• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4<title>Special Function and Distribution Performance Report</title>
5<link rel="stylesheet" href="boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="index.html" title="Special Function and Distribution Performance Report">
8</head>
9<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
10<table cellpadding="2" width="100%"><tr>
11<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
12<td align="center"><a href="../../../../../index.html">Home</a></td>
13<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
14<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
15<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
16<td align="center"><a href="../../../../../more/index.htm">More</a></td>
17</tr></table>
18<hr>
19<div class="spirit-nav"></div>
20<div class="article">
21<div class="titlepage">
22<div>
23<div><h2 class="title">
24<a name="special_function_and_distributio"></a>Special Function and Distribution Performance Report</h2></div>
25<div><div class="legalnotice">
26<a name="special_function_and_distributio.legal"></a><p>
27        Distributed under the Boost Software License, Version 1.0. (See accompanying
28        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
29      </p>
30</div></div>
31</div>
32<hr>
33</div>
34<div class="toc">
35<p><b>Table of Contents</b></p>
36<dl class="toc">
37<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64">Compiler
38    Comparison on Windows x64</a></span></dt>
39<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64">Compiler
40    Option Comparison on Windows x64</a></span></dt>
41<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64">Distribution
42    performance comparison for different performance options with GNU C++ version
43    9.2.0 on Windows x64</a></span></dt>
44<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Distribution
45    performance comparison for different performance options with Microsoft Visual
46    C++ version 14.2 on Windows x64</a></span></dt>
47<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Distribution
48    performance comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt>
49<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Distribution
50    performance comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt>
51<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Library
52    Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt>
53<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Library
54    Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt>
55<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_">Polynomial
56    Arithmetic (GNU C++ version 9.2.0, Windows x64)</a></span></dt>
57<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_">Polynomial
58    Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</a></span></dt>
59<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Polynomial
60    Method Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt>
61<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Polynomial
62    Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt>
63<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Rational
64    Method Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt>
65<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Rational
66    Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt>
67<dt><span class="section"><a href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64">gcd
68    method comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt>
69<dt><span class="section"><a href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">gcd
70    method comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt>
71</dl>
72</div>
73<div class="section">
74<div class="titlepage"><div><div><h2 class="title" style="clear: both">
75<a name="special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64" title="Compiler Comparison on Windows x64">Compiler
76    Comparison on Windows x64</a>
77</h2></div></div></div>
78<div class="table">
79<a name="special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64.table_Compiler_Comparison_on_Windows_x64"></a><p class="title"><b>Table&#160;1.&#160;Compiler Comparison on Windows x64</b></p>
80<div class="table-contents"><table class="table" summary="Compiler Comparison on Windows x64">
81<colgroup>
82<col>
83<col>
84<col>
85<col>
86</colgroup>
87<thead><tr>
88<th>
89              <p>
90                Function
91              </p>
92            </th>
93<th>
94              <p>
95                Microsoft Visual C++ version 14.2<br> boost 1.73
96              </p>
97            </th>
98<th>
99              <p>
100                GNU C++ version 9.2.0<br> boost 1.73
101              </p>
102            </th>
103<th>
104              <p>
105                GNU C++ version 9.2.0<br> boost 1.73<br> promote_double&lt;false&gt;
106              </p>
107            </th>
108</tr></thead>
109<tbody>
110<tr>
111<td>
112              <p>
113                assoc_laguerre
114              </p>
115            </td>
116<td>
117              <p>
118                <span class="blue">1.41<br> (179ns)</span>
119              </p>
120            </td>
121<td>
122              <p>
123                <span class="green">1.08<br> (137ns)</span>
124              </p>
125            </td>
126<td>
127              <p>
128                <span class="green">1.00<br> (127ns)</span>
129              </p>
130            </td>
131</tr>
132<tr>
133<td>
134              <p>
135                assoc_legendre
136              </p>
137            </td>
138<td>
139              <p>
140                <span class="blue">1.76<br> (248ns)</span>
141              </p>
142            </td>
143<td>
144              <p>
145                <span class="blue">1.36<br> (192ns)</span>
146              </p>
147            </td>
148<td>
149              <p>
150                <span class="green">1.00<br> (141ns)</span>
151              </p>
152            </td>
153</tr>
154<tr>
155<td>
156              <p>
157                beta
158              </p>
159            </td>
160<td>
161              <p>
162                <span class="green">1.00<br> (123ns)</span>
163              </p>
164            </td>
165<td>
166              <p>
167                <span class="red">2.62<br> (322ns)</span>
168              </p>
169            </td>
170<td>
171              <p>
172                <span class="blue">1.93<br> (237ns)</span>
173              </p>
174            </td>
175</tr>
176<tr>
177<td>
178              <p>
179                beta (incomplete)
180              </p>
181            </td>
182<td>
183              <p>
184                <span class="green">1.00<br> (470ns)</span>
185              </p>
186            </td>
187<td>
188              <p>
189                <span class="red">2.95<br> (1385ns)</span>
190              </p>
191            </td>
192<td>
193              <p>
194                <span class="blue">1.58<br> (741ns)</span>
195              </p>
196            </td>
197</tr>
198<tr>
199<td>
200              <p>
201                cbrt
202              </p>
203            </td>
204<td>
205              <p>
206                <span class="red">3.40<br> (51ns)</span>
207              </p>
208            </td>
209<td>
210              <p>
211                <span class="red">4.67<br> (70ns)</span>
212              </p>
213            </td>
214<td>
215              <p>
216                <span class="green">1.00<br> (15ns)</span>
217              </p>
218            </td>
219</tr>
220<tr>
221<td>
222              <p>
223                cyl_bessel_i
224              </p>
225            </td>
226<td>
227              <p>
228                <span class="green">1.00<br> (281ns)</span>
229              </p>
230            </td>
231<td>
232              <p>
233                <span class="red">3.38<br> (949ns)</span>
234              </p>
235            </td>
236<td>
237              <p>
238                <span class="blue">1.38<br> (387ns)</span>
239              </p>
240            </td>
241</tr>
242<tr>
243<td>
244              <p>
245                cyl_bessel_i (integer order)
246              </p>
247            </td>
248<td>
249              <p>
250                <span class="green">1.00<br> (195ns)</span>
251              </p>
252            </td>
253<td>
254              <p>
255                <span class="red">3.06<br> (597ns)</span>
256              </p>
257            </td>
258<td>
259              <p>
260                <span class="green">1.00<br> (195ns)</span>
261              </p>
262            </td>
263</tr>
264<tr>
265<td>
266              <p>
267                cyl_bessel_j
268              </p>
269            </td>
270<td>
271              <p>
272                <span class="green">1.00<br> (371ns)</span>
273              </p>
274            </td>
275<td>
276              <p>
277                <span class="red">2.39<br> (886ns)</span>
278              </p>
279            </td>
280<td>
281              <p>
282                <span class="blue">1.35<br> (499ns)</span>
283              </p>
284            </td>
285</tr>
286<tr>
287<td>
288              <p>
289                cyl_bessel_j (integer order)
290              </p>
291            </td>
292<td>
293              <p>
294                <span class="blue">1.28<br> (123ns)</span>
295              </p>
296            </td>
297<td>
298              <p>
299                <span class="blue">1.92<br> (184ns)</span>
300              </p>
301            </td>
302<td>
303              <p>
304                <span class="green">1.00<br> (96ns)</span>
305              </p>
306            </td>
307</tr>
308<tr>
309<td>
310              <p>
311                cyl_bessel_k
312              </p>
313            </td>
314<td>
315              <p>
316                <span class="green">1.11<br> (385ns)</span>
317              </p>
318            </td>
319<td>
320              <p>
321                <span class="red">19.68<br> (6847ns)</span>
322              </p>
323            </td>
324<td>
325              <p>
326                <span class="green">1.00<br> (348ns)</span>
327              </p>
328            </td>
329</tr>
330<tr>
331<td>
332              <p>
333                cyl_bessel_k (integer order)
334              </p>
335            </td>
336<td>
337              <p>
338                <span class="green">1.06<br> (217ns)</span>
339              </p>
340            </td>
341<td>
342              <p>
343                <span class="red">18.17<br> (3724ns)</span>
344              </p>
345            </td>
346<td>
347              <p>
348                <span class="green">1.00<br> (205ns)</span>
349              </p>
350            </td>
351</tr>
352<tr>
353<td>
354              <p>
355                cyl_neumann
356              </p>
357            </td>
358<td>
359              <p>
360                <span class="green">1.17<br> (6696ns)</span>
361              </p>
362            </td>
363<td>
364              <p>
365                <span class="blue">1.76<br> (10032ns)</span>
366              </p>
367            </td>
368<td>
369              <p>
370                <span class="green">1.00<br> (5715ns)</span>
371              </p>
372            </td>
373</tr>
374<tr>
375<td>
376              <p>
377                cyl_neumann (integer order)
378              </p>
379            </td>
380<td>
381              <p>
382                <span class="green">1.00<br> (158ns)</span>
383              </p>
384            </td>
385<td>
386              <p>
387                <span class="red">2.20<br> (348ns)</span>
388              </p>
389            </td>
390<td>
391              <p>
392                <span class="blue">1.59<br> (252ns)</span>
393              </p>
394            </td>
395</tr>
396<tr>
397<td>
398              <p>
399                digamma
400              </p>
401            </td>
402<td>
403              <p>
404                <span class="green">1.00<br> (20ns)</span>
405              </p>
406            </td>
407<td>
408              <p>
409                <span class="red">3.45<br> (69ns)</span>
410              </p>
411            </td>
412<td>
413              <p>
414                <span class="red">2.30<br> (46ns)</span>
415              </p>
416            </td>
417</tr>
418<tr>
419<td>
420              <p>
421                ellint_1
422              </p>
423            </td>
424<td>
425              <p>
426                <span class="blue">1.57<br> (390ns)</span>
427              </p>
428            </td>
429<td>
430              <p>
431                <span class="blue">1.41<br> (349ns)</span>
432              </p>
433            </td>
434<td>
435              <p>
436                <span class="green">1.00<br> (248ns)</span>
437              </p>
438            </td>
439</tr>
440<tr>
441<td>
442              <p>
443                ellint_1 (complete)
444              </p>
445            </td>
446<td>
447              <p>
448                <span class="blue">1.64<br> (77ns)</span>
449              </p>
450            </td>
451<td>
452              <p>
453                <span class="blue">1.64<br> (77ns)</span>
454              </p>
455            </td>
456<td>
457              <p>
458                <span class="green">1.00<br> (47ns)</span>
459              </p>
460            </td>
461</tr>
462<tr>
463<td>
464              <p>
465                ellint_2
466              </p>
467            </td>
468<td>
469              <p>
470                <span class="blue">1.81<br> (702ns)</span>
471              </p>
472            </td>
473<td>
474              <p>
475                <span class="blue">1.50<br> (583ns)</span>
476              </p>
477            </td>
478<td>
479              <p>
480                <span class="green">1.00<br> (388ns)</span>
481              </p>
482            </td>
483</tr>
484<tr>
485<td>
486              <p>
487                ellint_2 (complete)
488              </p>
489            </td>
490<td>
491              <p>
492                <span class="red">3.11<br> (84ns)</span>
493              </p>
494            </td>
495<td>
496              <p>
497                <span class="red">2.11<br> (57ns)</span>
498              </p>
499            </td>
500<td>
501              <p>
502                <span class="green">1.00<br> (27ns)</span>
503              </p>
504            </td>
505</tr>
506<tr>
507<td>
508              <p>
509                ellint_3
510              </p>
511            </td>
512<td>
513              <p>
514                <span class="red">3.47<br> (1381ns)</span>
515              </p>
516            </td>
517<td>
518              <p>
519                <span class="blue">1.68<br> (670ns)</span>
520              </p>
521            </td>
522<td>
523              <p>
524                <span class="green">1.00<br> (398ns)</span>
525              </p>
526            </td>
527</tr>
528<tr>
529<td>
530              <p>
531                ellint_3 (complete)
532              </p>
533            </td>
534<td>
535              <p>
536                <span class="red">inf<br> (802ns)</span>
537              </p>
538            </td>
539<td>
540              <p>
541                <span class="green">-nan(ind)<br> (0ns)</span>
542              </p>
543            </td>
544<td>
545              <p>
546                <span class="green">-nan(ind)<br> (0ns)</span>
547              </p>
548            </td>
549</tr>
550<tr>
551<td>
552              <p>
553                ellint_rc
554              </p>
555            </td>
556<td>
557              <p>
558                <span class="blue">1.55<br> (59ns)</span>
559              </p>
560            </td>
561<td>
562              <p>
563                <span class="red">2.21<br> (84ns)</span>
564              </p>
565            </td>
566<td>
567              <p>
568                <span class="green">1.00<br> (38ns)</span>
569              </p>
570            </td>
571</tr>
572<tr>
573<td>
574              <p>
575                ellint_rd
576              </p>
577            </td>
578<td>
579              <p>
580                <span class="blue">1.32<br> (271ns)</span>
581              </p>
582            </td>
583<td>
584              <p>
585                <span class="blue">1.26<br> (260ns)</span>
586              </p>
587            </td>
588<td>
589              <p>
590                <span class="green">1.00<br> (206ns)</span>
591              </p>
592            </td>
593</tr>
594<tr>
595<td>
596              <p>
597                ellint_rf
598              </p>
599            </td>
600<td>
601              <p>
602                <span class="blue">1.27<br> (62ns)</span>
603              </p>
604            </td>
605<td>
606              <p>
607                <span class="blue">1.94<br> (95ns)</span>
608              </p>
609            </td>
610<td>
611              <p>
612                <span class="green">1.00<br> (49ns)</span>
613              </p>
614            </td>
615</tr>
616<tr>
617<td>
618              <p>
619                ellint_rj
620              </p>
621            </td>
622<td>
623              <p>
624                <span class="blue">1.46<br> (264ns)</span>
625              </p>
626            </td>
627<td>
628              <p>
629                <span class="red">2.29<br> (414ns)</span>
630              </p>
631            </td>
632<td>
633              <p>
634                <span class="green">1.00<br> (181ns)</span>
635              </p>
636            </td>
637</tr>
638<tr>
639<td>
640              <p>
641                erf
642              </p>
643            </td>
644<td>
645              <p>
646                <span class="blue">1.30<br> (43ns)</span>
647              </p>
648            </td>
649<td>
650              <p>
651                <span class="blue">1.85<br> (61ns)</span>
652              </p>
653            </td>
654<td>
655              <p>
656                <span class="green">1.00<br> (33ns)</span>
657              </p>
658            </td>
659</tr>
660<tr>
661<td>
