floats">Floating-point
458      types larger than double</a>
459    </h6>
460<p>
461      For floating-point types with precision greater than <code class="computeroutput"><span class="keyword">double</span></code>
462      and <code class="computeroutput"><span class="keyword">float</span></code> <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
463      (built-in) types</a>, a <code class="computeroutput"><span class="keyword">double</span></code>
464      evaluation is used as a first approximation followed by Halley refinement,
465      using a single step where it can be predicted that this will be sufficient,
466      and only using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
467      iteration when necessary. Higher precision types are always going to be <span class="bold"><strong>very, very much slower</strong></span>.
468    </p>
469<p>
470      The 'best' evaluation (the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>)
471      can be achieved by <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
472      from a higher precision type, typically a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
473      type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>,
474      but at the cost of increasing run-time 100-fold; this has been used here to
475      provide some of our reference values for testing.
476    </p>
477<p>
478      For example, we get a reference value using a high precision type, for example;
479    </p>
480<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
481</pre>
482<p>
483      that uses Halley iteration to refine until it is as precise as possible for
484      this <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code> type.
485    </p>
486<p>
487      As a further check we can compare this with a <a href="http://www.wolframalpha.com/" target="_top">Wolfram
488      Alpha</a> computation using command <code class="literal">N[ProductLog[10.], 50]</code>
489      to get 50 decimal digits and similarly <code class="literal">N[ProductLog[10.], 17]</code>
490      to get the nearest representable for 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
491      precision.
492    </p>
493<pre class="programlisting"> <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
494 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">float_distance</span><span class="special">;</span>
495
496 <span class="identifier">cpp_bin_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10."</span><span class="special">);</span> <span class="comment">// Note use a decimal digit string, not a double 10.</span>
497 <span class="identifier">cpp_bin_float_50</span> <span class="identifier">r</span><span class="special">;</span>
498 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">);</span>
499
500 <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy.</span>
501 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) cpp_bin_float_50  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
502 <span class="comment">//lambert_w0(z) cpp_bin_float_50  = 1.7455280027406993830743012648753899115352881290809</span>
503 <span class="comment">//       [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809</span>
504 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
505 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) static_cast from cpp_bin_float_50  = "</span>
506   <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">r</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
507 <span class="comment">// double lambert_w0(z) static_cast from cpp_bin_float_50  = 1.7455280027406994</span>
508 <span class="comment">// [N[productlog[10], 17]]                                == 1.7455280027406994</span>
509<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Wolfram = "</span>
510  <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">r</span><span class="special">),</span> <span class="number">1.7455280027406994</span><span class="special">))</span>
511  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0</span>
512</pre>
513<p>
514      giving us the same nearest representable using 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
515      as <code class="computeroutput"><span class="number">1.7455280027406994</span></code>.
516    </p>
517<p>
518      However, the rational polynomial and Fukushima Schroder approximations are
519      so good for type <code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code> that negligible improvement is gained
520      from a <code class="computeroutput"><span class="keyword">double</span></code> Halley step.
521    </p>
522<p>
523      This is shown with <a href="../../../example/lambert_w_precision_example.cpp" target="_top">lambert_w_precision_example.cpp</a>
524      for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>:
525    </p>
526<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
527<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
528<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>
529
530<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
531<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
532
533<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"1.23"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double 1.23!</span>
534<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">z50</span><span class="special">);</span>
535<span class="identifier">cpp_bin_float_50</span> <span class="identifier">w50</span><span class="special">;</span>
536<span class="identifier">w50</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
537<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
538<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =\n                                              "</span>
539  <span class="special">&lt;&lt;</span> <span class="identifier">w50</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
540<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
541<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">w50</span><span class="special">);</span>
542<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">wr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
543
544<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
545<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Rat/poly Lambert W  ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">")  =   "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
546<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
547<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
548<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =  "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
549
550<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
551<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"relative difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
552<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon difference from Halley step  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
553<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon for float =                    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
554<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Halley step  =     "</span> <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
555</pre>
556<p>
557      with this output:
558    </p>
559<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
560<span class="number">0.64520356959320237759035605255334853830173300262666480</span>
561<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="number">0.64520356959320235</span>
562<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span>  <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span>  <span class="special">=</span>   <span class="number">0.64520356959320224</span>
563<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span>  <span class="number">0.64520356959320235</span>
564<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.1102230246251565e-16</span>
565<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.7207329236029286e-16</span>
566<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span> <span class="number">0.77494921535422934</span>
567<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span>                    <span class="number">2.2204460492503131e-16</span>
568<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span>     <span class="number">1</span>
569</pre>
570<p>
571      and then for <span class="emphasis"><em>W</em></span><sub>-1</sub>:
572    </p>
573<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
574<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
575<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>
576
577<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
578<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
579
580<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"-0.123"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double -1.234!</span>
581<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">z50</span><span class="special">);</span>
582<span class="identifier">cpp_bin_float_50</span> <span class="identifier">wm1_50</span><span class="special">;</span>
583<span class="identifier">wm1_50</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
584<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
585<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =\n                                                  "</span>
586  <span class="special">&lt;&lt;</span> <span class="identifier">wm1_50</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
587<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
588<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">wm1_50</span><span class="special">);</span>
589<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">wr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
590
591<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
592<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Rat/poly Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">")  =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
593<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
594<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
595<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
596
597<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
598<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"relative difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
599<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon difference from Halley step  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
600<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon for float =                    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
601<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Halley step  =     "</span> <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
602</pre>
603<p>
604      with this output:
605    </p>
606<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
607<span class="special">-</span><span class="number">3.2849102557740360179084675531714935199110302996513384</span>
608<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740362</span>
609<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span>  <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740357</span>
610<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740362</span>
611<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">4.4408920985006262e-16</span>
612<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.3519066740696092e-16</span>
613<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span> <span class="number">0.60884463935795785</span>
614<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span>                    <span class="number">2.2204460492503131e-16</span>
615<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span>     <span class="special">-</span><span class="number">1</span>
616</pre>
617<h6>
618<a name="math_toolkit.lambert_w.h9"></a>
619      <span class="phrase"><a name="math_toolkit.lambert_w.differences_distribution"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.differences_distribution">Distribution
620      of differences from 'best' <code class="computeroutput"><span class="keyword">double</span></code>
621      evaluations</a>
622    </h6>
623<p>
624      The distribution of differences from 'best' are shown in these graphs comparing
625      <code class="computeroutput"><span class="keyword">double</span></code> precision evaluations with
626      reference 'best' z50 evaluations using <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
627      type reduced to <code class="computeroutput"><span class="keyword">double</span></code> with <code class="computeroutput"><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">(</span><span class="identifier">z50</span><span class="special">)</span></code> :
628    </p>
629<div class="blockquote"><blockquote class="blockquote"><p>
630        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>
631
632      </p></blockquote></div>
633<div class="blockquote"><blockquote class="blockquote"><p>
634        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>
635
636      </p></blockquote></div>
637<p>
638      As noted in the implementation section, the distribution of these differences
639      is somewhat biased for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> and this might be reduced
640      using a <code class="computeroutput"><span class="keyword">double</span></code> Halley step at
641      small runtime cost. But if you are seriously concerned to get really precise
642      computations, the only way is using a higher precision type and then reduce
643      to the desired type. Fortunately, <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
644      makes this very easy to program, if much slower.
