• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[/
2  Copyright 2018 Nick Thompson
3
4  Distributed under the Boost Software License, Version 1.0.
5  (See accompanying file LICENSE_1_0.txt or copy at
6  http://www.boost.org/LICENSE_1_0.txt).
7]
8
9[section:bivariate_statistics Bivariate Statistics]
10
11[heading Synopsis]
12
13``
14#include <boost/math/statistics/bivariate_statistics.hpp>
15
16namespace boost{ namespace math{ namespace statistics {
17
18    template<class Container>
19    auto covariance(Container const & u, Container const & v);
20
21    template<class Container>
22    auto means_and_covariance(Container const & u, Container const & v);
23
24    template<class Container>
25    auto correlation_coefficient(Container const & u, Container const & v);
26
27}}}
28``
29
30[heading Description]
31
32This file provides functions for computing bivariate statistics.
33
34[heading Covariance]
35
36Computes the population covariance of two datasets:
37
38    std::vector<double> u{1,2,3,4,5};
39    std::vector<double> v{1,2,3,4,5};
40    double cov_uv = boost::math::statistics::covariance(u, v);
41
42The implementation follows [@https://doi.org/10.1109/CLUSTR.2009.5289161 Bennet et al].
43The data is not modified. Requires a random-access container.
44Works with real-valued inputs and does not work with complex-valued inputs.
45
46The algorithm used herein simultaneously generates the mean values of the input data /u/ and /v/.
47For certain applications, it might be useful to get them in a single pass through the data.
48As such, we provide `means_and_covariance`:
49
50    std::vector<double> u{1,2,3,4,5};
51    std::vector<double> v{1,2,3,4,5};
52    auto [mu_u, mu_v, cov_uv] = boost::math::statistics::means_and_covariance(u, v);
53
54[heading Correlation Coefficient]
55
56Computes the [@https://en.wikipedia.org/wiki/Pearson_correlation_coefficient Pearson correlation coefficient] of two datasets /u/ and /v/:
57
58    std::vector<double> u{1,2,3,4,5};
59    std::vector<double> v{1,2,3,4,5};
60    double rho_uv = boost::math::statistics::correlation_coefficient(u, v);
61    // rho_uv = 1.
62
63The data must be random access and cannot be complex.
64
65If one or both of the datasets is constant, the correlation coefficient is an indeterminant form (0/0) and definitions must be introduced to assign it a value.
66We use the following: If both datasets are constant, then the correlation coefficient is 1.
67If one dataset is constant, and the other is not, then the correlation coefficient is zero.
68
69
70[heading References]
71
72* Bennett, Janine, et al. ['Numerically stable, single-pass, parallel statistics algorithms.] Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International Conference on. IEEE, 2009.
73
74[endsect]
75[/section:bivariate_statistics Bivariate Statistics]
76