662              <p>
663                erfc
664              </p>
665            </td>
666<td>
667              <p>
668                <span class="green">1.06<br> (54ns)</span>
669              </p>
670            </td>
671<td>
672              <p>
673                <span class="blue">1.76<br> (90ns)</span>
674              </p>
675            </td>
676<td>
677              <p>
678                <span class="green">1.00<br> (51ns)</span>
679              </p>
680            </td>
681</tr>
682<tr>
683<td>
684              <p>
685                expint
686              </p>
687            </td>
688<td>
689              <p>
690                <span class="green">1.00<br> (27ns)</span>
691              </p>
692            </td>
693<td>
694              <p>
695                <span class="red">3.41<br> (92ns)</span>
696              </p>
697            </td>
698<td>
699              <p>
700                <span class="red">2.22<br> (60ns)</span>
701              </p>
702            </td>
703</tr>
704<tr>
705<td>
706              <p>
707                expint (En)
708              </p>
709            </td>
710<td>
711              <p>
712                <span class="green">1.00<br> (106ns)</span>
713              </p>
714            </td>
715<td>
716              <p>
717                <span class="blue">1.94<br> (206ns)</span>
718              </p>
719            </td>
720<td>
721              <p>
722                <span class="blue">1.29<br> (137ns)</span>
723              </p>
724            </td>
725</tr>
726<tr>
727<td>
728              <p>
729                expm1
730              </p>
731            </td>
732<td>
733              <p>
734                <span class="green">1.00<br> (11ns)</span>
735              </p>
736            </td>
737<td>
738              <p>
739                <span class="red">3.00<br> (33ns)</span>
740              </p>
741            </td>
742<td>
743              <p>
744                <span class="red">2.36<br> (26ns)</span>
745              </p>
746            </td>
747</tr>
748<tr>
749<td>
750              <p>
751                gamma_p
752              </p>
753            </td>
754<td>
755              <p>
756                <span class="green">1.00<br> (303ns)</span>
757              </p>
758            </td>
759<td>
760              <p>
761                <span class="blue">2.00<br> (605ns)</span>
762              </p>
763            </td>
764<td>
765              <p>
766                <span class="green">1.17<br> (355ns)</span>
767              </p>
768            </td>
769</tr>
770<tr>
771<td>
772              <p>
773                gamma_p_inv
774              </p>
775            </td>
776<td>
777              <p>
778                <span class="green">1.00<br> (1266ns)</span>
779              </p>
780            </td>
781<td>
782              <p>
783                <span class="blue">1.85<br> (2341ns)</span>
784              </p>
785            </td>
786<td>
787              <p>
788                <span class="green">1.15<br> (1460ns)</span>
789              </p>
790            </td>
791</tr>
792<tr>
793<td>
794              <p>
795                gamma_q
796              </p>
797            </td>
798<td>
799              <p>
800                <span class="green">1.00<br> (294ns)</span>
801              </p>
802            </td>
803<td>
804              <p>
805                <span class="red">2.10<br> (618ns)</span>
806              </p>
807            </td>
808<td>
809              <p>
810                <span class="blue">1.21<br> (356ns)</span>
811              </p>
812            </td>
813</tr>
814<tr>
815<td>
816              <p>
817                gamma_q_inv
818              </p>
819            </td>
820<td>
821              <p>
822                <span class="green">1.00<br> (1194ns)</span>
823              </p>
824            </td>
825<td>
826              <p>
827                <span class="blue">1.66<br> (1987ns)</span>
828              </p>
829            </td>
830<td>
831              <p>
832                <span class="green">1.14<br> (1357ns)</span>
833              </p>
834            </td>
835</tr>
836<tr>
837<td>
838              <p>
839                ibeta
840              </p>
841            </td>
842<td>
843              <p>
844                <span class="green">1.00<br> (512ns)</span>
845              </p>
846            </td>
847<td>
848              <p>
849                <span class="red">2.63<br> (1344ns)</span>
850              </p>
851            </td>
852<td>
853              <p>
854                <span class="blue">1.31<br> (673ns)</span>
855              </p>
856            </td>
857</tr>
858<tr>
859<td>
860              <p>
861                ibeta_inv
862              </p>
863            </td>
864<td>
865              <p>
866                <span class="green">1.00<br> (1910ns)</span>
867              </p>
868            </td>
869<td>
870              <p>
871                <span class="red">2.49<br> (4751ns)</span>
872              </p>
873            </td>
874<td>
875              <p>
876                <span class="blue">1.48<br> (2822ns)</span>
877              </p>
878            </td>
879</tr>
880<tr>
881<td>
882              <p>
883                ibetac
884              </p>
885            </td>
886<td>
887              <p>
888                <span class="green">1.00<br> (525ns)</span>
889              </p>
890            </td>
891<td>
892              <p>
893                <span class="red">2.60<br> (1365ns)</span>
894              </p>
895            </td>
896<td>
897              <p>
898                <span class="blue">1.27<br> (668ns)</span>
899              </p>
900            </td>
901</tr>
902<tr>
903<td>
904              <p>
905                ibetac_inv
906              </p>
907            </td>
908<td>
909              <p>
910                <span class="green">1.00<br> (1676ns)</span>
911              </p>
912            </td>
913<td>
914              <p>
915                <span class="red">2.85<br> (4778ns)</span>
916              </p>
917            </td>
918<td>
919              <p>
920                <span class="blue">1.74<br> (2910ns)</span>
921              </p>
922            </td>
923</tr>
924<tr>
925<td>
926              <p>
927                jacobi_cn
928              </p>
929            </td>
930<td>
931              <p>
932                <span class="green">1.00<br> (181ns)</span>
933              </p>
934            </td>
935<td>
936              <p>
937                <span class="red">3.10<br> (561ns)</span>
938              </p>
939            </td>
940<td>
941              <p>
942                <span class="blue">2.00<br> (362ns)</span>
943              </p>
944            </td>
945</tr>
946<tr>
947<td>
948              <p>
949                jacobi_dn
950              </p>
951            </td>
952<td>
953              <p>
954                <span class="green">1.00<br> (203ns)</span>
955              </p>
956            </td>
957<td>
958              <p>
959                <span class="red">3.03<br> (616ns)</span>
960              </p>
961            </td>
962<td>
963              <p>
964                <span class="blue">1.93<br> (392ns)</span>
965              </p>
966            </td>
967</tr>
968<tr>
969<td>
970              <p>
971                jacobi_sn
972              </p>
973            </td>
974<td>
975              <p>
976                <span class="green">1.00<br> (202ns)</span>
977              </p>
978            </td>
979<td>
980              <p>
981                <span class="red">2.81<br> (568ns)</span>
982              </p>
983            </td>
984<td>
985              <p>
986                <span class="blue">1.73<br> (350ns)</span>
987              </p>
988            </td>
989</tr>
990<tr>
991<td>
992              <p>
993                laguerre
994              </p>
995            </td>
996<td>
997              <p>
998                <span class="green">1.02<br> (107ns)</span>
999              </p>
1000            </td>
1001<td>
1002              <p>
1003                <span class="green">1.07<br> (112ns)</span>
1004              </p>
1005            </td>
1006<td>
1007              <p>
1008                <span class="green">1.00<br> (105ns)</span>
1009              </p>
1010            </td>
1011</tr>
1012<tr>
1013<td>
1014              <p>
1015                legendre
1016              </p>
1017            </td>
1018<td>
1019              <p>
1020                <span class="green">1.11<br> (283ns)</span>
1021              </p>
1022            </td>
1023<td>
1024              <p>
1025                <span class="blue">1.25<br> (320ns)</span>
1026              </p>
1027            </td>
1028<td>
1029              <p>
1030                <span class="green">1.00<br> (255ns)</span>
1031              </p>
1032            </td>
1033</tr>
1034<tr>
1035<td>
1036              <p>
1037                legendre Q
1038              </p>
1039            </td>
1040<td>
1041              <p>
1042                <span class="green">1.00<br> (309ns)</span>
1043              </p>
1044            </td>
1045<td>
1046              <p>
1047                <span class="blue">1.51<br> (466ns)</span>
1048              </p>
1049            </td>
1050<td>
1051              <p>
1052                <span class="green">1.15<br> (354ns)</span>
1053              </p>
1054            </td>
1055</tr>
1056<tr>
1057<td>
1058              <p>
1059                lgamma
1060              </p>
1061            </td>
1062<td>
1063              <p>
1064                <span class="green">1.00<br> (80ns)</span>
1065              </p>
1066            </td>
1067<td>
1068              <p>
1069                <span class="red">2.67<br> (214ns)</span>
1070              </p>
1071            </td>
1072<td>
1073              <p>
1074                <span class="blue">2.00<br> (160ns)</span>
1075              </p>
1076            </td>
1077</tr>
1078<tr>
1079<td>
1080              <p>
1081                log1p
1082              </p>
1083            </td>
1084<td>
1085              <p>
1086                <span class="green">1.00<br> (14ns)</span>
1087              </p>
1088            </td>
1089<td>
1090              <p>
1091                <span class="red">2.07<br> (29ns)</span>
1092              </p>
1093            </td>
1094<td>
1095              <p>
1096                <span class="blue">1.21<br> (17ns)</span>
1097              </p>
1098            </td>
1099</tr>
1100<tr>
1101<td>
1102              <p>
1103                polygamma
1104              </p>
1105            </td>
1106<td>
1107              <p>
1108                <span class="green">1.00<br> (4193ns)</span>
1109              </p>
1110            </td>
1111<td>
1112              <p>
1113                <span class="blue">1.85<br> (7743ns)</span>
1114              </p>
1115            </td>
1116<td>
1117              <p>
1118                <span class="blue">1.91<br> (8018ns)</span>
1119              </p>
1120            </td>
1121</tr>
1122<tr>
1123<td>
1124              <p>
1125                sph_bessel
1126              </p>
1127            </td>
1128<td>
1129              <p>
1130                <span class="green">1.01<br> (668ns)</span>
1131              </p>
1132            </td>
1133<td>
1134              <p>
1135                <span class="blue">1.48<br> (975ns)</span>
1136              </p>
1137            </td>
1138<td>
1139              <p>
1140                <span class="green">1.00<br> (661ns)</span>
1141              </p>
1142            </td>
1143</tr>
1144<tr>
1145<td>
1146              <p>
1147                sph_neumann
1148              </p>
1149            </td>
1150<td>
1151              <p>
1152                <span class="green">1.07<br> (1138ns)</span>
1153              </p>
1154            </td>
1155<td>
1156              <p>
1157                <span class="red">2.96<br> (3153ns)</span>
1158              </p>
1159            </td>
1160<td>
1161              <p>
1162                <span class="green">1.00<br> (1064ns)</span>
1163              </p>
1164            </td>
1165</tr>
1166<tr>
1167<td>
1168              <p>
1169                tgamma
1170              </p>
1171            </td>
1172<td>
1173              <p>
1174                <span class="green">1.00<br> (74ns)</span>
1175              </p>
1176            </td>
1177<td>
1178              <p>
1179                <span class="red">3.50<br> (259ns)</span>
1180              </p>
1181            </td>
1182<td>
1183              <p>
1184                <span class="red">2.14<br> (158ns)</span>
1185              </p>
1186            </td>
1187</tr>
1188<tr>
1189<td>
1190              <p>
1191                tgamma (incomplete)
1192              </p>
1193            </td>
1194<td>
1195              <p>
1196                <span class="green">1.00<br> (208ns)</span>
1197              </p>
1198            </td>
1199<td>
1200              <p>
1201                <span class="red">2.30<br> (478ns)</span>
1202              </p>
1203            </td>
1204<td>
1205              <p>
1206                <span class="blue">1.64<br> (342ns)</span>
1207              </p>
1208            </td>
1209</tr>
1210<tr>
1211<td>
1212              <p>
1213                trigamma
1214              </p>
1215            </td>
1216<td>
1217              <p>
1218                <span class="green">1.00<br> (12ns)</span>
1219              </p>
1220            </td>
1221<td>
1222              <p>
1223                <span class="red">2.83<br> (34ns)</span>
1224              </p>
1225            </td>
1226<td>
1227              <p>
1228                <span class="green">1.17<br> (14ns)</span>
1229              </p>
1230            </td>
1231</tr>
1232<tr>
1233<td>
1234              <p>
1235                zeta
1236              </p>
1237            </td>
1238<td>
1239              <p>
1240                <span class="green">1.00<br> (117ns)</span>
1241              </p>
1242            </td>
1243<td>
1244              <p>
1245                <span class="red">2.65<br> (310ns)</span>
1246              </p>
1247            </td>
1248<td>
1249              <p>
1250                <span class="blue">1.89<br> (221ns)</span>
1251              </p>
1252            </td>
1253</tr>
1254</tbody>
1255</table></div>
1256</div>
1257<br class="table-break">
1258</div>
1259<div class="section">
1260<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1261<a name="special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64" title="Compiler Option Comparison on Windows x64">Compiler
1262    Option Comparison on Windows x64</a>
1263</h2></div></div></div>
1264<div class="table">
1265<a name="special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64.table_Compiler_Option_Comparison_on_Windows_x64"></a><p class="title"><b>Table&#160;2.&#160;Compiler Option Comparison on Windows x64</b></p>
1266<div class="table-contents"><table class="table" summary="Compiler Option Comparison on Windows x64">
1267<colgroup>
1268<col>
1269<col>
1270<col>
1271<col>
1272</colgroup>
1273<thead><tr>
1274<th>
1275              <p>
1276                Function
1277              </p>
1278            </th>
1279<th>
1280              <p>
1281                cl /Od (x86 build)
1282              </p>
1283            </th>
1284<th>
1285              <p>
1286                cl /arch:sse2 /Ox (x86 build)
1287              </p>
1288            </th>
1289<th>
1290              <p>
1291                cl /Ox (x64 build)
1292              </p>
1293            </th>
1294</tr></thead>
1295<tbody>
1296<tr>
1297<td>
1298              <p>
1299                boost::math::cbrt
1300              </p>
1301            </td>
1302<td>
1303              <p>
1304                <span class="red">5.05<br> (202ns)</span>
1305              </p>
1306            </td>
1307<td>
1308              <p>
1309                <span class="green">1.20<br> (48ns)</span>
1310              </p>
1311            </td>
1312<td>
1313              <p>
1314                <span class="green">1.00<br> (40ns)</span>
1315              </p>
1316            </td>
1317</tr>
1318<tr>
1319<td>
1320              <p>
1321                boost::math::cyl_bessel_j (integer orders)
1322              </p>
1323            </td>
1324<td>
1325              <p>
1326                <span class="red">4.38<br> (530ns)</span>
1327              </p>
1328            </td>
1329<td>
1330              <p>
1331                <span class="green">1.00<br> (121ns)</span>
1332              </p>
1333            </td>
1334<td>
1335              <p>
1336                <span class="green">1.02<br> (124ns)</span>
1337              </p>
1338            </td>
1339</tr>
1340<tr>
1341<td>
1342              <p>
1343                boost::math::ibeta_inv
1344              </p>
1345            </td>
1346<td>
1347              <p>
1348                <span class="red">4.52<br> (8277ns)</span>
1349              </p>
1350            </td>
1351<td>
1352              <p>
1353                <span class="green">1.11<br> (2042ns)</span>
1354              </p>
1355            </td>
1356<td>
1357              <p>
1358                <span class="green">1.00<br> (1833ns)</span>
1359              </p>
1360            </td>
1361</tr>
1362</tbody>
1363</table></div>
1364</div>
1365<br class="table-break">
1366</div>
1367<div class="section">
1368<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1369<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64" title="Distribution performance comparison for different performance options with GNU C++ version 9.2.0 on Windows x64">Distribution
1370    performance comparison for different performance options with GNU C++ version
1371    9.2.0 on Windows x64</a>
1372</h2></div></div></div>
1373<div class="table">
1374<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64.table_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;3.&#160;Distribution performance comparison for different performance options
1375      with GNU C++ version 9.2.0 on Windows x64</b></p>