645    </p>
646<h5>
647<a name="math_toolkit.lambert_w.h10"></a>
648      <span class="phrase"><a name="math_toolkit.lambert_w.edge_cases"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.edge_cases">Edge
649      and Corner cases</a>
650    </h5>
651<h6>
652<a name="math_toolkit.lambert_w.h11"></a>
653      <span class="phrase"><a name="math_toolkit.lambert_w.w0_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.w0_edges">The
654      <span class="emphasis"><em>W</em></span><sub>0</sub> Branch</a>
655    </h6>
656<p>
657      The domain of <span class="emphasis"><em>W</em></span><sub>0</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, ∞). Numerically,
658    </p>
659<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
660<li class="listitem">
661          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
662        </li>
663<li class="listitem">
664          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span></code> for
665          <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span>
666          <span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code> throws
667          a <code class="computeroutput"><span class="identifier">domain_error</span></code>, or returns
668          <code class="computeroutput"><span class="identifier">NaN</span></code> according to the policy.
669        </li>
670<li class="listitem">
671          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">infinity</span><span class="special">())</span></code>
672          throws an <code class="computeroutput"><span class="identifier">overflow_error</span></code>.
673        </li>
674</ul></div>
675<p>
676      (An infinite argument probably indicates that something has already gone wrong,
677      but if it is desired to return infinity, this case should be handled before
678      calling <code class="computeroutput"><span class="identifier">lambert_w0</span></code>).
679    </p>
680<h6>
681<a name="math_toolkit.lambert_w.h12"></a>
682      <span class="phrase"><a name="math_toolkit.lambert_w.wm1_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_edges"><span class="emphasis"><em>W</em></span><sub>-1</sub> Branch</a>
683    </h6>
684<p>
685      The domain of <span class="emphasis"><em>W</em></span><sub>-1</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, 0). Numerically,
686    </p>
687<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
688<li class="listitem">
689          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
690        </li>
691<li class="listitem">
692          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="number">0</span><span class="special">)</span></code> returns
693          -∞ (or the nearest equivalent if <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">has_infinity</span>
694          <span class="special">==</span> <span class="keyword">false</span></code>).
695        </li>
696<li class="listitem">
697          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">min</span><span class="special">())</span></code>
698          returns the maximum (most negative) possible value of Lambert <span class="emphasis"><em>W</em></span>
699          for the type T. <br> For example, for <code class="computeroutput"><span class="keyword">double</span></code>:
700          lambert_wm1(-2.2250738585072014e-308) = -714.96865723796634 <br> and
701          for <code class="computeroutput"><span class="keyword">float</span></code>: lambert_wm1(-1.17549435e-38)
702          = -91.8567734 <br>
703        </li>
704<li class="listitem">
705<p class="simpara">
706          <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span>
707          <span class="special">-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">min</span><span class="special">()</span></code>, means that z is zero or denormalized
708          (if <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">has_denorm_min</span> <span class="special">==</span>
709          <span class="keyword">true</span></code>), for example: <code class="computeroutput"><span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">denorm_min</span><span class="special">());</span></code>
710          and an overflow_error exception is thrown, and will give a message like:
711        </p>
712<p class="simpara">
713          Error in function boost::math::lambert_wm1&lt;RealType&gt;(&lt;RealType&gt;):
714          Argument z = -4.9406564584124654e-324 is too small (z &lt; -std::numeric_limits&lt;T&gt;::min
715          so denormalized) for Lambert W-1 branch!
716        </p>
717</li>
718</ul></div>
719<p>
720      Denormalized values are not supported for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> (because
721      not all floating-point types denormalize), and anyway it only covers a tiny
722      fraction of the range of possible z arguments values.
723    </p>
724<h5>
725<a name="math_toolkit.lambert_w.h13"></a>
726      <span class="phrase"><a name="math_toolkit.lambert_w.compilers"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compilers">Compilers</a>
727    </h5>
728<p>
729      The <code class="computeroutput"><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span></code> code has been shown to work on most C++98
730      compilers. (Apart from requiring C++11 extensions for using of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;&gt;::</span><span class="identifier">max_digits10</span></code>
731      in some diagnostics. Many old pre-c++11 compilers provide this extension but
732      may require enabling to use, for example using b2/bjam the lambert_w examples
733      use this command:
734    </p>
735<pre class="programlisting"><span class="special">[</span> <span class="identifier">run</span> <span class="identifier">lambert_w_basic_example</span><span class="special">.</span><span class="identifier">cpp</span>  <span class="special">:</span> <span class="special">:</span> <span class="special">:</span> <span class="special">[</span> <span class="identifier">requires</span> <span class="identifier">cxx11_numeric_limits</span> <span class="special">]</span> <span class="special">]</span>
736</pre>
737<p>
738      See <a href="../../../example/Jamfile.v2" target="_top">jamfile.v2</a>.)
739    </p>
740<p>
741      For details of which compilers are expected to work see lambert_w tests and
742      examples in:<br> <a href="https://www.boost.org/development/tests/master/developer/math.html" target="_top">Boost
743      Test Summary report for master branch (used for latest release)</a><br>
744      <a href="https://www.boost.org/development/tests/develop/developer/math.html" target="_top">Boost
745      Test Summary report for latest developer branch</a>.
746    </p>
747<p>
748      As expected, debug mode is very much slower than release.
749    </p>
750<h6>
751<a name="math_toolkit.lambert_w.h14"></a>
752      <span class="phrase"><a name="math_toolkit.lambert_w.diagnostics"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diagnostics">Diagnostics
753      Macros</a>
754    </h6>
755<p>
756      Several macros are provided to output diagnostic information (potentially
757      <span class="bold"><strong>much</strong></span> output). These can be statements, for
758      example:
759    </p>
760<p>
761      <code class="computeroutput"><span class="preprocessor">#define</span> <span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
762    </p>
763<p>
764      placed <span class="bold"><strong>before</strong></span> the <code class="computeroutput"><span class="identifier">lambert_w</span></code>
765      include statement
766    </p>
767<p>
768      <code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>,
769    </p>
770<p>
771      or defined on the project compile command-line: <code class="computeroutput"><span class="special">/</span><span class="identifier">DBOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>,
772    </p>
773<p>
774      or defined in a jamfile.v2: <code class="computeroutput"><span class="special">&lt;</span><span class="identifier">define</span><span class="special">&gt;</span><span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
775    </p>
776<pre class="programlisting"><span class="comment">// #define-able macros</span>
777<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_HALLEY</span>                     <span class="comment">// Halley refinement diagnostics.</span>
778<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_PRECISION</span>                  <span class="comment">// Precision.</span>
779<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1</span>                          <span class="comment">// W1 branch diagnostics.</span>
780<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_HALLEY</span>                   <span class="comment">// Halley refinement diagnostics only for W-1 branch.</span>
781<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY</span>                     <span class="comment">// K &gt; 64, z &gt; -1.0264389699511303e-26</span>
782<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP</span>                   <span class="comment">// Show results from W-1 lookup table.</span>
783<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER</span>                  <span class="comment">// Schroeder refinement diagnostics.</span>
784<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span>                      <span class="comment">// Number of terms used for near-singularity series.</span>
785<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES</span>         <span class="comment">// Show evaluation of series near branch singularity.</span>
786<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES</span>
787<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS</span>  <span class="comment">// Show evaluation of series for small z.</span>
788</pre>
789<h5>
790<a name="math_toolkit.lambert_w.h15"></a>
791      <span class="phrase"><a name="math_toolkit.lambert_w.implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">Implementation</a>
792    </h5>
793<p>
794      There are many previous implementations, each with increasing accuracy and/or
795      speed. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">references</a>
796      below.
797    </p>
798<p>
799      For most of the range of <span class="emphasis"><em>z</em></span> arguments, some initial approximation
800      followed by a single refinement, often using Halley or similar method, gives
801      a useful precision. For speed, several implementations avoid evaluation of
802      a iteration test using the exponential function, estimating that a single refinement
803      step will suffice, but these rarely get to the best result possible. To get
804      a better precision, additional refinements, probably iterative, are needed
805      for example, using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
806      or <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.schroder">Schröder</a> methods.