1376<div class="table-contents"><table class="table" summary="Distribution performance comparison for different performance options
1377      with GNU C++ version 9.2.0 on Windows x64">
1378<colgroup>
1379<col>
1380<col>
1381<col>
1382<col>
1383<col>
1384</colgroup>
1385<thead><tr>
1386<th>
1387              <p>
1388                Function
1389              </p>
1390            </th>
1391<th>
1392              <p>
1393                boost 1.73
1394              </p>
1395            </th>
1396<th>
1397              <p>
1398                Boost<br> promote_double&lt;false&gt;
1399              </p>
1400            </th>
1401<th>
1402              <p>
1403                Boost<br> promote_double&lt;false&gt;<br> digits10&lt;10&gt;
1404              </p>
1405            </th>
1406<th>
1407              <p>
1408                Boost<br> float<br> promote_float&lt;false&gt;
1409              </p>
1410            </th>
1411</tr></thead>
1412<tbody>
1413<tr>
1414<td>
1415              <p>
1416                ArcSine (CDF)
1417              </p>
1418            </td>
1419<td>
1420              <p>
1421                <span class="green">1.10<br> (22ns)</span>
1422              </p>
1423            </td>
1424<td>
1425              <p>
1426                <span class="blue">1.30<br> (26ns)</span>
1427              </p>
1428            </td>
1429<td>
1430              <p>
1431                <span class="green">1.00<br> (20ns)</span>
1432              </p>
1433            </td>
1434<td>
1435              <p>
1436                <span class="red">3.20<br> (64ns)</span>
1437              </p>
1438            </td>
1439</tr>
1440<tr>
1441<td>
1442              <p>
1443                ArcSine (PDF)
1444              </p>
1445            </td>
1446<td>
1447              <p>
1448                <span class="green">1.00<br> (5ns)</span>
1449              </p>
1450            </td>
1451<td>
1452              <p>
1453                <span class="green">1.00<br> (5ns)</span>
1454              </p>
1455            </td>
1456<td>
1457              <p>
1458                <span class="green">1.00<br> (5ns)</span>
1459              </p>
1460            </td>
1461<td>
1462              <p>
1463                <span class="blue">1.60<br> (8ns)</span>
1464              </p>
1465            </td>
1466</tr>
1467<tr>
1468<td>
1469              <p>
1470                ArcSine (quantile)
1471              </p>
1472            </td>
1473<td>
1474              <p>
1475                <span class="green">1.00<br> (53ns)</span>
1476              </p>
1477            </td>
1478<td>
1479              <p>
1480                <span class="green">1.00<br> (53ns)</span>
1481              </p>
1482            </td>
1483<td>
1484              <p>
1485                <span class="green">1.02<br> (54ns)</span>
1486              </p>
1487            </td>
1488<td>
1489              <p>
1490                <span class="green">1.04<br> (55ns)</span>
1491              </p>
1492            </td>
1493</tr>
1494<tr>
1495<td>
1496              <p>
1497                Beta (CDF)
1498              </p>
1499            </td>
1500<td>
1501              <p>
1502                <span class="red">2.32<br> (362ns)</span>
1503              </p>
1504            </td>
1505<td>
1506              <p>
1507                <span class="blue">1.31<br> (205ns)</span>
1508              </p>
1509            </td>
1510<td>
1511              <p>
1512                <span class="green">1.17<br> (183ns)</span>
1513              </p>
1514            </td>
1515<td>
1516              <p>
1517                <span class="green">1.00<br> (156ns)</span>
1518              </p>
1519            </td>
1520</tr>
1521<tr>
1522<td>
1523              <p>
1524                Beta (PDF)
1525              </p>
1526            </td>
1527<td>
1528              <p>
1529                <span class="red">2.44<br> (302ns)</span>
1530              </p>
1531            </td>
1532<td>
1533              <p>
1534                <span class="green">1.12<br> (139ns)</span>
1535              </p>
1536            </td>
1537<td>
1538              <p>
1539                <span class="green">1.13<br> (140ns)</span>
1540              </p>
1541            </td>
1542<td>
1543              <p>
1544                <span class="green">1.00<br> (124ns)</span>
1545              </p>
1546            </td>
1547</tr>
1548<tr>
1549<td>
1550              <p>
1551                Beta (quantile)
1552              </p>
1553            </td>
1554<td>
1555              <p>
1556                <span class="blue">1.76<br> (1968ns)</span>
1557              </p>
1558            </td>
1559<td>
1560              <p>
1561                <span class="blue">1.24<br> (1383ns)</span>
1562              </p>
1563            </td>
1564<td>
1565              <p>
1566                <span class="green">1.00<br> (1118ns)</span>
1567              </p>
1568            </td>
1569<td>
1570              <p>
1571                <span class="green">1.03<br> (1155ns)</span>
1572              </p>
1573            </td>
1574</tr>
1575<tr>
1576<td>
1577              <p>
1578                Binomial (CDF)
1579              </p>
1580            </td>
1581<td>
1582              <p>
1583                <span class="red">3.57<br> (959ns)</span>
1584              </p>
1585            </td>
1586<td>
1587              <p>
1588                <span class="blue">1.30<br> (350ns)</span>
1589              </p>
1590            </td>
1591<td>
1592              <p>
1593                <span class="blue">1.27<br> (341ns)</span>
1594              </p>
1595            </td>
1596<td>
1597              <p>
1598                <span class="green">1.00<br> (269ns)</span>
1599              </p>
1600            </td>
1601</tr>
1602<tr>
1603<td>
1604              <p>
1605                Binomial (PDF)
1606              </p>
1607            </td>
1608<td>
1609              <p>
1610                <span class="red">2.39<br> (339ns)</span>
1611              </p>
1612            </td>
1613<td>
1614              <p>
1615                <span class="green">1.00<br> (142ns)</span>
1616              </p>
1617            </td>
1618<td>
1619              <p>
1620                <span class="blue">1.20<br> (171ns)</span>
1621              </p>
1622            </td>
1623<td>
1624              <p>
1625                <span class="green">1.04<br> (148ns)</span>
1626              </p>
1627            </td>
1628</tr>
1629<tr>
1630<td>
1631              <p>
1632                Binomial (quantile)
1633              </p>
1634            </td>
1635<td>
1636              <p>
1637                <span class="red">3.20<br> (4255ns)</span>
1638              </p>
1639            </td>
1640<td>
1641              <p>
1642                <span class="blue">1.42<br> (1884ns)</span>
1643              </p>
1644            </td>
1645<td>
1646              <p>
1647                <span class="green">1.19<br> (1582ns)</span>
1648              </p>
1649            </td>
1650<td>
1651              <p>
1652                <span class="green">1.00<br> (1328ns)</span>
1653              </p>
1654            </td>
1655</tr>
1656<tr>
1657<td>
1658              <p>
1659                Cauchy (CDF)
1660              </p>
1661            </td>
1662<td>
1663              <p>
1664                <span class="green">1.12<br> (19ns)</span>
1665              </p>
1666            </td>
1667<td>
1668              <p>
1669                <span class="green">1.18<br> (20ns)</span>
1670              </p>
1671            </td>
1672<td>
1673              <p>
1674                <span class="green">1.00<br> (17ns)</span>
1675              </p>
1676            </td>
1677<td>
1678              <p>
1679                <span class="red">3.18<br> (54ns)</span>
1680              </p>
1681            </td>
1682</tr>
1683<tr>
1684<td>
1685              <p>
1686                Cauchy (PDF)
1687              </p>
1688            </td>
1689<td>
1690              <p>
1691                <span class="blue">1.33<br> (4ns)</span>
1692              </p>
1693            </td>
1694<td>
1695              <p>
1696                <span class="blue">1.67<br> (5ns)</span>
1697              </p>
1698            </td>
1699<td>
1700              <p>
1701                <span class="green">1.00<br> (3ns)</span>
1702              </p>
1703            </td>
1704<td>
1705              <p>
1706                <span class="blue">1.33<br> (4ns)</span>
1707              </p>
1708            </td>
1709</tr>
1710<tr>
1711<td>
1712              <p>
1713                Cauchy (quantile)
1714              </p>
1715            </td>
1716<td>
1717              <p>
1718                <span class="blue">1.32<br> (25ns)</span>
1719              </p>
1720            </td>
1721<td>
1722              <p>
1723                <span class="blue">1.21<br> (23ns)</span>
1724              </p>
1725            </td>
1726<td>
1727              <p>
1728                <span class="green">1.00<br> (19ns)</span>
1729              </p>
1730            </td>
1731<td>
1732              <p>
1733                <span class="blue">1.21<br> (23ns)</span>
1734              </p>
1735            </td>
1736</tr>
1737<tr>
1738<td>
1739              <p>
1740                ChiSquared (CDF)
1741              </p>
1742            </td>
1743<td>
1744              <p>
1745                <span class="red">2.79<br> (953ns)</span>
1746              </p>
1747            </td>
1748<td>
1749              <p>
1750                <span class="blue">1.55<br> (529ns)</span>
1751              </p>
1752            </td>
1753<td>
1754              <p>
1755                <span class="blue">1.27<br> (434ns)</span>
1756              </p>
1757            </td>
1758<td>
1759              <p>
1760                <span class="green">1.00<br> (341ns)</span>
1761              </p>
1762            </td>
1763</tr>
1764<tr>
1765<td>
1766              <p>
1767                ChiSquared (PDF)
1768              </p>
1769            </td>
1770<td>
1771              <p>
1772                <span class="blue">1.82<br> (189ns)</span>
1773              </p>
1774            </td>
1775<td>
1776              <p>
1777                <span class="green">1.00<br> (104ns)</span>
1778              </p>
1779            </td>
1780<td>
1781              <p>
1782                <span class="green">1.01<br> (105ns)</span>
1783              </p>
1784            </td>
1785<td>
1786              <p>
1787                <span class="green">1.02<br> (106ns)</span>
1788              </p>
1789            </td>
1790</tr>
1791<tr>
1792<td>
1793              <p>
1794                ChiSquared (quantile)
1795              </p>
1796            </td>
1797<td>
1798              <p>
1799                <span class="red">2.40<br> (1452ns)</span>
1800              </p>
1801            </td>
1802<td>
1803              <p>
1804                <span class="blue">1.49<br> (901ns)</span>
1805              </p>
1806            </td>
1807<td>
1808              <p>
1809                <span class="green">1.19<br> (717ns)</span>
1810              </p>
1811            </td>
1812<td>
1813              <p>
1814                <span class="green">1.00<br> (605ns)</span>
1815              </p>
1816            </td>
1817</tr>
1818<tr>
1819<td>
1820              <p>
1821                Exponential (CDF)
1822              </p>
1823            </td>
1824<td>
1825              <p>
1826                <span class="green">1.14<br> (33ns)</span>
1827              </p>
1828            </td>
1829<td>
1830              <p>
1831                <span class="green">1.00<br> (29ns)</span>
1832              </p>
1833            </td>
1834<td>
1835              <p>
1836                <span class="green">1.03<br> (30ns)</span>
1837              </p>
1838            </td>
1839<td>
1840              <p>
1841                <span class="green">1.00<br> (29ns)</span>
1842              </p>
1843            </td>
1844</tr>
1845<tr>
1846<td>
1847              <p>
1848                Exponential (PDF)
1849              </p>
1850            </td>
1851<td>
1852              <p>
1853                <span class="green">1.08<br> (54ns)</span>
1854              </p>
1855            </td>
1856<td>
1857              <p>
1858                <span class="green">1.02<br> (51ns)</span>
1859              </p>
1860            </td>
1861<td>
1862              <p>
1863                <span class="green">1.00<br> (50ns)</span>
1864              </p>
1865            </td>
1866<td>
1867              <p>
1868                <span class="green">1.04<br> (52ns)</span>
1869              </p>
1870            </td>
1871</tr>
1872<tr>
1873<td>
1874              <p>
1875                Exponential (quantile)
1876              </p>
1877            </td>
1878<td>
1879              <p>
1880                <span class="blue">1.89<br> (36ns)</span>
1881              </p>
1882            </td>
1883<td>
1884              <p>
1885                <span class="green">1.00<br> (19ns)</span>
1886              </p>
1887            </td>
1888<td>
1889              <p>
1890                <span class="green">1.05<br> (20ns)</span>
1891              </p>
1892            </td>
1893<td>
1894              <p>
1895                <span class="blue">1.21<br> (23ns)</span>
1896              </p>
1897            </td>
1898</tr>
1899<tr>
1900<td>
1901              <p>
1902                ExtremeValue (CDF)
1903              </p>
1904            </td>
1905<td>
1906              <p>
1907                <span class="green">1.05<br> (104ns)</span>
1908              </p>
1909            </td>
1910<td>
1911              <p>
1912                <span class="green">1.02<br> (101ns)</span>
1913              </p>
1914            </td>
1915<td>
1916              <p>
1917                <span class="green">1.00<br> (99ns)</span>
1918              </p>
1919            </td>
1920<td>
1921              <p>
1922                <span class="green">1.04<br> (103ns)</span>
1923              </p>
1924            </td>
1925</tr>
1926<tr>
1927<td>
1928              <p>
1929                ExtremeValue (PDF)
1930              </p>
1931            </td>
1932<td>
1933              <p>
1934                <span class="green">1.04<br> (144ns)</span>
1935              </p>
1936            </td>
1937<td>
1938              <p>
1939                <span class="green">1.04<br> (144ns)</span>
1940              </p>
1941            </td>
1942<td>
1943              <p>
1944                <span class="green">1.00<br> (138ns)</span>
1945              </p>
1946            </td>
1947<td>
1948              <p>
1949                <span class="green">1.03<br> (142ns)</span>
1950              </p>
1951            </td>
1952</tr>
1953<tr>
1954<td>
1955              <p>
1956                ExtremeValue (quantile)
1957              </p>
1958            </td>
1959<td>
1960              <p>
1961                <span class="green">1.07<br> (64ns)</span>
1962              </p>
1963            </td>
1964<td>
1965              <p>
1966                <span class="green">1.02<br> (61ns)</span>
1967              </p>
1968            </td>
1969<td>
1970              <p>
1971                <span class="green">1.00<br> (60ns)</span>
1972              </p>
1973            </td>
1974<td>
1975              <p>
1976                <span class="green">1.13<br> (68ns)</span>
1977              </p>
1978            </td>
1979</tr>
1980<tr>
1981<td>
1982              <p>
1983                F (CDF)
1984              </p>
1985            </td>
1986<td>
1987              <p>
1988                <span class="red">3.55<br> (668ns)</span>
1989              </p>
1990            </td>
1991<td>
1992              <p>
1993                <span class="blue">1.58<br> (297ns)</span>
1994              </p>
1995            </td>
1996<td>
1997              <p>
1998                <span class="blue">1.23<br> (232ns)</span>
1999              </p>
2000            </td>
2001<td>
2002              <p>
2003                <span class="green">1.00<br> (188ns)</span>
2004              </p>
2005            </td>
2006</tr>
2007<tr>
2008<td>
2009              <p>
2010                F (PDF)
2011              </p>
2012            </td>
2013<td>
2014              <p>
2015                <span class="red">2.29<br> (291ns)</span>
2016              </p>
2017            </td>
2018<td>
2019              <p>
2020                <span class="green">1.06<br> (135ns)</span>
2021              </p>
2022            </td>
2023<td>
2024              <p>
2025                <span class="green">1.02<br> (129ns)</span>
2026              </p>
2027            </td>
2028<td>
2029              <p>
2030                <span class="green">1.00<br> (127ns)</span>
2031              </p>
2032            </td>
2033</tr>
2034<tr>
2035<td>
2036              <p>
2037                F (quantile)
2038              </p>
2039            </td>
2040<td>
2041              <p>
2042                <span class="red">2.17<br> (2215ns)</span>
2043              </p>
2044            </td>
2045<td>
2046              <p>
2047                <span class="green">1.14<br> (1163ns)</span>
2048              </p>
2049            </td>
2050<td>
2051              <p>
2052                <span class="green">1.00<br> (1023ns)</span>
2053              </p>
2054            </td>
2055<td>
2056              <p>
2057                <span class="green">1.07<br> (1090ns)</span>
2058              </p>
2059            </td>
2060</tr>
2061<tr>
2062<td>
2063              <p>
2064                Gamma (CDF)
2065              </p>
2066            </td>
2067<td>
2068              <p>
2069                <span class="blue">1.94<br> (492ns)</span>
2070              </p>
2071            </td>
2072<td>
2073              <p>
2074                <span class="green">1.19<br> (301ns)</span>
2075              </p>
2076            </td>
2077<td>
2078              <p>
2079                <span class="green">1.10<br> (280ns)</span>
2080              </p>
2081            </td>
2082<td>
2083              <p>
2084                <span class="green">1.00<br> (254ns)</span>
2085              </p>
2086            </td>
2087</tr>
2088<tr>
2089<td>
2090              <p>
2091                Gamma (PDF)
2092              </p>
2093            </td>
2094<td>
2095              <p>
2096                <span class="blue">1.55<br> (236ns)</span>
2097              </p>
2098            </td>
2099<td>
2100              <p>
2101                <span class="green">1.00<br> (152ns)</span>
2102              </p>
2103            </td>
2104<td>
2105              <p>
2106                <span class="green">1.00<br> (152ns)</span>
2107              </p>
2108            </td>
2109<td>
2110              <p>
2111                <span class="green">1.01<br> (153ns)</span>
2112              </p>
2113            </td>
2114</tr>
2115<tr>
2116<td>
2117              <p>
2118                Gamma (quantile)
2119              </p>
2120            </td>
2121<td>
2122              <p>
2123                <span class="blue">1.95<br> (1204ns)</span>
2124              </p>
2125            </td>
2126<td>
2127              <p>
2128                <span class="blue">1.35<br> (837ns)</span>
2129              </p>
2130            </td>
2131<td>
2132              <p>
2133                <span class="green">1.00<br> (619ns)</span>
2134              </p>
2135            </td>
2136<td>
2137              <p>
2138                <span class="green">1.04<br> (644ns)</span>
2139              </p>
2140            </td>
2141</tr>
2142<tr>
2143<td>
2144              <p>
2145                Geometric (CDF)
2146              </p>
2147            </td>
2148<td>
2149              <p>
2150                <span class="blue">1.38<br> (40ns)</span>
2151              </p>
2152            </td>
2153<td>
2154              <p>
2155                <span class="green">1.00<br> (29ns)</span>
2156              </p>
2157            </td>
2158<td>
2159              <p>
2160                <span class="green">1.00<br> (29ns)</span>
2161              </p>
2162            </td>
2163<td>
2164              <p>
2165                <span class="green">1.07<br> (31ns)</span>
2166              </p>
2167            </td>
2168</tr>
2169<tr>
2170<td>
2171              <p>
2172                Geometric (PDF)
2173              </p>
2174            </td>
2175<td>
2176              <p>
2177                <span class="green">1.00<br> (46ns)</span>
2178              </p>
2179            </td>
2180<td>
2181              <p>
2182                <span class="green">1.00<br> (46ns)</span>
2183              </p>
2184            </td>
2185<td>
2186              <p>
2187                <span class="green">1.00<br> (46ns)</span>
2188              </p>
2189            </td>
2190<td>
2191              <p>
2192                <span class="green">1.02<br> (47ns)</span>
2193              </p>
2194            </td>
2195</tr>
2196<tr>
2197<td>
2198              <p>
2199                Geometric (quantile)
2200              </p>
2201            </td>
2202<td>
2203              <p>
2204                <span class="blue">1.64<br> (36ns)</span>
2205              </p>
2206            </td>
2207<td>
2208              <p>
2209                <span class="green">1.00<br> (22ns)</span>
2210              </p>
2211            </td>
2212<td>
2213              <p>
2214                <span class="green">1.00<br> (22ns)</span>
2215              </p>
2216            </td>
2217<td>
2218              <p>
2219                <span class="green">1.09<br> (24ns)</span>
2220              </p>
2221            </td>
2222</tr>
2223<tr>
2224<td>
2225              <p>
2226                Hypergeometric (CDF)
2227              </p>
2228            </td>
2229<td>
2230              <p>
2231                <span class="green">1.11<br> (49938ns)</span>
2232              </p>
2233            </td>
2234<td>
2235              <p>
2236                <span class="green">1.00<br> (45127ns)</span>
2237              </p>
2238            </td>
2239<td>
2240              <p>
2241                <span class="green">1.01<br> (45445ns)</span>
2242              </p>
2243            </td>
2244<td>
2245              <p>
2246                <span class="green">1.12<br> (50682ns)</span>
2247              </p>
2248            </td>
2249</tr>
2250<tr>
2251<td>
2252              <p>
2253                Hypergeometric (PDF)
2254              </p>
2255            </td>
2256<td>
2257              <p>
2258                <span class="green">1.13<br> (53353ns)</span>
2259              </p>
2260            </td>
2261<td>
2262              <p>
2263                <span class="green">1.04<br> (49364ns)</span>
2264              </p>
2265            </td>
2266<td>
2267              <p>
2268                <span class="green">1.00<br> (47376ns)</span>
2269              </p>
2270            </td>
2271<td>
2272              <p>
2273                <span class="blue">1.20<br> (57034ns)</span>
2274              </p>
2275            </td>
2276</tr>
2277<tr>
2278<td>
2279              <p>
2280                Hypergeometric (quantile)
2281              </p>
2282            </td>
2283<td>
2284              <p>
2285                <span class="green">1.00<br> (105555ns)</span>
2286              </p>
2287            </td>
2288<td>
2289              <p>
2290                <span class="blue">1.25<br> (132253ns)</span>
2291              </p>
2292            </td>
2293<td>
2294              <p>
2295                <span class="blue">1.36<br> (143254ns)</span>
2296              </p>
2297            </td>
2298<td>
2299              <p>
2300                <span class="blue">1.70<br> (179941ns)</span>
2301              </p>
2302            </td>
2303</tr>
2304<tr>
2305<td>
2306              <p>
2307                InverseChiSquared (CDF)
2308              </p>
2309            </td>
2310<td>
2311              <p>
2312                <span class="red">3.48<br> (1326ns)</span>
2313              </p>
2314            </td>
2315<td>
2316              <p>
2317                <span class="blue">1.70<br> (647ns)</span>
2318              </p>
2319            </td>
2320<td>
2321              <p>
2322                <span class="blue">1.33<br> (508ns)</span>
2323              </p>
2324            </td>
2325<td>
2326              <p>
2327                <span class="green">1.00<br> (381ns)</span>
2328              </p>
2329            </td>
2330</tr>
2331<tr>
2332<td>
2333              <p>
2334                InverseChiSquared (PDF)
2335              </p>
2336            </td>
2337<td>
2338              <p>
2339                <span class="blue">1.87<br> (217ns)</span>
2340              </p>
2341            </td>
2342<td>
2343              <p>
2344                <span class="green">1.09<br> (126ns)</span>
2345              </p>
2346            </td>
2347<td>
2348              <p>
2349                <span class="green">1.00<br> (116ns)</span>
2350              </p>
2351            </td>
2352<td>
2353              <p>
2354                <span class="green">1.01<br> (117ns)</span>
2355              </p>
2356            </td>
2357</tr>
2358<tr>
2359<td>
2360              <p>
2361                InverseChiSquared (quantile)
2362              </p>
2363            </td>
2364<td>
2365              <p>
2366                <span class="red">2.81<br> (1852ns)</span>
2367              </p>
2368            </td>
2369<td>
2370              <p>
2371                <span class="blue">1.57<br> (1035ns)</span>
2372              </p>
2373            </td>
2374<td>
2375              <p>
2376                <span class="blue">1.22<br> (800ns)</span>
2377              </p>
2378            </td>
2379<td>
2380              <p>
2381                <span class="green">1.00<br> (658ns)</span>
2382              </p>
2383            </td>
2384</tr>
2385<tr>
2386<td>
2387              <p>
2388                InverseGamma (CDF)
2389              </p>
2390            </td>
2391<td>
2392              <p>
2393                <span class="blue">1.95<br> (516ns)</span>
2394              </p>
2395            </td>
2396<td>
2397              <p>
2398                <span class="blue">1.21<br> (320ns)</span>
2399              </p>
2400            </td>
2401<td>
2402              <p>
2403                <span class="green">1.09<br> (289ns)</span>
2404              </p>
2405            </td>
2406<td>
2407              <p>
2408                <span class="green">1.00<br> (264ns)</span>
2409              </p>
2410            </td>
2411</tr>
2412<tr>
2413<td>
2414              <p>
2415                InverseGamma (PDF)
2416              </p>
2417            </td>
2418<td>
2419              <p>
2420                <span class="blue">1.67<br> (256ns)</span>
2421              </p>
2422            </td>
2423<td>
2424              <p>
2425                <span class="green">1.09<br> (167ns)</span>
2426              </p>
2427            </td>
2428<td>
2429              <p>
2430                <span class="green">1.05<br> (161ns)</span>
2431              </p>
2432            </td>
2433<td>
2434              <p>
2435                <span class="green">1.00<br> (153ns)</span>
2436              </p>
2437            </td>
2438</tr>
2439<tr>
2440<td>
2441              <p>
2442                InverseGamma (quantile)
2443              </p>
2444            </td>
2445<td>
2446              <p>
2447                <span class="blue">1.94<br> (1268ns)</span>
2448              </p>
2449            </td>
2450<td>
2451              <p>
2452                <span class="blue">1.36<br> (884ns)</span>
2453              </p>
2454            </td>
2455<td>
2456              <p>
2457                <span class="green">1.00<br> (652ns)</span>
2458              </p>
2459            </td>
2460<td>
2461              <p>
2462                <span class="green">1.02<br> (666ns)</span>
2463              </p>
2464            </td>
2465</tr>
2466<tr>
2467<td>
2468              <p>
2469                InverseGaussian (CDF)
2470              </p>
2471            </td>
2472<td>
2473              <p>
2474                <span class="blue">1.83<br> (172ns)</span>
2475              </p>
2476            </td>
2477<td>
2478              <p>
2479                <span class="blue">1.83<br> (172ns)</span>
2480              </p>
2481            </td>
2482<td>
2483              <p>
2484                <span class="blue">1.82<br> (171ns)</span>
2485              </p>
2486            </td>
2487<td>
2488              <p>
2489                <span class="green">1.00<br> (94ns)</span>
2490              </p>
2491            </td>
2492</tr>
2493<tr>
2494<td>
2495              <p>
2496                InverseGaussian (PDF)
2497              </p>
2498            </td>
2499<td>
2500              <p>
2501                <span class="green">1.00<br> (28ns)</span>
2502              </p>
2503            </td>
2504<td>
2505              <p>
2506                <span class="green">1.14<br> (32ns)</span>
2507              </p>
2508            </td>
2509<td>
2510              <p>
2511                <span class="green">1.00<br> (28ns)</span>
2512              </p>
2513            </td>
2514<td>
2515              <p>
2516                <span class="green">1.07<br> (30ns)</span>
2517              </p>
2518            </td>
2519</tr>
2520<tr>
2521<td>
2522              <p>
2523                InverseGaussian (quantile)
2524              </p>
2525            </td>
2526<td>
2527              <p>
2528                <span class="blue">1.94<br> (2657ns)</span>
2529              </p>
2530            </td>
2531<td>
2532              <p>
2533                <span class="blue">1.93<br> (2635ns)</span>
2534              </p>
2535            </td>
2536<td>
2537              <p>
2538                <span class="blue">1.72<br> (2359ns)</span>
2539              </p>
2540            </td>
2541<td>
2542              <p>
2543                <span class="green">1.00<br> (1368ns)</span>
2544              </p>
2545            </td>
2546</tr>
2547<tr>
2548<td>
2549              <p>
2550                Laplace (CDF)
2551              </p>
2552            </td>
2553<td>
2554              <p>
2555                <span class="green">1.02<br> (50ns)</span>
2556              </p>
2557            </td>
2558<td>
2559              <p>
2560                <span class="green">1.00<br> (49ns)</span>
2561              </p>
2562            </td>
2563<td>
2564              <p>
2565                <span class="green">1.00<br> (49ns)</span>
2566              </p>
2567            </td>
2568<td>
2569              <p>
2570                <span class="green">1.08<br> (53ns)</span>
2571              </p>
2572            </td>
2573</tr>
2574<tr>
2575<td>
2576              <p>
2577                Laplace (PDF)
2578              </p>
2579            </td>
2580<td>
2581              <p>
2582                <span class="green">1.00<br> (49ns)</span>
2583              </p>
2584            </td>
2585<td>
2586              <p>
2587                <span class="green">1.02<br> (50ns)</span>
2588              </p>
2589            </td>
2590<td>
2591              <p>
2592                <span class="green">1.00<br> (49ns)</span>
2593              </p>
2594            </td>
2595<td>
2596              <p>
2597                <span class="green">1.04<br> (51ns)</span>
2598              </p>
2599            </td>
2600</tr>
2601<tr>
2602<td>
2603              <p>
2604                Laplace (quantile)
2605              </p>
2606            </td>
2607<td>
2608              <p>
2609                <span class="green">1.03<br> (33ns)</span>
2610              </p>
2611            </td>
2612<td>
2613              <p>
2614                <span class="green">1.03<br> (33ns)</span>
2615              </p>
2616            </td>
2617<td>
2618              <p>
2619                <span class="green">1.00<br> (32ns)</span>
2620              </p>
2621            </td>
2622<td>
2623              <p>
2624                <span class="green">1.16<br> (37ns)</span>
2625              </p>
2626            </td>
2627</tr>
2628<tr>
2629<td>
2630              <p>
2631                LogNormal (CDF)
2632              </p>
2633            </td>
2634<td>
2635              <p>
2636                <span class="blue">1.73<br> (176ns)</span>
2637              </p>
2638            </td>
2639<td>
2640              <p>
2641                <span class="blue">1.25<br> (127ns)</span>
2642              </p>
2643            </td>
2644<td>
2645              <p>
2646                <span class="blue">1.28<br> (131ns)</span>
2647              </p>
2648            </td>
2649<td>
2650              <p>
2651                <span class="green">1.00<br> (102ns)</span>
2652              </p>
2653            </td>
2654</tr>
2655<tr>
2656<td>
2657              <p>
2658                LogNormal (PDF)
2659              </p>
2660            </td>
2661<td>
2662              <p>
2663                <span class="green">1.04<br> (87ns)</span>
2664              </p>
2665            </td>
2666<td>
2667              <p>
2668                <span class="green">1.02<br> (86ns)</span>
2669              </p>
2670            </td>
2671<td>
2672              <p>
2673                <span class="green">1.00<br> (84ns)</span>
2674              </p>
2675            </td>
2676<td>
2677              <p>
2678                <span class="green">1.07<br> (90ns)</span>
2679              </p>
2680            </td>
2681</tr>
2682<tr>
2683<td>
2684              <p>
2685                LogNormal (quantile)
2686              </p>
2687            </td>
2688<td>
2689              <p>
2690                <span class="blue">1.23<br> (116ns)</span>
2691              </p>
2692            </td>
2693<td>
2694              <p>
2695                <span class="green">1.00<br> (94ns)</span>
2696              </p>
2697            </td>
2698<td>
2699              <p>
2700                <span class="green">1.01<br> (95ns)</span>
2701              </p>
2702            </td>
2703<td>
2704              <p>
2705                <span class="green">1.06<br> (100ns)</span>
2706              </p>
2707            </td>
2708</tr>
2709<tr>
2710<td>
2711              <p>
2712                Logistic (CDF)
2713              </p>
2714            </td>
2715<td>
2716              <p>
2717                <span class="green">1.00<br> (46ns)</span>
2718              </p>
2719            </td>
2720<td>
2721              <p>
2722                <span class="green">1.02<br> (47ns)</span>
2723              </p>
2724            </td>
2725<td>
2726              <p>
2727                <span class="green">1.00<br> (46ns)</span>
2728              </p>
2729            </td>
2730<td>
2731              <p>
2732                <span class="green">1.02<br> (47ns)</span>
2733              </p>
2734            </td>
2735</tr>
2736<tr>
2737<td>
2738              <p>
2739                Logistic (PDF)
2740              </p>
2741            </td>
2742<td>
2743              <p>
2744                <span class="green">1.00<br> (46ns)</span>
2745              </p>
2746            </td>
2747<td>
2748              <p>
2749                <span class="green">1.02<br> (47ns)</span>
2750              </p>
2751            </td>
2752<td>
2753              <p>
2754                <span class="green">1.02<br> (47ns)</span>
2755              </p>
2756            </td>
2757<td>
2758              <p>
2759                <span class="green">1.07<br> (49ns)</span>
2760              </p>
2761            </td>
2762</tr>
2763<tr>
2764<td>
2765              <p>
2766                Logistic (quantile)
2767              </p>
2768            </td>
2769<td>
2770              <p>
2771                <span class="green">1.00<br> (33ns)</span>
2772              </p>
2773            </td>
2774<td>
2775              <p>
2776                <span class="green">1.03<br> (34ns)</span>
2777              </p>
2778            </td>
2779<td>
2780              <p>
2781                <span class="green">1.00<br> (33ns)</span>
2782              </p>
2783            </td>
2784<td>
2785              <p>
2786                <span class="green">1.15<br> (38ns)</span>
2787              </p>
2788            </td>
2789</tr>
2790<tr>
2791<td>
2792              <p>
2793                NegativeBinomial (CDF)
2794              </p>