807    </p>
808<p>
809      For C++, the most precise results possible, closest to the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
810      for the C++ type being used, it is usually necessary to use a higher precision
811      type for intermediate computation, finally static-casting back to the smaller
812      desired result type. This strategy is used by <a href="https://www.maplesoft.com" target="_top">Maple</a>
813      and <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, for example,
814      using arbitrary precision arithmetic, and some of their high-precision values
815      are used for testing this library. This method is also used to provide some
816      <a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>
817      values using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
818      typically, a 50 decimal digit type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
819      <code class="computeroutput"><span class="keyword">static_cast</span></code> to a <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>
820      or <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
821      type.
822    </p>
823<p>
824      For <span class="emphasis"><em>z</em></span> argument values near the singularity and near zero,
825      other approximations may be used, possibly followed by refinement or increasing
826      number of series terms until a desired precision is achieved. At extreme arguments
827      near to zero or the singularity at the branch point, even this fails and the
828      only method to achieve a really close result is to cast from a higher precision
829      type.
830    </p>
831<p>
832      In practical applications, the increased computation required (often towards
833      a thousand-fold slower and requiring much additional code for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>)
834      is not justified and the algorithms here do not implement this. But because
835      the Boost.Lambert_W algorithms has been tested using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
836      users who require this can always easily achieve the nearest representation
837      for <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
838      (built-in) types</a> - if the application justifies the very large extra
839      computation cost.
840    </p>
841<h6>
842<a name="math_toolkit.lambert_w.h16"></a>
843      <span class="phrase"><a name="math_toolkit.lambert_w.evolution_of_this_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.evolution_of_this_implementation">Evolution
844      of this implementation</a>
845    </h6>
846<p>
847      One compact real-only implementation was based on an algorithm by <a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
848      Luu, Thesis, University College London (2015)</a>, (see routine 11 on page
849      98 for his Lambert W algorithm) and his Halley refinement is used iteratively
850      when required. A first implementation was based on Thomas Luu's code posted
851      at <a href="https://svn.boost.org/trac/boost/ticket/11027" target="_top">Boost Trac #11027</a>.
852      It has been implemented from Luu's algorithm but templated on <code class="computeroutput"><span class="identifier">RealType</span></code> parameter and result and handles
853      both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
854      (built-in) types</a> (<code class="computeroutput"><span class="keyword">float</span><span class="special">,</span> <span class="keyword">double</span><span class="special">,</span>
855      <span class="keyword">long</span> <span class="keyword">double</span></code>),
856      <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
857      and also has been tested successfully with a proposed fixed_point type.
858    </p>
859<p>
860      A first approximation was computed using the method of Barry et al (see references
861      5 &amp; 6 below). This was extended to the widely used <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>
862      FORTRAN and C++ versions by John Burkardt using Schroeder refinement(s). (For
863      users only requiring an accuracy of relative accuracy of 0.02%, Barry's function
864      alone might suffice, but a better <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
865      function</a> approximation method has since been developed for this implementation).
866    </p>
867<p>
868      We also considered using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.newton">Newton-Raphson
869      iteration</a> method.
870    </p>
871<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">w</span> <span class="identifier">e</span><span class="special">^</span><span class="identifier">w</span> <span class="special">-</span><span class="identifier">z</span> <span class="special">=</span> <span class="number">0</span> <span class="comment">// Luu equation 6.37</span>
872<span class="identifier">f</span><span class="char">'(w) = e^w (1 + w), Wolfram alpha (d)/(dw)(f(w) = w exp(w) - z) = e^w (w + 1)
873if (f(w) / f'</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">-</span><span class="number">1</span> <span class="special">&lt;</span> <span class="identifier">tolerance</span>
874<span class="identifier">w1</span> <span class="special">=</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">expw0</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">w0</span> <span class="special">+</span> <span class="number">1</span><span class="special">));</span> <span class="comment">// Refine new Newton/Raphson estimate.</span>
875</pre>
876<p>
877      but concluded that since the Newton-Raphson method takes typically 6 iterations
878      to converge within tolerance, whereas Halley usually takes only 1 to 3 iterations
879      to achieve an result within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
880      in the last place (ULP)</a>, so the Newton-Raphson method is unlikely to
881      be quicker than the additional cost of computing the 2nd derivative for Halley's
882      method.
883    </p>
884<p>
885      Halley refinement uses the simplified formulae obtained from <a href="http://www.wolframalpha.com/input/?i=%5B2(z+exp(z)-w)+d%2Fdx+(z+exp(z)-w)%5D+%2F+%5B2+(d%2Fdx+(z+exp(z)-w))%5E2+-+(z+exp(z)-w)+d%5E2%2Fdx%5E2+(z+exp(z)-w)%5D" target="_top">Wolfram
886      Alpha</a>
887    </p>
888<pre class="programlisting"><span class="special">[</span><span class="number">2</span><span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span> <span class="special">/</span> <span class="special">[</span><span class="number">2</span> <span class="special">(</span><span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">))^</span><span class="number">2</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="identifier">dx</span><span class="special">^</span><span class="number">2</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span>
889</pre>
890<h5>
891<a name="math_toolkit.lambert_w.h17"></a>
892      <span class="phrase"><a name="math_toolkit.lambert_w.compact_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compact_implementation">Implementing
893      Compact Algorithms</a>
894    </h5>
895<p>
896      The most compact algorithm can probably be implemented using the log approximation
897      of Corless et al. followed by Halley iteration (but is also slowest and least
898      precise near zero and near the branch singularity).
899    </p>
900<h5>
901<a name="math_toolkit.lambert_w.h18"></a>
902      <span class="phrase"><a name="math_toolkit.lambert_w.faster_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.faster_implementation">Implementing
903      Faster Algorithms</a>
904    </h5>
905<p>
906      More recently, the Tosio Fukushima has developed an even faster algorithm,
907      avoiding any transcendental function calls as these are necessarily expensive.
908      The current implementation of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> is based on his
909      algorithm starting with a translation from Fukushima's FORTRAN into C++ by
910      Darko Veberic.
911    </p>
912<p>
913      Many applications of the Lambert W function make many repeated evaluations
914      for Monte Carlo methods; for these applications speed is very important. Luu,
915      and Chapeau-Blondeau and Monir provide typical usage examples.
916    </p>
917<p>
918      Fukushima improves the important observation that much of the execution time
919      of all previous iterative algorithms was spent evaluating transcendental functions,
920      usually <code class="computeroutput"><span class="identifier">exp</span></code>. He has put a lot
921      of work into avoiding any slow transcendental functions by using lookup tables
922      and bisection, finishing with a single Schroeder refinement, without any check
923      on the final precision of the result (necessarily evaluating an expensive exponential).
924    </p>
925<p>
926      Theoretical and practical tests confirm that Fukushima's algorithm gives Lambert
927      W estimates with a known small error bound (several <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
928      in the last place (ULP)</a>) over nearly all the range of <span class="emphasis"><em>z</em></span>
929      argument.
930    </p>
931<p>
932      A mean difference was computed to express the typical error and is often about
933      0.5 epsilon, the theoretical minimum. Using the <a href="../../../../../libs/math/doc/html/math_toolkit/next_float/float_distance.html" target="_top">Boost.Math
934      float_distance</a>, we can also express this as the number of bits that
935      are different from the nearest representable or 'exact' or 'best' value. The
936      number and distribution of these few bits differences was studied by binning,
937      including their sign. Bins for (signed) 0, 1, 2 and 3 and 4 bits proved suitable.
938    </p>
939<p>
940      However, though these give results within a few <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
941      epsilon</a> of the nearest representable result, they do not get as close
942      as is very often possible with further refinement, nearly always to within
943      one or two <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
944      epsilon</a>.
945    </p>
946<p>
947      More significantly, the evaluations of the sum of all signed differences using
948      the Fukshima algorithm show a slight bias, being more likely to be a bit or
949      few below the nearest representation than above; bias might have unwanted effects
950      on some statistical computations.
951    </p>
952<p>
953      Fukushima's method also does not cover the full range of z arguments of 'float'
954      precision and above.
955    </p>
956<p>
957      For this implementation of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>, John Maddock used
958      the Boost.Math <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
959      algorithm</a> method program to devise a <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
960      function</a> for several ranges of argument for the <span class="emphasis"><em>W</em></span><sub>0</sub> branch
961      of Lambert <span class="emphasis"><em>W</em></span> function. These minimax rational approximations
962      are combined for an algorithm that is both smaller and faster.
963    </p>
964<p>
965      Sadly it has not proved practical to use the same <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
966      algorithm</a> method for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch and so
967      the Fukushima algorithm is retained for this branch.
968    </p>
969<p>
970      An advantage of both minimax rational <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
971      algorithm</a> approximations is that the <span class="bold"><strong>distribution</strong></span>
972      from the reference values is reasonably random and insignificantly biased.
973    </p>
974<p>
975      For example, table below a test of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> 10000 values
976      of argument covering the main range of possible values, 10000 comparisons from
977      z = 0.0501 to 703, in 0.001 step factor 1.05 when module 7 == 0
978    </p>
979<div class="table">
980<a name="math_toolkit.lambert_w.lambert_w0_Fukushima"></a><p class="title"><b>Table 8.73. Fukushima Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement from
981      a single Halley step.</b></p>
982<div class="table-contents"><table class="table" summary="Fukushima Lambert W0 and typical improvement from
983      a single Halley step.">
984<colgroup>
985<col>
986<col>
987<col>
988<col>
989<col>
990<col>
991<col>
992</colgroup>
993<thead><tr>
994<th>
995              <p>
996                Method
997              </p>
998            </th>
999<th>
1000              <p>
1001                Exact
1002              </p>
1003            </th>
1004<th>
1005              <p>
1006                One_bit
1007              </p>
1008            </th>
1009<th>
1010              <p>
1011                Two_bits
1012              </p>
1013            </th>
1014<th>
1015              <p>
1016                Few_bits
1017              </p>
1018            </th>
1019<th>
1020              <p>
1021                inexact
1022              </p>
1023            </th>
1024<th>
1025              <p>
1026                bias
1027              </p>
1028            </th>
1029</tr></thead>
1030<tbody>
1031<tr>
1032<td>
1033              <p>
1034                Schroeder <span class="emphasis"><em>W</em></span><sub>0</sub>
1035              </p>
1036            </td>
1037<td>
1038              <p>
1039                8804
1040              </p>
1041            </td>
1042<td>
1043              <p>
1044                1154
1045              </p>
1046            </td>
1047<td>
1048              <p>
1049                37
1050              </p>
1051            </td>
1052<td>
1053              <p>
1054                5
1055              </p>
1056            </td>
1057<td>
1058              <p>
1059                1243
1060              </p>
1061            </td>
1062<td>
1063              <p>
1064                -1193
1065              </p>
1066            </td>
1067</tr>
1068<tr>
1069<td>
1070              <p>
1071                after Halley step
1072              </p>
1073            </td>
1074<td>
1075              <p>
1076                9710
1077              </p>
1078            </td>
1079<td>
1080              <p>
1081                288
1082              </p>
1083            </td>
1084<td>
1085              <p>
1086                2
1087              </p>
1088            </td>
1089<td>
1090              <p>
1091                0
1092              </p>
1093            </td>
1094<td>
1095              <p>
1096                292
1097              </p>
1098            </td>
1099<td>
1100              <p>
1101                22
1102              </p>
1103            </td>
1104</tr>
1105</tbody>
1106</table></div>
1107</div>
1108<br class="table-break"><p>
1109      Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> values computed using the Fukushima method with
1110      Schroeder refinement gave about 1/6 <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
1111      values that are one bit different from the 'best', and &lt; 1% that are a few
1112      bits 'wrong'. If a Halley refinement step is added, only 1 in 30 are even one
1113      bit different, and only 2 two-bits 'wrong'.
1114    </p>
1115<div class="table">
1116<a name="math_toolkit.lambert_w.lambert_w0_plus_halley"></a><p class="title"><b>Table 8.74. Rational polynomial Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement
1117      from a single Halley step.</b></p>
1118<div class="table-contents"><table class="table" summary="Rational polynomial Lambert W0 and typical improvement
1119      from a single Halley step.">
1120<colgroup>
1121<col>
1122<col>
1123<col>
1124<col>
1125<col>
1126<col>
1127<col>
1128</colgroup>
1129<thead><tr>
1130<th>
1131              <p>
1132                Method
1133              </p>
1134            </th>
1135<th>
1136              <p>
1137                Exact
1138              </p>
1139            </th>
1140<th>
1141              <p>
1142                One_bit
1143              </p>
1144            </th>
1145<th>
1146              <p>
1147                Two_bits
1148              </p>
1149            </th>
1150<th>
1151              <p>
1152                Few_bits
1153              </p>
1154            </th>
1155<th>
1156              <p>
1157                inexact
1158              </p>
1159            </th>
1160<th>
1161              <p>
1162                bias
1163              </p>
1164            </th>
1165</tr></thead>
1166<tbody>
1167<tr>
1168<td>
1169              <p>
1170                rational/polynomial
1171              </p>
1172            </td>
1173<td>
1174              <p>
1175                7135
1176              </p>
1177            </td>
1178<td>
1179              <p>
1180                2863
1181              </p>
1182            </td>
1183<td>
1184              <p>
1185                2
1186              </p>
1187            </td>
1188<td>
1189              <p>
1190                0
1191              </p>
1192            </td>
1193<td>
1194              <p>
1195                2867
1196              </p>
1197            </td>
1198<td>
1199              <p>
1200                -59
1201              </p>
1202            </td>
1203</tr>
1204<tr>
1205<td>
1206              <p>
1207                after Halley step
1208              </p>
1209            </td>
1210<td>
1211              <p>
1212                9724
1213              </p>
1214            </td>
1215<td>
1216              <p>
1217                273
1218              </p>
1219            </td>
1220<td>
1221              <p>
1222                3
1223              </p>
1224            </td>
1225<td>
1226              <p>
1227                0
1228              </p>
1229            </td>
1230<td>
1231              <p>
1232                279
1233              </p>
1234            </td>
1235<td>
1236              <p>
1237                5
1238              </p>
1239            </td>
1240</tr>
1241</tbody>
1242</table></div>
1243</div>
1244<br class="table-break"><p>
1245      With the rational polynomial approximation method, there are a third one-bit
1246      from the best and none more than two-bits. Adding a Halley step (or iteration)
1247      reduces the number that are one-bit different from about a third down to one
1248      in 30; this is unavoidable 'computational noise'. An extra Halley step would
1249      double the runtime for a tiny gain and so is not chosen for this implementation,
1250      but remains a option, as detailed above.
1251    </p>
1252<p>
1253      For the Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, the Fukushima algorithm is
1254      used.