2795            </td>
2796<td>
2797              <p>
2798                <span class="red">3.95<br> (1158ns)</span>
2799              </p>
2800            </td>
2801<td>
2802              <p>
2803                <span class="blue">1.66<br> (485ns)</span>
2804              </p>
2805            </td>
2806<td>
2807              <p>
2808                <span class="blue">1.32<br> (386ns)</span>
2809              </p>
2810            </td>
2811<td>
2812              <p>
2813                <span class="green">1.00<br> (293ns)</span>
2814              </p>
2815            </td>
2816</tr>
2817<tr>
2818<td>
2819              <p>
2820                NegativeBinomial (PDF)
2821              </p>
2822            </td>
2823<td>
2824              <p>
2825                <span class="red">2.29<br> (307ns)</span>
2826              </p>
2827            </td>
2828<td>
2829              <p>
2830                <span class="green">1.01<br> (135ns)</span>
2831              </p>
2832            </td>
2833<td>
2834              <p>
2835                <span class="green">1.00<br> (134ns)</span>
2836              </p>
2837            </td>
2838<td>
2839              <p>
2840                <span class="green">1.01<br> (136ns)</span>
2841              </p>
2842            </td>
2843</tr>
2844<tr>
2845<td>
2846              <p>
2847                NegativeBinomial (quantile)
2848              </p>
2849            </td>
2850<td>
2851              <p>
2852                <span class="red">2.81<br> (6154ns)</span>
2853              </p>
2854            </td>
2855<td>
2856              <p>
2857                <span class="green">1.19<br> (2608ns)</span>
2858              </p>
2859            </td>
2860<td>
2861              <p>
2862                <span class="green">1.00<br> (2190ns)</span>
2863              </p>
2864            </td>
2865<td>
2866              <p>
2867                <span class="blue">1.26<br> (2752ns)</span>
2868              </p>
2869            </td>
2870</tr>
2871<tr>
2872<td>
2873              <p>
2874                NonCentralBeta (CDF)
2875              </p>
2876            </td>
2877<td>
2878              <p>
2879                <span class="red">2.62<br> (1450ns)</span>
2880              </p>
2881            </td>
2882<td>
2883              <p>
2884                <span class="blue">1.46<br> (806ns)</span>
2885              </p>
2886            </td>
2887<td>
2888              <p>
2889                <span class="blue">1.28<br> (708ns)</span>
2890              </p>
2891            </td>
2892<td>
2893              <p>
2894                <span class="green">1.00<br> (553ns)</span>
2895              </p>
2896            </td>
2897</tr>
2898<tr>
2899<td>
2900              <p>
2901                NonCentralBeta (PDF)
2902              </p>
2903            </td>
2904<td>
2905              <p>
2906                <span class="red">2.58<br> (969ns)</span>
2907              </p>
2908            </td>
2909<td>
2910              <p>
2911                <span class="blue">1.31<br> (490ns)</span>
2912              </p>
2913            </td>
2914<td>
2915              <p>
2916                <span class="green">1.15<br> (433ns)</span>
2917              </p>
2918            </td>
2919<td>
2920              <p>
2921                <span class="green">1.00<br> (375ns)</span>
2922              </p>
2923            </td>
2924</tr>
2925<tr>
2926<td>
2927              <p>
2928                NonCentralBeta (quantile)
2929              </p>
2930            </td>
2931<td>
2932              <p>
2933                <span class="red">3.69<br> (37583ns)</span>
2934              </p>
2935            </td>
2936<td>
2937              <p>
2938                <span class="blue">2.00<br> (20369ns)</span>
2939              </p>
2940            </td>
2941<td>
2942              <p>
2943                <span class="blue">1.81<br> (18498ns)</span>
2944              </p>
2945            </td>
2946<td>
2947              <p>
2948                <span class="green">1.00<br> (10193ns)</span>
2949              </p>
2950            </td>
2951</tr>
2952<tr>
2953<td>
2954              <p>
2955                NonCentralChiSquared (CDF)
2956              </p>
2957            </td>
2958<td>
2959              <p>
2960                <span class="red">2.22<br> (4037ns)</span>
2961              </p>
2962            </td>
2963<td>
2964              <p>
2965                <span class="blue">1.79<br> (3256ns)</span>
2966              </p>
2967            </td>
2968<td>
2969              <p>
2970                <span class="blue">1.28<br> (2332ns)</span>
2971              </p>
2972            </td>
2973<td>
2974              <p>
2975                <span class="green">1.00<br> (1819ns)</span>
2976              </p>
2977            </td>
2978</tr>
2979<tr>
2980<td>
2981              <p>
2982                NonCentralChiSquared (PDF)
2983              </p>
2984            </td>
2985<td>
2986              <p>
2987                <span class="blue">1.58<br> (630ns)</span>
2988              </p>
2989            </td>
2990<td>
2991              <p>
2992                <span class="blue">1.29<br> (514ns)</span>
2993              </p>
2994            </td>
2995<td>
2996              <p>
2997                <span class="green">1.00<br> (399ns)</span>
2998              </p>
2999            </td>
3000<td>
3001              <p>
3002                <span class="green">1.03<br> (409ns)</span>
3003              </p>
3004            </td>
3005</tr>
3006<tr>
3007<td>
3008              <p>
3009                NonCentralChiSquared (quantile)
3010              </p>
3011            </td>
3012<td>
3013              <p>
3014                <span class="red">3.14<br> (33255ns)</span>
3015              </p>
3016            </td>
3017<td>
3018              <p>
3019                <span class="blue">1.94<br> (20620ns)</span>
3020              </p>
3021            </td>
3022<td>
3023              <p>
3024                <span class="blue">1.26<br> (13388ns)</span>
3025              </p>
3026            </td>
3027<td>
3028              <p>
3029                <span class="green">1.00<br> (10603ns)</span>
3030              </p>
3031            </td>
3032</tr>
3033<tr>
3034<td>
3035              <p>
3036                NonCentralF (CDF)
3037              </p>
3038            </td>
3039<td>
3040              <p>
3041                <span class="red">2.48<br> (1426ns)</span>
3042              </p>
3043            </td>
3044<td>
3045              <p>
3046                <span class="blue">1.32<br> (762ns)</span>
3047              </p>
3048            </td>
3049<td>
3050              <p>
3051                <span class="green">1.13<br> (652ns)</span>
3052              </p>
3053            </td>
3054<td>
3055              <p>
3056                <span class="green">1.00<br> (576ns)</span>
3057              </p>
3058            </td>
3059</tr>
3060<tr>
3061<td>
3062              <p>
3063                NonCentralF (PDF)
3064              </p>
3065            </td>
3066<td>
3067              <p>
3068                <span class="red">2.74<br> (1306ns)</span>
3069              </p>
3070            </td>
3071<td>
3072              <p>
3073                <span class="blue">1.37<br> (652ns)</span>
3074              </p>
3075            </td>
3076<td>
3077              <p>
3078                <span class="green">1.15<br> (548ns)</span>
3079              </p>
3080            </td>
3081<td>
3082              <p>
3083                <span class="green">1.00<br> (477ns)</span>
3084              </p>
3085            </td>
3086</tr>
3087<tr>
3088<td>
3089              <p>
3090                NonCentralF (quantile)
3091              </p>
3092            </td>
3093<td>
3094              <p>
3095                <span class="red">2.64<br> (22025ns)</span>
3096              </p>
3097            </td>
3098<td>
3099              <p>
3100                <span class="blue">1.38<br> (11560ns)</span>
3101              </p>
3102            </td>
3103<td>
3104              <p>
3105                <span class="green">1.12<br> (9319ns)</span>
3106              </p>
3107            </td>
3108<td>
3109              <p>
3110                <span class="green">1.00<br> (8356ns)</span>
3111              </p>
3112            </td>
3113</tr>
3114<tr>
3115<td>
3116              <p>
3117                NonCentralT (CDF)
3118              </p>
3119            </td>
3120<td>
3121              <p>
3122                <span class="red">3.75<br> (6473ns)</span>
3123              </p>
3124            </td>
3125<td>
3126              <p>
3127                <span class="blue">1.83<br> (3155ns)</span>
3128              </p>
3129            </td>
3130<td>
3131              <p>
3132                <span class="blue">1.63<br> (2819ns)</span>
3133              </p>
3134            </td>
3135<td>
3136              <p>
3137                <span class="green">1.00<br> (1727ns)</span>
3138              </p>
3139            </td>
3140</tr>
3141<tr>
3142<td>
3143              <p>
3144                NonCentralT (PDF)
3145              </p>
3146            </td>
3147<td>
3148              <p>
3149                <span class="red">2.81<br> (4098ns)</span>
3150              </p>
3151            </td>
3152<td>
3153              <p>
3154                <span class="blue">1.40<br> (2040ns)</span>
3155              </p>
3156            </td>
3157<td>
3158              <p>
3159                <span class="blue">1.42<br> (2066ns)</span>
3160              </p>
3161            </td>
3162<td>
3163              <p>
3164                <span class="green">1.00<br> (1456ns)</span>
3165              </p>
3166            </td>
3167</tr>
3168<tr>
3169<td>
3170              <p>
3171                NonCentralT (quantile)
3172              </p>
3173            </td>
3174<td>
3175              <p>
3176                <span class="red">3.80<br> (65926ns)</span>
3177              </p>
3178            </td>
3179<td>
3180              <p>
3181                <span class="blue">1.87<br> (32431ns)</span>
3182              </p>
3183            </td>
3184<td>
3185              <p>
3186                <span class="blue">1.37<br> (23756ns)</span>
3187              </p>
3188            </td>
3189<td>
3190              <p>
3191                <span class="green">1.00<br> (17331ns)</span>
3192              </p>
3193            </td>
3194</tr>
3195<tr>
3196<td>
3197              <p>
3198                Normal (CDF)
3199              </p>
3200            </td>
3201<td>
3202              <p>
3203                <span class="blue">1.78<br> (135ns)</span>
3204              </p>
3205            </td>
3206<td>
3207              <p>
3208                <span class="blue">1.53<br> (116ns)</span>
3209              </p>
3210            </td>
3211<td>
3212              <p>
3213                <span class="blue">1.22<br> (93ns)</span>
3214              </p>
3215            </td>
3216<td>
3217              <p>
3218                <span class="green">1.00<br> (76ns)</span>
3219              </p>
3220            </td>
3221</tr>
3222<tr>
3223<td>
3224              <p>
3225                Normal (PDF)
3226              </p>
3227            </td>
3228<td>
3229              <p>
3230                <span class="green">1.00<br> (48ns)</span>
3231              </p>
3232            </td>
3233<td>
3234              <p>
3235                <span class="blue">1.23<br> (59ns)</span>
3236              </p>
3237            </td>
3238<td>
3239              <p>
3240                <span class="green">1.19<br> (57ns)</span>
3241              </p>
3242            </td>
3243<td>
3244              <p>
3245                <span class="blue">1.33<br> (64ns)</span>
3246              </p>
3247            </td>
3248</tr>
3249<tr>
3250<td>
3251              <p>
3252                Normal (quantile)
3253              </p>
3254            </td>
3255<td>
3256              <p>
3257                <span class="blue">1.45<br> (80ns)</span>
3258              </p>
3259            </td>
3260<td>
3261              <p>
3262                <span class="green">1.00<br> (55ns)</span>
3263              </p>
3264            </td>
3265<td>
3266              <p>
3267                <span class="green">1.00<br> (55ns)</span>
3268              </p>
3269            </td>
3270<td>
3271              <p>
3272                <span class="green">1.02<br> (56ns)</span>
3273              </p>
3274            </td>
3275</tr>
3276<tr>
3277<td>
3278              <p>
3279                Pareto (CDF)
3280              </p>
3281            </td>
3282<td>
3283              <p>
3284                <span class="green">1.13<br> (59ns)</span>
3285              </p>
3286            </td>
3287<td>
3288              <p>
3289                <span class="green">1.00<br> (52ns)</span>
3290              </p>
3291            </td>
3292<td>
3293              <p>
3294                <span class="green">1.15<br> (60ns)</span>
3295              </p>
3296            </td>
3297<td>
3298              <p>
3299                <span class="green">1.06<br> (55ns)</span>
3300              </p>
3301            </td>
3302</tr>
3303<tr>
3304<td>
3305              <p>
3306                Pareto (PDF)
3307              </p>
3308            </td>
3309<td>
3310              <p>
3311                <span class="green">1.07<br> (96ns)</span>
3312              </p>
3313            </td>
3314<td>
3315              <p>
3316                <span class="green">1.02<br> (92ns)</span>
3317              </p>
3318            </td>
3319<td>
3320              <p>
3321                <span class="green">1.08<br> (97ns)</span>
3322              </p>
3323            </td>
3324<td>
3325              <p>
3326                <span class="green">1.00<br> (90ns)</span>
3327              </p>
3328            </td>
3329</tr>
3330<tr>
3331<td>
3332              <p>
3333                Pareto (quantile)
3334              </p>
3335            </td>
3336<td>
3337              <p>
3338                <span class="green">1.00<br> (82ns)</span>
3339              </p>
3340            </td>
3341<td>
3342              <p>
3343                <span class="green">1.02<br> (84ns)</span>
3344              </p>
3345            </td>
3346<td>
3347              <p>
3348                <span class="green">1.00<br> (82ns)</span>
3349              </p>
3350            </td>
3351<td>
3352              <p>
3353                <span class="green">1.04<br> (85ns)</span>
3354              </p>
3355            </td>
3356</tr>
3357<tr>
3358<td>
3359              <p>
3360                Poisson (CDF)
3361              </p>
3362            </td>
3363<td>
3364              <p>
3365                <span class="blue">1.97<br> (254ns)</span>
3366              </p>
3367            </td>
3368<td>
3369              <p>
3370                <span class="green">1.04<br> (134ns)</span>
3371              </p>
3372            </td>
3373<td>
3374              <p>
3375                <span class="green">1.16<br> (150ns)</span>
3376              </p>
3377            </td>
3378<td>
3379              <p>
3380                <span class="green">1.00<br> (129ns)</span>
3381              </p>
3382            </td>
3383</tr>
3384<tr>
3385<td>
3386              <p>
3387                Poisson (PDF)
3388              </p>
3389            </td>
3390<td>
3391              <p>
3392                <span class="blue">1.61<br> (171ns)</span>
3393              </p>
3394            </td>
3395<td>
3396              <p>
3397                <span class="green">1.06<br> (112ns)</span>
3398              </p>
3399            </td>
3400<td>
3401              <p>
3402                <span class="green">1.00<br> (106ns)</span>
3403              </p>
3404            </td>
3405<td>
3406              <p>
3407                <span class="green">1.05<br> (111ns)</span>
3408              </p>
3409            </td>
3410</tr>
3411<tr>
3412<td>
3413              <p>
3414                Poisson (quantile)
3415              </p>
3416            </td>
3417<td>
3418              <p>
3419                <span class="red">2.16<br> (1128ns)</span>
3420              </p>
3421            </td>
3422<td>
3423              <p>
3424                <span class="blue">1.23<br> (641ns)</span>
3425              </p>
3426            </td>
3427<td>
3428              <p>
3429                <span class="blue">1.26<br> (657ns)</span>
3430              </p>
3431            </td>
3432<td>
3433              <p>
3434                <span class="green">1.00<br> (523ns)</span>
3435              </p>
3436            </td>
3437</tr>
3438<tr>
3439<td>
3440              <p>
3441                Rayleigh (CDF)
3442              </p>
3443            </td>
3444<td>
3445              <p>
3446                <span class="blue">1.24<br> (47ns)</span>
3447              </p>
3448            </td>
3449<td>
3450              <p>
3451                <span class="green">1.00<br> (38ns)</span>
3452              </p>
3453            </td>
3454<td>
3455              <p>
3456                <span class="green">1.03<br> (39ns)</span>
3457              </p>
3458            </td>
3459<td>
3460              <p>
3461                <span class="green">1.08<br> (41ns)</span>
3462              </p>
3463            </td>
3464</tr>
3465<tr>
3466<td>
3467              <p>
3468                Rayleigh (PDF)
3469              </p>
3470            </td>
3471<td>
3472              <p>
3473                <span class="green">1.00<br> (64ns)</span>
3474              </p>
3475            </td>
3476<td>
3477              <p>
3478                <span class="green">1.09<br> (70ns)</span>
3479              </p>
3480            </td>
3481<td>
3482              <p>
3483                <span class="green">1.03<br> (66ns)</span>
3484              </p>
3485            </td>
3486<td>
3487              <p>
3488                <span class="green">1.09<br> (70ns)</span>
3489              </p>
3490            </td>
3491</tr>
3492<tr>
3493<td>
3494              <p>
3495                Rayleigh (quantile)
3496              </p>
3497            </td>
3498<td>
3499              <p>
3500                <span class="blue">2.00<br> (48ns)</span>