1255    </p>
1256<div class="table">
1257<a name="math_toolkit.lambert_w.lambert_wm1_fukushima"></a><p class="title"><b>Table 8.75. Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> using Fukushima algorithm.</b></p>
1258<div class="table-contents"><table class="table" summary="Lambert W-1 using Fukushima algorithm.">
1259<colgroup>
1260<col>
1261<col>
1262<col>
1263<col>
1264<col>
1265<col>
1266<col>
1267</colgroup>
1268<thead><tr>
1269<th>
1270              <p>
1271                Method
1272              </p>
1273            </th>
1274<th>
1275              <p>
1276                Exact
1277              </p>
1278            </th>
1279<th>
1280              <p>
1281                One_bit
1282              </p>
1283            </th>
1284<th>
1285              <p>
1286                Two_bits
1287              </p>
1288            </th>
1289<th>
1290              <p>
1291                Few_bits
1292              </p>
1293            </th>
1294<th>
1295              <p>
1296                inexact
1297              </p>
1298            </th>
1299<th>
1300              <p>
1301                bias
1302              </p>
1303            </th>
1304</tr></thead>
1305<tbody>
1306<tr>
1307<td>
1308              <p>
1309                Fukushima <span class="emphasis"><em>W</em></span><sub>-1</sub>
1310              </p>
1311            </td>
1312<td>
1313              <p>
1314                7167
1315              </p>
1316            </td>
1317<td>
1318              <p>
1319                2704
1320              </p>
1321            </td>
1322<td>
1323              <p>
1324                129
1325              </p>
1326            </td>
1327<td>
1328              <p>
1329                0
1330              </p>
1331            </td>
1332<td>
1333              <p>
1334                2962
1335              </p>
1336            </td>
1337<td>
1338              <p>
1339                -160
1340              </p>
1341            </td>
1342</tr>
1343<tr>
1344<td>
1345              <p>
1346                plus Halley step
1347              </p>
1348            </td>
1349<td>
1350              <p>
1351                7379
1352              </p>
1353            </td>
1354<td>
1355              <p>
1356                2529
1357              </p>
1358            </td>
1359<td>
1360              <p>
1361                92
1362              </p>
1363            </td>
1364<td>
1365              <p>
1366                0
1367              </p>
1368            </td>
1369<td>
1370              <p>
1371                2713
1372              </p>
1373            </td>
1374<td>
1375              <p>
1376                549
1377              </p>
1378            </td>
1379</tr>
1380</tbody>
1381</table></div>
1382</div>
1383<br class="table-break"><h6>
1384<a name="math_toolkit.lambert_w.h19"></a>
1385      <span class="phrase"><a name="math_toolkit.lambert_w.lookup_tables"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lookup_tables">Lookup
1386      tables</a>
1387    </h6>
1388<p>
1389      For speed during the bisection, Fukushima's algorithm computes lookup tables
1390      of powers of e and z for integral Lambert W. There are 64 elements in these
1391      tables. The FORTRAN version (and the C++ translation by Veberic) computed these
1392      (once) as <code class="computeroutput"><span class="keyword">static</span></code> data. This is
1393      slower, may cause trouble with multithreading, and is slightly inaccurate because
1394      of rounding errors from repeated(64) multiplications.
1395    </p>
1396<p>
1397      In this implementation the array values have been computed using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1398      50 decimal digit and output as C++ arrays 37 decimal digit <code class="computeroutput"><span class="keyword">long</span>
1399      <span class="keyword">double</span></code> literals using <code class="computeroutput"><span class="identifier">max_digits10</span></code> precision
1400    </p>
1401<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_quad</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
1402</pre>
1403<p>
1404      The arrays are as <code class="computeroutput"><span class="keyword">const</span></code> and <code class="computeroutput"><span class="keyword">constexpr</span></code> and <code class="computeroutput"><span class="keyword">static</span></code>
1405      as possible (for the compiler version), using BOOST_STATIC_CONSTEXPR macro.
1406      (See <a href="../../../tools/lambert_w_lookup_table_generator.cpp" target="_top">lambert_w_lookup_table_generator.cpp</a>
1407      The precision was chosen to ensure that if used as <code class="computeroutput"><span class="keyword">long</span>
1408      <span class="keyword">double</span></code> arrays, then the values output
1409      to <a href="../../../include/boost/math/special_functions/detail/lambert_w_lookup_table.ipp" target="_top">lambert_w_lookup_table.ipp</a>
1410      will be the nearest representable value for the type chose by a <code class="computeroutput"><span class="keyword">typedef</span></code> in <a href="../../../include/boost/math/special_functions/lambert_w.hpp" target="_top">lambert_w.hpp</a>.
1411    </p>
1412<pre class="programlisting"><span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">lookup_t</span><span class="special">;</span> <span class="comment">// Type for lookup table (`double` or `float`, or even `long double`?)</span>
1413</pre>
1414<p>
1415      This is to allow for future use at higher precision, up to platforms that use
1416      128-bit (hardware or software) for their <code class="computeroutput"><span class="keyword">long</span>
1417      <span class="keyword">double</span></code> type.
1418    </p>
1419<p>
1420      The accuracy of the tables was confirmed using <a href="http://www.wolframalpha.com/" target="_top">Wolfram
1421      Alpha</a> and agrees at the 37th decimal place, so ensuring that the value
1422      is exactly read into even 128-bit <code class="computeroutput"><span class="keyword">long</span>
1423      <span class="keyword">double</span></code> to the nearest representation.
1424    </p>
1425<h6>
1426<a name="math_toolkit.lambert_w.h20"></a>
1427      <span class="phrase"><a name="math_toolkit.lambert_w.higher_precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.higher_precision">Higher
1428      precision</a>
1429    </h6>
1430<p>
1431      For types more precise than <code class="computeroutput"><span class="keyword">double</span></code>,
1432      Fukushima reported that it was best to use the <code class="computeroutput"><span class="keyword">double</span></code>
1433      estimate as a starting point, followed by refinement using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
1434      iterations or other methods; our experience confirms this.
1435    </p>
1436<p>
1437      Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1438      it is simple to compute very high precision values of Lambert W at least to
1439      thousands of decimal digits over most of the range of z arguments.
1440    </p>
1441<p>
1442      For this reason, the lookup tables and bisection are only carried out at low
1443      precision, usually <code class="computeroutput"><span class="keyword">double</span></code>, chosen
1444      by the <code class="computeroutput"><span class="keyword">typedef</span> <span class="keyword">double</span>
1445      <span class="identifier">lookup_t</span></code>. Unlike the FORTRAN version,
1446      the lookup tables of Lambert_W of integral values are precomputed as C++ static
1447      arrays of floating-point literals. The default is a <code class="computeroutput"><span class="keyword">typedef</span></code>
1448      setting the type to <code class="computeroutput"><span class="keyword">double</span></code>. To
1449      allow users to vary the precision from <code class="computeroutput"><span class="keyword">float</span></code>
1450      to <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
1451      these are computed to 128-bit precision to ensure that even platforms with
1452      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
1453      do not lose precision.
1454    </p>
1455<p>
1456      The FORTRAN version and translation only permits the z argument to be the largest
1457      items in these lookup arrays, <code class="computeroutput"><span class="identifier">wm0s</span><span class="special">[</span><span class="number">64</span><span class="special">]</span>
1458      <span class="special">=</span> <span class="number">3.99049</span></code>,
1459      producing an error message and returning <code class="computeroutput"><span class="identifier">NaN</span></code>.
1460      So 64 is the largest possible value ever returned from the <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
1461      function. This is far from the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;&gt;::</span><span class="identifier">max</span><span class="special">()</span></code> for even <code class="computeroutput"><span class="keyword">float</span></code>s.
1462      Therefore this implementation uses an approximation or 'guess' and Halley's
1463      method to refine the result. Logarithmic approximation is discussed at length
1464      by R.M.Corless et al. (page 349). Here we use the first two terms of equation
1465      4.19:
1466    </p>
1467<pre class="programlisting"><span class="identifier">T</span> <span class="identifier">lz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
1468<span class="identifier">T</span> <span class="identifier">llz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">lz</span><span class="special">);</span>
1469<span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">lz</span> <span class="special">-</span> <span class="identifier">llz</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">llz</span> <span class="special">/</span> <span class="identifier">lz</span><span class="special">);</span>
1470</pre>
1471<p>
1472      This gives a useful precision suitable for Halley refinement.
1473    </p>
1474<p>
1475      Similarly, for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, tiny values very near
1476      zero, W &gt; 64 cannot be computed using the lookup table. For this region,
1477      an approximation followed by a few (usually 3) Halley refinements. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">wm1_near_zero</a>.
1478    </p>
1479<p>
1480      For the less well-behaved regions for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> <span class="emphasis"><em>z</em></span>
1481      arguments near zero, and near the branch singularity at <span class="emphasis"><em>-1/e</em></span>,
1482      some series functions are used.
1483    </p>
1484<h6>
1485<a name="math_toolkit.lambert_w.h21"></a>
1486      <span class="phrase"><a name="math_toolkit.lambert_w.small_z"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_z">Small
1487      values of argument z near zero</a>
1488    </h6>
1489<p>
1490      When argument <span class="emphasis"><em>z</em></span> is small and near zero, there is an efficient
1491      and accurate series evaluation method available (implemented in <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>). There is no equivalent
1492      for the <span class="emphasis"><em>W</em></span><sub>-1</sub> branch as this only covers argument <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span> <span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code>.
1493      The cutoff used <code class="computeroutput"><span class="identifier">abs</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;</span>
1494      <span class="number">0.05</span></code> is as found by trial and error by
1495      Fukushima.
1496    </p>
1497<p>
1498      Coefficients of the inverted series expansion of the Lambert W function around
1499      <code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
1500      <span class="number">0</span></code> are computed following Fukushima using
1501      17 terms of a Taylor series computed using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
1502      Mathematica</a> with
1503    </p>
1504<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">17</span><span class="special">}]]</span>
1505</pre>
1506<p>
1507      See Tosio Fukushima, Journal of Computational and Applied Mathematics 244 (2013),
1508      page 86.
1509    </p>
1510<p>
1511      To provide higher precision constants (34 decimal digits) for types larger
1512      than <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>,
1513    </p>
1514<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">34</span><span class="special">}]]</span>
1515</pre>
1516<p>
1517      were also computed, but for current hardware it was found that evaluating a
1518      <code class="computeroutput"><span class="keyword">double</span></code> precision and then refining
1519      with Halley's method was quicker and more accurate.
1520    </p>
1521<p>
1522      Decimal values of specifications for built-in floating-point types below are
1523      21 digits precision == <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span>
1524      <span class="keyword">double</span></code>.
1525    </p>
1526<p>
1527      Specializations for <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>
1528      are provided for <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
1529      <span class="keyword">double</span></code>, <code class="computeroutput"><span class="identifier">float128</span></code>
1530      and for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1531      types.
1532    </p>
1533<p>
1534      The <code class="computeroutput"><span class="identifier">tag_type</span></code> selection is based
1535      on the value <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code>
1536      (and <span class="bold"><strong>not</strong></span> on the floating-point type T). This
1537      distinguishes between <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
1538      types that commonly vary between 64 and 80-bits, and also compilers that have
1539      a <code class="computeroutput"><span class="keyword">float</span></code> type using 64 bits and/or
1540      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
1541      using 128-bits.
1542    </p>
1543<p>
1544      As noted in the <a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">implementation</a>
1545      section above, it is only possible to ensure the nearest representable value
1546      by casting from a higher precision type, computed at very, very much greater
1547      cost.
1548    </p>
1549<p>
1550      For multiprecision types, first several terms of the series are tabulated and
1551      evaluated as a polynomial: (this will save us a bunch of expensive calls to
1552      <code class="computeroutput"><span class="identifier">pow</span></code>). Then our series functor
1553      is initialized "as if" it had already reached term 18, enough evaluation
1554      of built-in 64-bit double and float (and 80-bit <code class="computeroutput"><span class="keyword">long</span>
1555      <span class="keyword">double</span></code>) types. Finally the functor is
1556      called repeatedly to compute as many additional series terms as necessary to
1557      achieve the desired precision, set from <code class="computeroutput"><span class="identifier">get_epsilon</span></code>
1558      (or terminated by <code class="computeroutput"><span class="identifier">evaluation_error</span></code>
1559      on reaching the set iteration limit <code class="computeroutput"><span class="identifier">max_series_iterations</span></code>).
1560    </p>
1561<p>
1562      A little more than one decimal digit of precision is gained by each additional
1563      series term. This allows computation of Lambert W near zero to at least 1000
1564      decimal digit precision, given sufficient compute time.
1565    </p>
1566<h5>
1567<a name="math_toolkit.lambert_w.h22"></a>
1568      <span class="phrase"><a name="math_toolkit.lambert_w.near_singularity"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.near_singularity">Argument
1569      z near the singularity at -1/e between branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
1570      <span class="emphasis"><em>W</em></span><sub>-1</sub> </a>
1571    </h5>
1572<p>
1573      Variants of Function <code class="computeroutput"><span class="identifier">lambert_w_singularity_series</span></code>
1574      are used to handle <span class="emphasis"><em>z</em></span> arguments which are near to the singularity
1575      at <code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
1576      <span class="special">-</span><span class="identifier">exp</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
1577      <span class="special">=</span> <span class="special">-</span><span class="number">3.6787944</span></code> where the branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
1578      <span class="emphasis"><em>W</em></span><sub>-1</sub> join.
1579    </p>
1580<p>
1581      T. Fukushima / Journal of Computational and Applied Mathematics 244 (2013)
1582      77-89 describes using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
1583      Mathematica</a>
1584    </p>
1585<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span><span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span> <span class="number">20</span><span class="special">}\]\]</span>
1586</pre>
1587<p>
1588      to provide his Table 3, page 85.
1589    </p>
1590<p>
1591      This implementation used <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
1592      Mathematica</a> to obtain 40 series terms at 50 decimal digit precision
1593    </p>
1594<pre class="programlisting"><span class="identifier">N</span><span class="special">\[</span><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">Sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span> <span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span><span class="number">40</span> <span class="special">}\]\],</span> <span class="number">50</span><span class="special">\]</span>
1595
1596<span class="special">-</span><span class="number">1</span><span class="special">+</span><span class="identifier">p</span><span class="special">-</span><span class="identifier">p</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="number">3</span><span class="special">+(</span><span class="number">11</span> <span class="identifier">p</span><span class="special">^</span><span class="number">3</span><span class="special">)/</span><span class="number">72</span><span class="special">-(</span><span class="number">43</span> <span class="identifier">p</span><span class="special">^</span><span class="number">4</span><span class="special">)/</span><span class="number">540</span><span class="special">+(</span><span class="number">769</span> <span class="identifier">p</span><span class="special">^</span><span class="number">5</span><span class="special">)/</span><span class="number">17280</span><span class="special">-(</span><span class="number">221</span> <span class="identifier">p</span><span class="special">^</span><span class="number">6</span><span class="special">)/</span><span class="number">8505</span><span class="special">+(</span><span class="number">680863</span> <span class="identifier">p</span><span class="special">^</span><span class="number">7</span><span class="special">)/</span><span class="number">43545600</span> <span class="special">...</span>
1597</pre>
1598<p>
1599      These constants are computed at compile time for the full precision for any
1600      <code class="computeroutput"><span class="identifier">RealType</span> <span class="identifier">T</span></code>
1601      using the original rationals from Fukushima Table 3.
1602    </p>
1603<p>
1604      Longer decimal digits strings are rationals pre-evaluated using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
1605      Mathematica</a>. Some integer constants overflow, so largest size available
1606      is used, suffixed by <code class="computeroutput"><span class="identifier">uLL</span></code>.
1607    </p>
1608<p>
1609      Above the 14th term, the rationals exceed the range of <code class="computeroutput"><span class="keyword">unsigned</span>
1610      <span class="keyword">long</span> <span class="keyword">long</span></code>
1611      and are replaced by pre-computed decimal values at least 21 digits precision
1612      == <code class="computeroutput"><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>.