3501              </p>
3502            </td>
3503<td>
3504              <p>
3505                <span class="green">1.00<br> (24ns)</span>
3506              </p>
3507            </td>
3508<td>
3509              <p>
3510                <span class="green">1.08<br> (26ns)</span>
3511              </p>
3512            </td>
3513<td>
3514              <p>
3515                <span class="blue">1.29<br> (31ns)</span>
3516              </p>
3517            </td>
3518</tr>
3519<tr>
3520<td>
3521              <p>
3522                SkewNormal (CDF)
3523              </p>
3524            </td>
3525<td>
3526              <p>
3527                <span class="blue">1.40<br> (669ns)</span>
3528              </p>
3529            </td>
3530<td>
3531              <p>
3532                <span class="blue">1.32<br> (632ns)</span>
3533              </p>
3534            </td>
3535<td>
3536              <p>
3537                <span class="green">1.15<br> (549ns)</span>
3538              </p>
3539            </td>
3540<td>
3541              <p>
3542                <span class="green">1.00<br> (479ns)</span>
3543              </p>
3544            </td>
3545</tr>
3546<tr>
3547<td>
3548              <p>
3549                SkewNormal (PDF)
3550              </p>
3551            </td>
3552<td>
3553              <p>
3554                <span class="blue">1.27<br> (173ns)</span>
3555              </p>
3556            </td>
3557<td>
3558              <p>
3559                <span class="green">1.17<br> (159ns)</span>
3560              </p>
3561            </td>
3562<td>
3563              <p>
3564                <span class="green">1.15<br> (156ns)</span>
3565              </p>
3566            </td>
3567<td>
3568              <p>
3569                <span class="green">1.00<br> (136ns)</span>
3570              </p>
3571            </td>
3572</tr>
3573<tr>
3574<td>
3575              <p>
3576                SkewNormal (quantile)
3577              </p>
3578            </td>
3579<td>
3580              <p>
3581                <span class="red">2.15<br> (6968ns)</span>
3582              </p>
3583            </td>
3584<td>
3585              <p>
3586                <span class="blue">1.82<br> (5903ns)</span>
3587              </p>
3588            </td>
3589<td>
3590              <p>
3591                <span class="blue">1.32<br> (4287ns)</span>
3592              </p>
3593            </td>
3594<td>
3595              <p>
3596                <span class="green">1.00<br> (3237ns)</span>
3597              </p>
3598            </td>
3599</tr>
3600<tr>
3601<td>
3602              <p>
3603                StudentsT (CDF)
3604              </p>
3605            </td>
3606<td>
3607              <p>
3608                <span class="red">3.15<br> (1151ns)</span>
3609              </p>
3610            </td>
3611<td>
3612              <p>
3613                <span class="blue">1.98<br> (721ns)</span>
3614              </p>
3615            </td>
3616<td>
3617              <p>
3618                <span class="red">2.03<br> (741ns)</span>
3619              </p>
3620            </td>
3621<td>
3622              <p>
3623                <span class="green">1.00<br> (365ns)</span>
3624              </p>
3625            </td>
3626</tr>
3627<tr>
3628<td>
3629              <p>
3630                StudentsT (PDF)
3631              </p>
3632            </td>
3633<td>
3634              <p>
3635                <span class="red">2.12<br> (360ns)</span>
3636              </p>
3637            </td>
3638<td>
3639              <p>
3640                <span class="green">1.09<br> (186ns)</span>
3641              </p>
3642            </td>
3643<td>
3644              <p>
3645                <span class="green">1.11<br> (188ns)</span>
3646              </p>
3647            </td>
3648<td>
3649              <p>
3650                <span class="green">1.00<br> (170ns)</span>
3651              </p>
3652            </td>
3653</tr>
3654<tr>
3655<td>
3656              <p>
3657                StudentsT (quantile)
3658              </p>
3659            </td>
3660<td>
3661              <p>
3662                <span class="blue">1.70<br> (1461ns)</span>
3663              </p>
3664            </td>
3665<td>
3666              <p>
3667                <span class="blue">1.35<br> (1161ns)</span>
3668              </p>
3669            </td>
3670<td>
3671              <p>
3672                <span class="blue">1.28<br> (1099ns)</span>
3673              </p>
3674            </td>
3675<td>
3676              <p>
3677                <span class="green">1.00<br> (859ns)</span>
3678              </p>
3679            </td>
3680</tr>
3681<tr>
3682<td>
3683              <p>
3684                Weibull (CDF)
3685              </p>
3686            </td>
3687<td>
3688              <p>
3689                <span class="blue">1.30<br> (96ns)</span>
3690              </p>
3691            </td>
3692<td>
3693              <p>
3694                <span class="green">1.04<br> (77ns)</span>
3695              </p>
3696            </td>
3697<td>
3698              <p>
3699                <span class="green">1.15<br> (85ns)</span>
3700              </p>
3701            </td>
3702<td>
3703              <p>
3704                <span class="green">1.00<br> (74ns)</span>
3705              </p>
3706            </td>
3707</tr>
3708<tr>
3709<td>
3710              <p>
3711                Weibull (PDF)
3712              </p>
3713            </td>
3714<td>
3715              <p>
3716                <span class="green">1.18<br> (164ns)</span>
3717              </p>
3718            </td>
3719<td>
3720              <p>
3721                <span class="green">1.00<br> (139ns)</span>
3722              </p>
3723            </td>
3724<td>
3725              <p>
3726                <span class="green">1.15<br> (160ns)</span>
3727              </p>
3728            </td>
3729<td>
3730              <p>
3731                <span class="green">1.06<br> (148ns)</span>
3732              </p>
3733            </td>
3734</tr>
3735<tr>
3736<td>
3737              <p>
3738                Weibull (quantile)
3739              </p>
3740            </td>
3741<td>
3742              <p>
3743                <span class="green">1.12<br> (133ns)</span>
3744              </p>
3745            </td>
3746<td>
3747              <p>
3748                <span class="green">1.13<br> (134ns)</span>
3749              </p>
3750            </td>
3751<td>
3752              <p>
3753                <span class="green">1.00<br> (119ns)</span>
3754              </p>
3755            </td>
3756<td>
3757              <p>
3758                <span class="green">1.03<br> (123ns)</span>
3759              </p>
3760            </td>
3761</tr>
3762</tbody>
3763</table></div>
3764</div>
3765<br class="table-break">
3766</div>
3767<div class="section">
3768<div class="titlepage"><div><div><h2 class="title" style="clear: both">
3769<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Distribution performance comparison for different performance options with Microsoft Visual C++ version 14.2 on Windows x64">Distribution
3770    performance comparison for different performance options with Microsoft Visual
3771    C++ version 14.2 on Windows x64</a>
3772</h2></div></div></div>
3773<div class="table">
3774<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;4.&#160;Distribution performance comparison for different performance options
3775      with Microsoft Visual C++ version 14.2 on Windows x64</b></p>
3776<div class="table-contents"><table class="table" summary="Distribution performance comparison for different performance options
3777      with Microsoft Visual C++ version 14.2 on Windows x64">
3778<colgroup>
3779<col>
3780<col>
3781<col>
3782<col>
3783</colgroup>
3784<thead><tr>
3785<th>
3786              <p>
3787                Function
3788              </p>
3789            </th>
3790<th>
3791              <p>
3792                boost 1.73
3793              </p>
3794            </th>
3795<th>
3796              <p>
3797                Boost<br> promote_double&lt;false&gt;<br> digits10&lt;10&gt;
3798              </p>
3799            </th>
3800<th>
3801              <p>
3802                Boost<br> float<br> promote_float&lt;false&gt;
3803              </p>
3804            </th>
3805</tr></thead>
3806<tbody>
3807<tr>
3808<td>
3809              <p>
3810                ArcSine (CDF)
3811              </p>
3812            </td>
3813<td>
3814              <p>
3815                <span class="blue">1.30<br> (43ns)</span>
3816              </p>
3817            </td>
3818<td>
3819              <p>
3820                <span class="green">1.00<br> (33ns)</span>
3821              </p>
3822            </td>
3823<td>
3824              <p>
3825                <span class="green">1.00<br> (33ns)</span>
3826              </p>
3827            </td>
3828</tr>
3829<tr>
3830<td>
3831              <p>
3832                ArcSine (PDF)
3833              </p>
3834            </td>
3835<td>
3836              <p>
3837                <span class="green">1.00<br> (17ns)</span>
3838              </p>
3839            </td>
3840<td>
3841              <p>
3842                <span class="green">1.06<br> (18ns)</span>
3843              </p>
3844            </td>
3845<td>
3846              <p>
3847                <span class="green">1.00<br> (17ns)</span>
3848              </p>
3849            </td>
3850</tr>
3851<tr>
3852<td>
3853              <p>
3854                ArcSine (quantile)
3855              </p>
3856            </td>
3857<td>
3858              <p>
3859                <span class="green">1.20<br> (30ns)</span>
3860              </p>
3861            </td>
3862<td>
3863              <p>
3864                <span class="green">1.00<br> (25ns)</span>
3865              </p>
3866            </td>
3867<td>
3868              <p>
3869                <span class="green">1.20<br> (30ns)</span>
3870              </p>
3871            </td>
3872</tr>
3873<tr>
3874<td>
3875              <p>
3876                Beta (CDF)
3877              </p>
3878            </td>
3879<td>
3880              <p>
3881                <span class="blue">1.37<br> (158ns)</span>
3882              </p>
3883            </td>
3884<td>
3885              <p>
3886                <span class="blue">1.22<br> (140ns)</span>
3887              </p>
3888            </td>
3889<td>
3890              <p>
3891                <span class="green">1.00<br> (115ns)</span>
3892              </p>
3893            </td>
3894</tr>
3895<tr>
3896<td>
3897              <p>
3898                Beta (PDF)
3899              </p>
3900            </td>
3901<td>
3902              <p>
3903                <span class="green">1.08<br> (104ns)</span>
3904              </p>
3905            </td>
3906<td>
3907              <p>
3908                <span class="green">1.14<br> (109ns)</span>
3909              </p>
3910            </td>
3911<td>
3912              <p>
3913                <span class="green">1.00<br> (96ns)</span>
3914              </p>
3915            </td>
3916</tr>
3917<tr>
3918<td>
3919              <p>
3920                Beta (quantile)
3921              </p>
3922            </td>
3923<td>
3924              <p>
3925                <span class="green">1.07<br> (806ns)</span>
3926              </p>
3927            </td>
3928<td>
3929              <p>
3930                <span class="green">1.11<br> (833ns)</span>
3931              </p>
3932            </td>
3933<td>
3934              <p>
3935                <span class="green">1.00<br> (753ns)</span>
3936              </p>
3937            </td>
3938</tr>
3939<tr>
3940<td>
3941              <p>
3942                Binomial (CDF)
3943              </p>
3944            </td>
3945<td>
3946              <p>
3947                <span class="blue">1.80<br> (413ns)</span>
3948              </p>
3949            </td>
3950<td>
3951              <p>
3952                <span class="blue">1.50<br> (344ns)</span>
3953              </p>
3954            </td>
3955<td>
3956              <p>
3957                <span class="green">1.00<br> (230ns)</span>
3958              </p>
3959            </td>
3960</tr>
3961<tr>
3962<td>
3963              <p>
3964                Binomial (PDF)
3965              </p>
3966            </td>
3967<td>
3968              <p>
3969                <span class="green">1.01<br> (127ns)</span>
3970              </p>
3971            </td>
3972<td>
3973              <p>
3974                <span class="blue">1.41<br> (178ns)</span>
3975              </p>
3976            </td>
3977<td>
3978              <p>
3979                <span class="green">1.00<br> (126ns)</span>
3980              </p>
3981            </td>
3982</tr>
3983<tr>
3984<td>
3985              <p>
3986                Binomial (quantile)
3987              </p>
3988            </td>
3989<td>
3990              <p>
3991                <span class="blue">1.38<br> (2024ns)</span>
3992              </p>
3993            </td>
3994<td>
3995              <p>
3996                <span class="green">1.18<br> (1727ns)</span>
3997              </p>
3998            </td>
3999<td>
4000              <p>
4001                <span class="green">1.00<br> (1466ns)</span>
4002              </p>
4003            </td>
4004</tr>
4005<tr>
4006<td>
4007              <p>
4008                Cauchy (CDF)
4009              </p>
4010            </td>
4011<td>
4012              <p>
4013                <span class="green">1.00<br> (26ns)</span>
4014              </p>
4015            </td>
4016<td>
4017              <p>
4018                <span class="green">1.04<br> (27ns)</span>
4019              </p>
4020            </td>
4021<td>
4022              <p>
4023                <span class="blue">1.23<br> (32ns)</span>
4024              </p>
4025            </td>
4026</tr>
4027<tr>
4028<td>
4029              <p>
4030                Cauchy (PDF)
4031              </p>
4032            </td>
4033<td>
4034              <p>
4035                <span class="green">1.00<br> (8ns)</span>
4036              </p>
4037            </td>
4038<td>
4039              <p>
4040                <span class="blue">1.38<br> (11ns)</span>
4041              </p>
4042            </td>
4043<td>
4044              <p>
4045                <span class="green">1.13<br> (9ns)</span>
4046              </p>
4047            </td>
4048</tr>
4049<tr>
4050<td>
4051              <p>
4052                Cauchy (quantile)
4053              </p>
4054            </td>
4055<td>
4056              <p>
4057                <span class="blue">1.37<br> (26ns)</span>
4058              </p>
4059            </td>
4060<td>
4061              <p>
4062                <span class="green">1.00<br> (19ns)</span>
4063              </p>
4064            </td>
4065<td>
4066              <p>
4067                <span class="blue">1.37<br> (26ns)</span>
4068              </p>
4069            </td>
4070</tr>
4071<tr>
4072<td>
4073              <p>
4074                ChiSquared (CDF)
4075              </p>
4076            </td>
4077<td>
4078              <p>
4079                <span class="blue">1.35<br> (676ns)</span>
4080              </p>
4081            </td>
4082<td>
4083              <p>
4084                <span class="blue">1.59<br> (798ns)</span>
4085              </p>
4086            </td>
4087<td>
4088              <p>
4089                <span class="green">1.00<br> (501ns)</span>
4090              </p>
4091            </td>
4092</tr>
4093<tr>
4094<td>
4095              <p>
4096                ChiSquared (PDF)
4097              </p>
4098            </td>
4099<td>
4100              <p>
4101                <span class="green">1.00<br> (93ns)</span>
4102              </p>
4103            </td>
4104<td>
4105              <p>
4106                <span class="blue">1.27<br> (118ns)</span>
4107              </p>
4108            </td>
4109<td>
4110              <p>
4111                <span class="blue">1.22<br> (113ns)</span>
4112              </p>
4113            </td>
4114</tr>
4115<tr>
4116<td>
4117              <p>
4118                ChiSquared (quantile)
4119              </p>
4120            </td>
4121<td>
4122              <p>
4123                <span class="blue">1.62<br> (1073ns)</span>
4124              </p>
4125            </td>
4126<td>
4127              <p>
4128                <span class="blue">1.83<br> (1211ns)</span>
4129              </p>
4130            </td>
4131<td>
4132              <p>
4133                <span class="green">1.00<br> (662ns)</span>
4134              </p>
4135            </td>
4136</tr>
4137<tr>
4138<td>
4139              <p>
4140                Exponential (CDF)
4141              </p>
4142            </td>
4143<td>
4144              <p>
4145                <span class="blue">1.70<br> (17ns)</span>
4146              </p>
4147            </td>
4148<td>
4149              <p>
4150                <span class="green">1.10<br> (11ns)</span>
4151              </p>
4152            </td>
4153<td>
4154              <p>
4155                <span class="green">1.00<br> (10ns)</span>
4156              </p>
4157            </td>
4158</tr>
4159<tr>
4160<td>
4161              <p>
4162                Exponential (PDF)
4163              </p>
4164            </td>
4165<td>
4166              <p>
4167                <span class="blue">1.50<br> (15ns)</span>
4168              </p>
4169            </td>
4170<td>
4171              <p>
4172                <span class="blue">1.70<br> (17ns)</span>
4173              </p>
4174            </td>
4175<td>
4176              <p>
4177                <span class="green">1.00<br> (10ns)</span>
4178              </p>
4179            </td>
4180</tr>
4181<tr>
4182<td>
4183              <p>
4184                Exponential (quantile)
4185              </p>
4186            </td>
4187<td>
4188              <p>
4189                <span class="green">1.18<br> (20ns)</span>
4190              </p>
4191            </td>
4192<td>
4193              <p>
4194                <span class="green">1.00<br> (17ns)</span>
4195              </p>
4196            </td>
4197<td>
4198              <p>
4199                <span class="green">1.00<br> (17ns)</span>