1613    </p>
1614<p>
1615      A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
1616      (defined in <a href="../../../test/test_value.hpp" target="_top">test_value.hpp</a>)
1617      taking a decimal floating-point literal was used to allow testing with both
1618      built-in floating-point types like <code class="computeroutput"><span class="keyword">double</span></code>
1619      which have constructors taking literal decimal values like <code class="computeroutput"><span class="number">3.14</span></code>,
1620      <span class="bold"><strong>and</strong></span> also multiprecision and other User-defined
1621      Types that only provide full-precision construction from decimal digit strings
1622      like <code class="computeroutput"><span class="string">"3.14"</span></code>. (Construction
1623      of multiprecision types from built-in floating-point types only provides the
1624      precision of the built-in type, like <code class="computeroutput"><span class="keyword">double</span></code>,
1625      only 17 decimal digits).
1626    </p>
1627<div class="tip"><table border="0" summary="Tip">
1628<tr>
1629<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
1630<th align="left">Tip</th>
1631</tr>
1632<tr><td align="left" valign="top"><p>
1633        Be exceeding careful not to silently lose precision by constructing multiprecision
1634        types from literal decimal types, usually <code class="literal">double</code>. Use
1635        decimal digit strings like "3.1459" instead. See examples.
1636      </p></td></tr>
1637</table></div>
1638<p>
1639      Fukushima's implementation used 20 series terms; it was confirmed that using
1640      more terms does not usefully increase accuracy.
1641    </p>
1642<h6>
1643<a name="math_toolkit.lambert_w.h23"></a>
1644      <span class="phrase"><a name="math_toolkit.lambert_w.wm1_near_zero"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">Lambert
1645      <span class="emphasis"><em>W</em></span><sub>-1</sub> arguments values very near zero.</a>
1646    </h6>
1647<p>
1648      The lookup tables of Fukushima have only 64 elements, so that the z argument
1649      nearest zero is -1.0264389699511303e-26, that corresponds to a maximum Lambert
1650      <span class="emphasis"><em>W</em></span><sub>-1</sub> value of 64.0. Fukushima's implementation did not cater
1651      for z argument values that are smaller (nearer to zero), but this implementation
1652      adds code to accept smaller (but not denormalised) values of z. A crude approximation
1653      for these very small values is to take the exponent and multiply by ln[10]
1654      ~= 2.3. We also tried the approximation first proposed by Corless et al. using
1655      ln(-z), (equation 4.19 page 349) and then tried improving by a 2nd term -ln(ln(-z)),
1656      and finally the ratio term -ln(ln(-z))/ln(-z).
1657    </p>
1658<p>
1659      For a z very close to z = -1.0264389699511303e-26 when W = 64, when effect
1660      of ln(ln(-z) term, and ratio L1/L2 is greatest, the possible 'guesses' are
1661    </p>
1662<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.e-26</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.02</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.0277</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">59.8672</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">4.0921</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0684</span>
1663</pre>
1664<p>
1665      whereas at the minimum (unnormalized) z
1666    </p>
1667<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">2.2250e-308</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9687</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">708.3964</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">6.5630</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0092</span>
1668</pre>
1669<p>
1670      Although the addition of the 3rd ratio term did not reduce the number of Halley
1671      iterations needed, it might allow return of a better low precision estimate
1672      <span class="bold"><strong>without any Halley iterations</strong></span>. For the worst
1673      case near w = 64, the error in the 'guess' is 0.008, ratio 0.0001 or 1 in 10,000
1674      digits 10 ~= 4. Two log evaluations are still needed, but is probably over
1675      an order of magnitude faster.
1676    </p>
1677<p>
1678      Halley's method was then used to refine the estimate of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> from
1679      this guess. Experiments showed that although all approximations reached with
1680      <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit in the
1681      last place (ULP)</a> of the closest representable value, the computational
1682      cost of the log functions was easily paid by far fewer iterations (typically
1683      from 8 down to 4 iterations for double or float).
1684    </p>
1685<h6>
1686<a name="math_toolkit.lambert_w.h24"></a>
1687      <span class="phrase"><a name="math_toolkit.lambert_w.halley"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.halley">Halley
1688      refinement</a>
1689    </h6>
1690<p>
1691      After obtaining a double approximation, for <code class="computeroutput"><span class="keyword">double</span></code>,
1692      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
1693      and <code class="computeroutput"><span class="identifier">quad</span></code> 128-bit precision,
1694      a single iteration should suffice because Halley iteration should triple the
1695      precision with each step (as long as the function is well behaved - and it
1696      is), and since we have at least half of the bits correct already, one Halley
1697      step is ample to get to 128-bit precision.
1698    </p>
1699<h6>
1700<a name="math_toolkit.lambert_w.h25"></a>
1701      <span class="phrase"><a name="math_toolkit.lambert_w.lambert_w_derivatives"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lambert_w_derivatives">Lambert
1702      W Derivatives</a>
1703    </h6>
1704<p>
1705      The derivatives are computed using the formulae in <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Derivative" target="_top">Wikipedia</a>.
1706    </p>
1707<h5>
1708<a name="math_toolkit.lambert_w.h26"></a>
1709      <span class="phrase"><a name="math_toolkit.lambert_w.testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.testing">Testing</a>
1710    </h5>
1711<p>
1712      Initial testing of the algorithm was done using a small number of spot tests.
1713    </p>
1714<p>
1715      After it was established that the underlying algorithm (including unlimited
1716      Halley refinements with a tight terminating criterion) was correct, some tables
1717      of Lambert W values were computed using a 100 decimal digit precision <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1718      <code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> type and
1719      saved as a C++ program that will initialise arrays of values of z arguments
1720      and lambert_W0 (<code class="computeroutput"><span class="identifier">lambert_w_mp_high_values</span><span class="special">.</span><span class="identifier">ipp</span></code> and
1721      <code class="computeroutput"><span class="identifier">lambert_w_mp_low_values</span><span class="special">.</span><span class="identifier">ipp</span></code> ).
1722    </p>
1723<p>
1724      (A few of these pairs were checked against values computed by Wolfram Alpha
1725      to try to guard against mistakes; all those tested agreed to the penultimate
1726      decimal place, so they can be considered reliable to at least 98 decimal digits
1727      precision).
1728    </p>
1729<p>
1730      A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
1731      was used to allow tests with any real type, both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
1732      (built-in) types</a> and <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
1733      (This is necessary because <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
1734      (built-in) types</a> have a constructor from floating-point literals like
1735      3.1459F, 3.1459 or 3.1459L whereas <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1736      types may lose precision unless constructed from decimal digits strings like
1737      "3.1459").
1738    </p>
1739<p>
1740      The 100-decimal digits precision pairs were then used to assess the precision
1741      of less-precise types, including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1742      <code class="computeroutput"><span class="identifier">cpp_bin_float_quad</span></code> and <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>. <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
1743      from the high precision types should give the closest representable value of
1744      the less-precise type; this is then be used to assess the precision of the
1745      Lambert W algorithm.
1746    </p>
1747<p>
1748      Tests using confirm that over nearly all the range of z arguments, nearly all
1749      estimates are the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
1750      value, a minority are within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
1751      in the last place (ULP)</a> and only a very few 2 ULP.
1752    </p>
1753<div class="blockquote"><blockquote class="blockquote"><p>
1754        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>
1755
1756      </p></blockquote></div>
1757<div class="blockquote"><blockquote class="blockquote"><p>
1758        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>
1759
1760      </p></blockquote></div>
1761<p>
1762      For the range of z arguments over the range -0.35 to 0.5, a different algorithm
1763      is used, but the same technique of evaluating reference values using a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1764      <code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> was used.
1765      For extremely small z arguments, near zero, and those extremely near the singularity
1766      at the branch point, precision can be much lower, as might be expected.