4200              </p>
4201            </td>
4202</tr>
4203<tr>
4204<td>
4205              <p>
4206                ExtremeValue (CDF)
4207              </p>
4208            </td>
4209<td>
4210              <p>
4211                <span class="green">1.18<br> (26ns)</span>
4212              </p>
4213            </td>
4214<td>
4215              <p>
4216                <span class="green">1.18<br> (26ns)</span>
4217              </p>
4218            </td>
4219<td>
4220              <p>
4221                <span class="green">1.00<br> (22ns)</span>
4222              </p>
4223            </td>
4224</tr>
4225<tr>
4226<td>
4227              <p>
4228                ExtremeValue (PDF)
4229              </p>
4230            </td>
4231<td>
4232              <p>
4233                <span class="green">1.08<br> (27ns)</span>
4234              </p>
4235            </td>
4236<td>
4237              <p>
4238                <span class="green">1.04<br> (26ns)</span>
4239              </p>
4240            </td>
4241<td>
4242              <p>
4243                <span class="green">1.00<br> (25ns)</span>
4244              </p>
4245            </td>
4246</tr>
4247<tr>
4248<td>
4249              <p>
4250                ExtremeValue (quantile)
4251              </p>
4252            </td>
4253<td>
4254              <p>
4255                <span class="blue">1.48<br> (34ns)</span>
4256              </p>
4257            </td>
4258<td>
4259              <p>
4260                <span class="green">1.09<br> (25ns)</span>
4261              </p>
4262            </td>
4263<td>
4264              <p>
4265                <span class="green">1.00<br> (23ns)</span>
4266              </p>
4267            </td>
4268</tr>
4269<tr>
4270<td>
4271              <p>
4272                F (CDF)
4273              </p>
4274            </td>
4275<td>
4276              <p>
4277                <span class="blue">1.56<br> (277ns)</span>
4278              </p>
4279            </td>
4280<td>
4281              <p>
4282                <span class="blue">1.28<br> (228ns)</span>
4283              </p>
4284            </td>
4285<td>
4286              <p>
4287                <span class="green">1.00<br> (178ns)</span>
4288              </p>
4289            </td>
4290</tr>
4291<tr>
4292<td>
4293              <p>
4294                F (PDF)
4295              </p>
4296            </td>
4297<td>
4298              <p>
4299                <span class="green">1.07<br> (97ns)</span>
4300              </p>
4301            </td>
4302<td>
4303              <p>
4304                <span class="green">1.13<br> (103ns)</span>
4305              </p>
4306            </td>
4307<td>
4308              <p>
4309                <span class="green">1.00<br> (91ns)</span>
4310              </p>
4311            </td>
4312</tr>
4313<tr>
4314<td>
4315              <p>
4316                F (quantile)
4317              </p>
4318            </td>
4319<td>
4320              <p>
4321                <span class="green">1.17<br> (901ns)</span>
4322              </p>
4323            </td>
4324<td>
4325              <p>
4326                <span class="green">1.00<br> (770ns)</span>
4327              </p>
4328            </td>
4329<td>
4330              <p>
4331                <span class="green">1.08<br> (833ns)</span>
4332              </p>
4333            </td>
4334</tr>
4335<tr>
4336<td>
4337              <p>
4338                Gamma (CDF)
4339              </p>
4340            </td>
4341<td>
4342              <p>
4343                <span class="blue">1.30<br> (234ns)</span>
4344              </p>
4345            </td>
4346<td>
4347              <p>
4348                <span class="blue">1.29<br> (233ns)</span>
4349              </p>
4350            </td>
4351<td>
4352              <p>
4353                <span class="green">1.00<br> (180ns)</span>
4354              </p>
4355            </td>
4356</tr>
4357<tr>
4358<td>
4359              <p>
4360                Gamma (PDF)
4361              </p>
4362            </td>
4363<td>
4364              <p>
4365                <span class="blue">1.25<br> (85ns)</span>
4366              </p>
4367            </td>
4368<td>
4369              <p>
4370                <span class="blue">1.25<br> (85ns)</span>
4371              </p>
4372            </td>
4373<td>
4374              <p>
4375                <span class="green">1.00<br> (68ns)</span>
4376              </p>
4377            </td>
4378</tr>
4379<tr>
4380<td>
4381              <p>
4382                Gamma (quantile)
4383              </p>
4384            </td>
4385<td>
4386              <p>
4387                <span class="blue">1.64<br> (640ns)</span>
4388              </p>
4389            </td>
4390<td>
4391              <p>
4392                <span class="blue">1.28<br> (501ns)</span>
4393              </p>
4394            </td>
4395<td>
4396              <p>
4397                <span class="green">1.00<br> (390ns)</span>
4398              </p>
4399            </td>
4400</tr>
4401<tr>
4402<td>
4403              <p>
4404                Geometric (CDF)
4405              </p>
4406            </td>
4407<td>
4408              <p>
4409                <span class="green">1.13<br> (18ns)</span>
4410              </p>
4411            </td>
4412<td>
4413              <p>
4414                <span class="green">1.00<br> (16ns)</span>
4415              </p>
4416            </td>
4417<td>
4418              <p>
4419                <span class="green">1.19<br> (19ns)</span>
4420              </p>
4421            </td>
4422</tr>
4423<tr>
4424<td>
4425              <p>
4426                Geometric (PDF)
4427              </p>
4428            </td>
4429<td>
4430              <p>
4431                <span class="blue">1.85<br> (24ns)</span>
4432              </p>
4433            </td>
4434<td>
4435              <p>
4436                <span class="blue">1.54<br> (20ns)</span>
4437              </p>
4438            </td>
4439<td>
4440              <p>
4441                <span class="green">1.00<br> (13ns)</span>
4442              </p>
4443            </td>
4444</tr>
4445<tr>
4446<td>
4447              <p>
4448                Geometric (quantile)
4449              </p>
4450            </td>
4451<td>
4452              <p>
4453                <span class="green">1.18<br> (20ns)</span>
4454              </p>
4455            </td>
4456<td>
4457              <p>
4458                <span class="green">1.00<br> (17ns)</span>
4459              </p>
4460            </td>
4461<td>
4462              <p>
4463                <span class="green">1.00<br> (17ns)</span>
4464              </p>
4465            </td>
4466</tr>
4467<tr>
4468<td>
4469              <p>
4470                Hypergeometric (CDF)
4471              </p>
4472            </td>
4473<td>
4474              <p>
4475                <span class="green">1.00<br> (244196ns)</span>
4476              </p>
4477            </td>
4478<td>
4479              <p>
4480                <span class="green">1.07<br> (260490ns)</span>
4481              </p>
4482            </td>
4483<td>
4484              <p>
4485                <span class="green">1.11<br> (271879ns)</span>
4486              </p>
4487            </td>
4488</tr>
4489<tr>
4490<td>
4491              <p>
4492                Hypergeometric (PDF)
4493              </p>
4494            </td>
4495<td>
4496              <p>
4497                <span class="green">1.00<br> (272497ns)</span>
4498              </p>
4499            </td>
4500<td>
4501              <p>
4502                <span class="green">1.04<br> (282183ns)</span>
4503              </p>
4504            </td>
4505<td>
4506              <p>
4507                <span class="green">1.09<br> (296020ns)</span>
4508              </p>
4509            </td>
4510</tr>
4511<tr>
4512<td>
4513              <p>
4514                Hypergeometric (quantile)
4515              </p>
4516            </td>
4517<td>
4518              <p>
4519                <span class="green">1.00<br> (308077ns)</span>
4520              </p>
4521            </td>
4522<td>
4523              <p>
4524                <span class="green">1.00<br> (307365ns)</span>
4525              </p>
4526            </td>
4527<td>
4528              <p>
4529                <span class="green">1.06<br> (326617ns)</span>
4530              </p>
4531            </td>
4532</tr>
4533<tr>
4534<td>
4535              <p>
4536                InverseChiSquared (CDF)
4537              </p>
4538            </td>
4539<td>
4540              <p>
4541                <span class="blue">1.65<br> (584ns)</span>
4542              </p>
4543            </td>
4544<td>
4545              <p>
4546                <span class="blue">1.30<br> (459ns)</span>
4547              </p>
4548            </td>
4549<td>
4550              <p>
4551                <span class="green">1.00<br> (353ns)</span>
4552              </p>
4553            </td>
4554</tr>
4555<tr>
4556<td>
4557              <p>
4558                InverseChiSquared (PDF)
4559              </p>
4560            </td>
4561<td>
4562              <p>
4563                <span class="blue">1.37<br> (78ns)</span>
4564              </p>
4565            </td>
4566<td>
4567              <p>
4568                <span class="blue">1.32<br> (75ns)</span>
4569              </p>
4570            </td>
4571<td>
4572              <p>
4573                <span class="green">1.00<br> (57ns)</span>
4574              </p>
4575            </td>
4576</tr>
4577<tr>
4578<td>
4579              <p>
4580                InverseChiSquared (quantile)
4581              </p>
4582            </td>
4583<td>
4584              <p>
4585                <span class="blue">1.68<br> (884ns)</span>
4586              </p>
4587            </td>
4588<td>
4589              <p>
4590                <span class="blue">1.30<br> (684ns)</span>
4591              </p>
4592            </td>
4593<td>
4594              <p>
4595                <span class="green">1.00<br> (527ns)</span>
4596              </p>
4597            </td>
4598</tr>
4599<tr>
4600<td>
4601              <p>
4602                InverseGamma (CDF)
4603              </p>
4604            </td>
4605<td>
4606              <p>
4607                <span class="blue">1.36<br> (244ns)</span>
4608              </p>
4609            </td>
4610<td>
4611              <p>
4612                <span class="green">1.17<br> (210ns)</span>
4613              </p>
4614            </td>
4615<td>
4616              <p>
4617                <span class="green">1.00<br> (179ns)</span>
4618              </p>
4619            </td>
4620</tr>
4621<tr>
4622<td>
4623              <p>
4624                InverseGamma (PDF)
4625              </p>
4626            </td>
4627<td>
4628              <p>
4629                <span class="blue">1.36<br> (91ns)</span>
4630              </p>
4631            </td>
4632<td>
4633              <p>
4634                <span class="blue">1.39<br> (93ns)</span>
4635              </p>
4636            </td>
4637<td>
4638              <p>
4639                <span class="green">1.00<br> (67ns)</span>
4640              </p>
4641            </td>
4642</tr>
4643<tr>
4644<td>
4645              <p>
4646                InverseGamma (quantile)
4647              </p>
4648            </td>
4649<td>
4650              <p>
4651                <span class="blue">1.58<br> (638ns)</span>
4652              </p>
4653            </td>
4654<td>
4655              <p>
4656                <span class="green">1.12<br> (452ns)</span>
4657              </p>
4658            </td>
4659<td>
4660              <p>
4661                <span class="green">1.00<br> (403ns)</span>
4662              </p>
4663            </td>
4664</tr>
4665<tr>
4666<td>
4667              <p>
4668                InverseGaussian (CDF)
4669              </p>
4670            </td>
4671<td>
4672              <p>
4673                <span class="blue">1.28<br> (109ns)</span>
4674              </p>
4675            </td>
4676<td>
4677              <p>
4678                <span class="blue">1.32<br> (112ns)</span>
4679              </p>
4680            </td>
4681<td>
4682              <p>
4683                <span class="green">1.00<br> (85ns)</span>
4684              </p>
4685            </td>
4686</tr>
4687<tr>
4688<td>
4689              <p>
4690                InverseGaussian (PDF)
4691              </p>
4692            </td>
4693<td>
4694              <p>
4695                <span class="green">1.09<br> (12ns)</span>
4696              </p>
4697            </td>
4698<td>
4699              <p>
4700                <span class="green">1.18<br> (13ns)</span>
4701              </p>
4702            </td>
4703<td>
4704              <p>
4705                <span class="green">1.00<br> (11ns)</span>
4706              </p>
4707            </td>
4708</tr>
4709<tr>
4710<td>
4711              <p>
4712                InverseGaussian (quantile)
4713              </p>
4714            </td>
4715<td>
4716              <p>
4717                <span class="blue">1.58<br> (1651ns)</span>
4718              </p>
4719            </td>
4720<td>
4721              <p>
4722                <span class="green">1.15<br> (1209ns)</span>
4723              </p>
4724            </td>
4725<td>
4726              <p>
4727                <span class="green">1.00<br> (1048ns)</span>
4728              </p>
4729            </td>
4730</tr>
4731<tr>
4732<td>
4733              <p>
4734                Laplace (CDF)
4735              </p>
4736            </td>
4737<td>
4738              <p>
4739                <span class="green">1.00<br> (13ns)</span>
4740              </p>
4741            </td>
4742<td>
4743              <p>
4744                <span class="green">1.00<br> (13ns)</span>
4745              </p>
4746            </td>
4747<td>
4748              <p>
4749                <span class="green">1.00<br> (13ns)</span>
4750              </p>
4751            </td>
4752</tr>
4753<tr>
4754<td>
4755              <p>
4756                Laplace (PDF)
4757              </p>
4758            </td>
4759<td>
4760              <p>
4761                <span class="green">1.08<br> (14ns)</span>
4762              </p>
4763            </td>
4764<td>
4765              <p>
4766                <span class="blue">1.46<br> (19ns)</span>
4767              </p>
4768            </td>
4769<td>
4770              <p>
4771                <span class="green">1.00<br> (13ns)</span>
4772              </p>
4773            </td>
4774</tr>
4775<tr>
4776<td>
4777              <p>
4778                Laplace (quantile)
4779              </p>
4780            </td>
4781<td>
4782              <p>
4783                <span class="green">1.08<br> (14ns)</span>
4784              </p>
4785            </td>
4786<td>
4787              <p>
4788                <span class="green">1.00<br> (13ns)</span>
4789              </p>
4790            </td>
4791<td>
4792              <p>
4793                <span class="green">1.00<br> (13ns)</span>
4794              </p>
4795            </td>
4796</tr>
4797<tr>
4798<td>
4799              <p>
4800                LogNormal (CDF)
4801              </p>
4802            </td>
4803<td>
4804              <p>
4805                <span class="green">1.04<br> (79ns)</span>
4806              </p>
4807            </td>
4808<td>
4809              <p>
4810                <span class="green">1.00<br> (76ns)</span>
4811              </p>
4812            </td>
4813<td>
4814              <p>
4815                <span class="green">1.08<br> (82ns)</span>
4816              </p>
4817            </td>
4818</tr>
4819<tr>
4820<td>
4821              <p>
4822                LogNormal (PDF)
4823              </p>
4824            </td>
4825<td>
4826              <p>
4827                <span class="blue">1.25<br> (35ns)</span>
4828              </p>
4829            </td>
4830<td>
4831              <p>
4832                <span class="green">1.07<br> (30ns)</span>
4833              </p>
4834            </td>
4835<td>
4836              <p>
4837                <span class="green">1.00<br> (28ns)</span>
4838              </p>
4839            </td>
4840</tr>
4841<tr>
4842<td>
4843              <p>
4844                LogNormal (quantile)
4845              </p>
4846            </td>
4847<td>
4848              <p>
4849                <span class="green">1.13<br> (61ns)</span>
4850              </p>
4851            </td>
4852<td>
4853              <p>
4854                <span class="green">1.09<br> (59ns)</span>
4855              </p>
4856            </td>
4857<td>
4858              <p>
4859                <span class="green">1.00<br> (54ns)</span>
4860              </p>
4861            </td>
4862</tr>
4863<tr>
4864<td>
4865              <p>
4866                Logistic (CDF)
4867              </p>
4868            </td>
4869<td>
4870              <p>
4871                <span class="green">1.00<br> (14ns)</span>
4872              </p>
4873            </td>
4874<td>
4875              <p>
4876                <span class="green">1.07<br> (15ns)</span>
4877              </p>
4878            </td>
4879<td>
4880              <p>
4881                <span class="blue">1.36<br> (19ns)</span>
4882              </p>
4883            </td>
4884</tr>
4885<tr>
4886<td>
4887              <p>
4888                Logistic (PDF)
4889              </p>
4890            </td>
4891<td>
4892              <p>
4893                <span class="green">1.06<br> (18ns)</span>
4894              </p>
4895            </td>
4896<td>
4897              <p>
4898                <span class="green">1.00<br> (17ns)</span>
4899              </p>
4900            </td>
4901<td>
4902              <p>
4903                <span class="blue">1.29<br> (22ns)</span>
4904              </p>
4905            </td>
4906</tr>
4907<tr>
4908<td>
4909              <p>
4910                Logistic (quantile)
4911              </p>
4912            </td>
4913<td>
4914              <p>
4915                <span class="green">1.00<br> (15ns)</span>
4916              </p>
4917            </td>
4918<td>
4919              <p>
4920                <span class="blue">1.33<br> (20ns)</span>
4921              </p>