1767    </p>
1768<p>
1769      See source at: <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
1770      <a href="../../../test/test_lambert_w.cpp" target="_top">test_lambert_w.cpp</a> contains
1771      routine tests using <a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>.
1772      <a href="../../../tools/lambert_w_errors_graph.cpp" target="_top">lambert_w_errors_graph.cpp</a>
1773      generating error graphs.
1774    </p>
1775<h6>
1776<a name="math_toolkit.lambert_w.h27"></a>
1777      <span class="phrase"><a name="math_toolkit.lambert_w.quadrature_testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.quadrature_testing">Testing
1778      with quadrature</a>
1779    </h6>
1780<p>
1781      A further method of testing over a wide range of argument z values was devised
1782      by Nick Thompson (cunningly also to test the recently written quadrature routines
1783      including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
1784      !). These are definite integral formulas involving the W function that are
1785      exactly known constants, for example, LambertW0(1/(z²) == √(2π), see <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals" target="_top">Definite
1786      Integrals</a>. Some care was needed to avoid overflow and underflow as
1787      the integral function must evaluate to a finite result over the entire range.
1788    </p>
1789<h6>
1790<a name="math_toolkit.lambert_w.h28"></a>
1791      <span class="phrase"><a name="math_toolkit.lambert_w.other_implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.other_implementations">Other
1792      implementations</a>
1793    </h6>
1794<p>
1795      The Lambert W has also been discussed in a <a href="http://lists.boost.org/Archives/boost/2016/09/230819.php" target="_top">Boost
1796      thread</a>.
1797    </p>
1798<p>
1799      This also gives link to a prototype version by which also gives complex results
1800      <code class="literal">(x &lt; -exp(-1)</code>, about -0.367879). <a href="https://github.com/CzB404/lambert_w/" target="_top">Balazs
1801      Cziraki 2016</a> Physicist, PhD student at Eotvos Lorand University, ELTE
1802      TTK Institute of Physics, Budapest. has also produced a prototype C++ library
1803      that can compute the Lambert W function for floating point <span class="bold"><strong>and
1804      complex number types</strong></span>. This is not implemented here but might be
1805      completed in the future.
1806    </p>
1807<h5>
1808<a name="math_toolkit.lambert_w.h29"></a>
1809      <span class="phrase"><a name="math_toolkit.lambert_w.acknowledgements"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.acknowledgements">Acknowledgements</a>
1810    </h5>
1811<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1812<li class="listitem">
1813          Thanks to Wolfram for use of their invaluable online Wolfram Alpha service.
1814        </li>
1815<li class="listitem">
1816          Thanks for Mark Chapman for performing offline Wolfram computations.
1817        </li>
1818</ul></div>
1819<h5>
1820<a name="math_toolkit.lambert_w.h30"></a>
1821      <span class="phrase"><a name="math_toolkit.lambert_w.references"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">References</a>
1822    </h5>
1823<div class="orderedlist"><ol class="orderedlist" type="1">
1824<li class="listitem">
1825          NIST Digital Library of Mathematical Functions. <a href="http://dlmf.nist.gov/4.13.F1" target="_top">http://dlmf.nist.gov/4.13.F1</a>.
1826        </li>
1827<li class="listitem">
1828          <a href="http://www.orcca.on.ca/LambertW/" target="_top">Lambert W Poster</a>,
1829          R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffery and D. E. Knuth,
1830          On the Lambert W function Advances in Computational Mathematics, Vol 5,
1831          (1996) pp 329-359.
1832        </li>
1833<li class="listitem">
1834          <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>,
1835          Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, Algorithm 743: WAPR
1836          - A Fortran routine for calculating real values of the W-function,<br>
1837          ACM Transactions on Mathematical Software, Volume 21, Number 2, June 1995,
1838          pages 172-181.<br> BISECT approximates the W function using bisection
1839          (GNU licence). Original FORTRAN77 version by Andrew Barry, S. J. Barry,
1840          Patricia Culligan-Hensley, this version by C++ version by John Burkardt.
1841        </li>
1842<li class="listitem">
1843          <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms743/toms743.html" target="_top">TOMS743</a>
1844          Fortran 90 (updated 2014).
1845        </li>
1846</ol></div>
1847<p>
1848      Initial guesses based on:
1849    </p>
1850<div class="orderedlist"><ol class="orderedlist" type="1">
1851<li class="listitem">
1852          R.M.Corless, G.H.Gonnet, D.E.G.Hare, D.J.Jeffrey, and D.E.Knuth, On the
1853          Lambert W function, Adv.Comput.Math., vol. 5, pp. 329 to 359, (1996).
1854        </li>
1855<li class="listitem">
1856          D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
1857          Stagnitti. Analytical approximations for real values of the Lambert W-function.
1858          Mathematics and Computers in Simulation, 53(1), 95-103 (2000).
1859        </li>
1860<li class="listitem">
1861          D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
1862          Stagnitti. Erratum to analytical approximations for real values of the
1863          Lambert W-function. Mathematics and Computers in Simulation, 59(6):543-543,
1864          2002.
1865        </li>
1866<li class="listitem">
1867          C++ <a href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-cplusplus-language-support" target="_top">CUDA
1868          NVidia GPU C/C++ language support</a> version of Luu algorithm, <a href="https://github.com/thomasluu/plog/blob/master/plog.cu" target="_top">plog</a>.
1869        </li>
1870<li class="listitem">
1871          <a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
1872          Luu, Thesis, University College London (2015)</a>, see routine 11,
1873          page 98 for Lambert W algorithm.
1874        </li>
1875<li class="listitem">
1876          Having Fun with Lambert W(x) Function, Darko Veberic University of Nova
1877          Gorica, Slovenia IK, Forschungszentrum Karlsruhe, Germany, J. Stefan Institute,
1878          Ljubljana, Slovenia.
1879        </li>
1880<li class="listitem">
1881          François Chapeau-Blondeau and Abdelilah Monir, Numerical Evaluation of the
1882          Lambert W Function and Application to Generation of Generalized Gaussian
1883          Noise With Exponent 1/2, IEEE Transactions on Signal Processing, 50(9)
1884          (2002) 2160 - 2165.
1885        </li>
1886<li class="listitem">
1887          Toshio Fukushima, Precise and fast computation of Lambert W-functions without
1888          transcendental function evaluations, Journal of Computational and Applied
1889          Mathematics, 244 (2013) 77-89.
1890        </li>
1891<li class="listitem">
1892          T.C. Banwell and A. Jayakumar, Electronic Letter, Feb 2000, 36(4), pages
1893          291-2. Exact analytical solution for current flow through diode with series
1894          resistance. <a href="https://doi.org/10.1049/el:20000301" target="_top">https://doi.org/10.1049/el:20000301</a>
1895        </li>
1896<li class="listitem">
1897          Princeton Companion to Applied Mathematics, 'The Lambert-W function', Section
1898          1.3: Series and Generating Functions.
1899        </li>
1900<li class="listitem">
1901          Cleve Moler, Mathworks blog <a href="https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/#bfba4e2d-e049-45a6-8285-fe8b51d69ce7" target="_top">The
1902          Lambert W Function</a>
1903        </li>
1904<li class="listitem">
1905          Digital Library of Mathematical Function, <a href="https://dlmf.nist.gov/4.13" target="_top">Lambert
1906          W function</a>.
1907        </li>
1908</ol></div>
1909</div>
1910<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
1911<td align="left"></td>
1912<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
1913      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
1914      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
1915      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
1916      Daryle Walker and Xiaogang Zhang<p>
1917        Distributed under the Boost Software License, Version 1.0. (See accompanying
1918        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
1919      </p>
1920</div></td>
1921</tr></table>
1922<hr>
1923<div class="spirit-nav">
1924<a accesskey="p" href="jacobi/jacobi_sn.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
1925</div>
1926</body>
1927</html>
1928