4922            </td>
4923<td>
4924              <p>
4925                <span class="blue">1.33<br> (20ns)</span>
4926              </p>
4927            </td>
4928</tr>
4929<tr>
4930<td>
4931              <p>
4932                NegativeBinomial (CDF)
4933              </p>
4934            </td>
4935<td>
4936              <p>
4937                <span class="blue">1.69<br> (481ns)</span>
4938              </p>
4939            </td>
4940<td>
4941              <p>
4942                <span class="blue">1.33<br> (378ns)</span>
4943              </p>
4944            </td>
4945<td>
4946              <p>
4947                <span class="green">1.00<br> (285ns)</span>
4948              </p>
4949            </td>
4950</tr>
4951<tr>
4952<td>
4953              <p>
4954                NegativeBinomial (PDF)
4955              </p>
4956            </td>
4957<td>
4958              <p>
4959                <span class="green">1.01<br> (114ns)</span>
4960              </p>
4961            </td>
4962<td>
4963              <p>
4964                <span class="green">1.00<br> (113ns)</span>
4965              </p>
4966            </td>
4967<td>
4968              <p>
4969                <span class="green">1.09<br> (123ns)</span>
4970              </p>
4971            </td>
4972</tr>
4973<tr>
4974<td>
4975              <p>
4976                NegativeBinomial (quantile)
4977              </p>
4978            </td>
4979<td>
4980              <p>
4981                <span class="blue">1.21<br> (2651ns)</span>
4982              </p>
4983            </td>
4984<td>
4985              <p>
4986                <span class="green">1.00<br> (2186ns)</span>
4987              </p>
4988            </td>
4989<td>
4990              <p>
4991                <span class="green">1.17<br> (2554ns)</span>
4992              </p>
4993            </td>
4994</tr>
4995<tr>
4996<td>
4997              <p>
4998                NonCentralBeta (CDF)
4999              </p>
5000            </td>
5001<td>
5002              <p>
5003                <span class="blue">1.90<br> (735ns)</span>
5004              </p>
5005            </td>
5006<td>
5007              <p>
5008                <span class="blue">1.54<br> (597ns)</span>
5009              </p>
5010            </td>
5011<td>
5012              <p>
5013                <span class="green">1.00<br> (387ns)</span>
5014              </p>
5015            </td>
5016</tr>
5017<tr>
5018<td>
5019              <p>
5020                NonCentralBeta (PDF)
5021              </p>
5022            </td>
5023<td>
5024              <p>
5025                <span class="blue">1.62<br> (489ns)</span>
5026              </p>
5027            </td>
5028<td>
5029              <p>
5030                <span class="blue">1.56<br> (471ns)</span>
5031              </p>
5032            </td>
5033<td>
5034              <p>
5035                <span class="green">1.00<br> (302ns)</span>
5036              </p>
5037            </td>
5038</tr>
5039<tr>
5040<td>
5041              <p>
5042                NonCentralBeta (quantile)
5043              </p>
5044            </td>
5045<td>
5046              <p>
5047                <span class="red">2.35<br> (14689ns)</span>
5048              </p>
5049            </td>
5050<td>
5051              <p>
5052                <span class="red">2.10<br> (13173ns)</span>
5053              </p>
5054            </td>
5055<td>
5056              <p>
5057                <span class="green">1.00<br> (6263ns)</span>
5058              </p>
5059            </td>
5060</tr>
5061<tr>
5062<td>
5063              <p>
5064                NonCentralChiSquared (CDF)
5065              </p>
5066            </td>
5067<td>
5068              <p>
5069                <span class="blue">1.84<br> (2643ns)</span>
5070              </p>
5071            </td>
5072<td>
5073              <p>
5074                <span class="blue">1.45<br> (2087ns)</span>
5075              </p>
5076            </td>
5077<td>
5078              <p>
5079                <span class="green">1.00<br> (1438ns)</span>
5080              </p>
5081            </td>
5082</tr>
5083<tr>
5084<td>
5085              <p>
5086                NonCentralChiSquared (PDF)
5087              </p>
5088            </td>
5089<td>
5090              <p>
5091                <span class="blue">1.36<br> (290ns)</span>
5092              </p>
5093            </td>
5094<td>
5095              <p>
5096                <span class="blue">1.28<br> (272ns)</span>
5097              </p>
5098            </td>
5099<td>
5100              <p>
5101                <span class="green">1.00<br> (213ns)</span>
5102              </p>
5103            </td>
5104</tr>
5105<tr>
5106<td>
5107              <p>
5108                NonCentralChiSquared (quantile)
5109              </p>
5110            </td>
5111<td>
5112              <p>
5113                <span class="red">2.49<br> (16692ns)</span>
5114              </p>
5115            </td>
5116<td>
5117              <p>
5118                <span class="blue">1.59<br> (10665ns)</span>
5119              </p>
5120            </td>
5121<td>
5122              <p>
5123                <span class="green">1.00<br> (6699ns)</span>
5124              </p>
5125            </td>
5126</tr>
5127<tr>
5128<td>
5129              <p>
5130                NonCentralF (CDF)
5131              </p>
5132            </td>
5133<td>
5134              <p>
5135                <span class="blue">1.54<br> (608ns)</span>
5136              </p>
5137            </td>
5138<td>
5139              <p>
5140                <span class="blue">1.36<br> (538ns)</span>
5141              </p>
5142            </td>
5143<td>
5144              <p>
5145                <span class="green">1.00<br> (396ns)</span>
5146              </p>
5147            </td>
5148</tr>
5149<tr>
5150<td>
5151              <p>
5152                NonCentralF (PDF)
5153              </p>
5154            </td>
5155<td>
5156              <p>
5157                <span class="blue">1.44<br> (467ns)</span>
5158              </p>
5159            </td>
5160<td>
5161              <p>
5162                <span class="blue">1.30<br> (420ns)</span>
5163              </p>
5164            </td>
5165<td>
5166              <p>
5167                <span class="green">1.00<br> (324ns)</span>
5168              </p>
5169            </td>
5170</tr>
5171<tr>
5172<td>
5173              <p>
5174                NonCentralF (quantile)
5175              </p>
5176            </td>
5177<td>
5178              <p>
5179                <span class="blue">1.73<br> (9122ns)</span>
5180              </p>
5181            </td>
5182<td>
5183              <p>
5184                <span class="blue">1.44<br> (7572ns)</span>
5185              </p>
5186            </td>
5187<td>
5188              <p>
5189                <span class="green">1.00<br> (5271ns)</span>
5190              </p>
5191            </td>
5192</tr>
5193<tr>
5194<td>
5195              <p>
5196                NonCentralT (CDF)
5197              </p>
5198            </td>
5199<td>
5200              <p>
5201                <span class="blue">1.65<br> (2375ns)</span>
5202              </p>
5203            </td>
5204<td>
5205              <p>
5206                <span class="blue">1.38<br> (1985ns)</span>
5207              </p>
5208            </td>
5209<td>
5210              <p>
5211                <span class="green">1.00<br> (1441ns)</span>
5212              </p>
5213            </td>
5214</tr>
5215<tr>
5216<td>
5217              <p>
5218                NonCentralT (PDF)
5219              </p>
5220            </td>
5221<td>
5222              <p>
5223                <span class="blue">1.58<br> (1701ns)</span>
5224              </p>
5225            </td>
5226<td>
5227              <p>
5228                <span class="blue">1.34<br> (1440ns)</span>
5229              </p>
5230            </td>
5231<td>
5232              <p>
5233                <span class="green">1.00<br> (1075ns)</span>
5234              </p>
5235            </td>
5236</tr>
5237<tr>
5238<td>
5239              <p>
5240                NonCentralT (quantile)
5241              </p>
5242            </td>
5243<td>
5244              <p>
5245                <span class="blue">1.93<br> (23683ns)</span>
5246              </p>
5247            </td>
5248<td>
5249              <p>
5250                <span class="blue">1.35<br> (16597ns)</span>
5251              </p>
5252            </td>
5253<td>
5254              <p>
5255                <span class="green">1.00<br> (12284ns)</span>
5256              </p>
5257            </td>
5258</tr>
5259<tr>
5260<td>
5261              <p>
5262                Normal (CDF)
5263              </p>
5264            </td>
5265<td>
5266              <p>
5267                <span class="green">1.09<br> (89ns)</span>
5268              </p>
5269            </td>
5270<td>
5271              <p>
5272                <span class="green">1.00<br> (82ns)</span>
5273              </p>
5274            </td>
5275<td>
5276              <p>
5277                <span class="blue">1.29<br> (106ns)</span>
5278              </p>
5279            </td>
5280</tr>
5281<tr>
5282<td>
5283              <p>
5284                Normal (PDF)
5285              </p>
5286            </td>
5287<td>
5288              <p>
5289                <span class="blue">1.33<br> (28ns)</span>
5290              </p>
5291            </td>
5292<td>
5293              <p>
5294                <span class="blue">1.38<br> (29ns)</span>
5295              </p>
5296            </td>
5297<td>
5298              <p>
5299                <span class="green">1.00<br> (21ns)</span>
5300              </p>
5301            </td>
5302</tr>
5303<tr>
5304<td>
5305              <p>
5306                Normal (quantile)
5307              </p>
5308            </td>
5309<td>
5310              <p>
5311                <span class="green">1.02<br> (44ns)</span>
5312              </p>
5313            </td>
5314<td>
5315              <p>
5316                <span class="green">1.00<br> (43ns)</span>
5317              </p>
5318            </td>
5319<td>
5320              <p>
5321                <span class="green">1.02<br> (44ns)</span>
5322              </p>
5323            </td>
5324</tr>
5325<tr>
5326<td>
5327              <p>
5328                Pareto (CDF)
5329              </p>
5330            </td>
5331<td>
5332              <p>
5333                <span class="blue">1.26<br> (34ns)</span>
5334              </p>
5335            </td>
5336<td>
5337              <p>
5338                <span class="blue">1.30<br> (35ns)</span>
5339              </p>
5340            </td>
5341<td>
5342              <p>
5343                <span class="green">1.00<br> (27ns)</span>
5344              </p>
5345            </td>
5346</tr>
5347<tr>
5348<td>
5349              <p>
5350                Pareto (PDF)
5351              </p>
5352            </td>
5353<td>
5354              <p>
5355                <span class="blue">1.50<br> (102ns)</span>
5356              </p>
5357            </td>
5358<td>
5359              <p>
5360                <span class="blue">1.56<br> (106ns)</span>
5361              </p>
5362            </td>
5363<td>
5364              <p>
5365                <span class="green">1.00<br> (68ns)</span>
5366              </p>
5367            </td>
5368</tr>
5369<tr>
5370<td>
5371              <p>
5372                Pareto (quantile)
5373              </p>
5374            </td>
5375<td>
5376              <p>
5377                <span class="blue">1.79<br> (50ns)</span>
5378              </p>
5379            </td>
5380<td>
5381              <p>
5382                <span class="blue">1.36<br> (38ns)</span>
5383              </p>
5384            </td>
5385<td>
5386              <p>
5387                <span class="green">1.00<br> (28ns)</span>
5388              </p>
5389            </td>
5390</tr>
5391<tr>
5392<td>
5393              <p>
5394                Poisson (CDF)
5395              </p>
5396            </td>
5397<td>
5398              <p>
5399                <span class="green">1.11<br> (84ns)</span>
5400              </p>
5401            </td>
5402<td>
5403              <p>
5404                <span class="green">1.00<br> (76ns)</span>
5405              </p>
5406            </td>
5407<td>
5408              <p>
5409                <span class="green">1.01<br> (77ns)</span>
5410              </p>
5411            </td>
5412</tr>
5413<tr>
5414<td>
5415              <p>
5416                Poisson (PDF)
5417              </p>
5418            </td>
5419<td>
5420              <p>
5421                <span class="blue">1.40<br> (49ns)</span>
5422              </p>
5423            </td>
5424<td>
5425              <p>
5426                <span class="blue">1.43<br> (50ns)</span>
5427              </p>
5428            </td>
5429<td>
5430              <p>
5431                <span class="green">1.00<br> (35ns)</span>
5432              </p>
5433            </td>
5434</tr>
5435<tr>
5436<td>
5437              <p>
5438                Poisson (quantile)
5439              </p>
5440            </td>
5441<td>
5442              <p>
5443                <span class="green">1.10<br> (440ns)</span>
5444              </p>
5445            </td>
5446<td>
5447              <p>
5448                <span class="green">1.00<br> (400ns)</span>
5449              </p>
5450            </td>
5451<td>
5452              <p>
5453                <span class="green">1.10<br> (441ns)</span>
5454              </p>
5455            </td>
5456</tr>
5457<tr>
5458<td>
5459              <p>
5460                Rayleigh (CDF)
5461              </p>
5462            </td>
5463<td>
5464              <p>
5465                <span class="blue">1.25<br> (15ns)</span>
5466              </p>
5467            </td>
5468<td>
5469              <p>
5470                <span class="green">1.08<br> (13ns)</span>
5471              </p>
5472            </td>
5473<td>
5474              <p>
5475                <span class="green">1.00<br> (12ns)</span>
5476              </p>
5477            </td>
5478</tr>
5479<tr>
5480<td>
5481              <p>
5482                Rayleigh (PDF)
5483              </p>
5484            </td>
5485<td>
5486              <p>
5487                <span class="green">1.08<br> (14ns)</span>
5488              </p>
5489            </td>
5490<td>
5491              <p>
5492                <span class="green">1.08<br> (14ns)</span>
5493              </p>
5494            </td>
5495<td>
5496              <p>
5497                <span class="green">1.00<br> (13ns)</span>
5498              </p>
5499            </td>
5500</tr>
5501<tr>
5502<td>
5503              <p>
5504                Rayleigh (quantile)
5505              </p>
5506            </td>
5507<td>
5508              <p>
5509                <span class="green">1.15<br> (23ns)</span>
5510              </p>
5511            </td>
5512<td>
5513              <p>
5514                <span class="green">1.15<br> (23ns)</span>
5515              </p>
5516            </td>
5517<td>
5518              <p>
5519                <span class="green">1.00<br> (20ns)</span>
5520              </p>
5521            </td>
5522</tr>
5523<tr>
5524<td>
5525              <p>
5526                SkewNormal (CDF)
5527              </p>
5528            </td>
5529<td>
5530              <p>
5531                <span class="green">1.01<br> (259ns)</span>
5532              </p>
5533            </td>
5534<td>
5535              <p>
5536                <span class="green">1.00<br> (256ns)</span>
5537              </p>
5538            </td>
5539<td>
5540              <p>
5541                <span class="green">1.13<br> (289ns)</span>
5542              </p>
5543            </td>
5544</tr>
5545<tr>
5546<td>
5547              <p>
5548                SkewNormal (PDF)
5549              </p>
5550            </td>
5551<td>
5552              <p>
5553                <span class="green">1.03<br> (94ns)</span>
5554              </p>
5555            </td>
5556<td>
5557              <p>
5558                <span class="green">1.00<br> (91ns)</span>
5559              </p>
5560            </td>
5561<td>
5562              <p>
5563                <span class="green">1.08<br> (98ns)</span>
5564              </p>
5565            </td>
5566</tr>
5567<tr>
5568<td>
5569              <p>
5570                SkewNormal (quantile)
5571              </p>
5572            </td>
5573<td>
5574              <p>
5575                <span class="blue">1.47<br> (2843ns)</span>
5576              </p>
5577            </td>
5578<td>
5579              <p>
5580                <span class="green">1.00<br> (1936ns)</span>
5581              </p>
5582            </td>
5583<td>
5584              <p>
5585                <span class="blue">1.24<br> (2391ns)</span>
5586              </p>
5587            </td>
5588</tr>
5589<tr>
5590<td>
5591              <p>
5592                StudentsT (CDF)
5593              </p>
5594            </td>
5595<td>
5596              <p>
5597                <span class="blue">1.83<br> (429ns)</span>
5598              </p>
5599            </td>
5600<td>
5601              <p>
5602                <span class="blue">1.85<br> (434ns)</span>
5603              </p>
5604            </td>
5605<td>
5606              <p>
5607                <span class="green">1.00<br> (235ns)</span>
5608              </p>
5609            </td>
5610</tr>
5611<tr>
5612<td>
5613              <p>
5614                StudentsT (PDF)
5615              </p>
5616            </td>
5617<td>
5618              <p>
5619                <span class="blue">1.36<br> (146ns)</span>
5620              </p>
5621            </td>
5622<td>
5623              <p>
5624                <span class="blue">1.26<br> (135ns)</span>
5625              </p>
5626            </td>
5627<td>
5628              <p>
5629                <span class="green">1.00<br> (107ns)</span>
5630              </p>
5631            </td>
5632</tr>
5633<tr>
5634<td>
5635              <p>
5636                StudentsT (quantile)
5637              </p>
5638            </td>
5639<td>
5640              <p>
5641                <span class="blue">1.53<br> (729ns)</span>
5642              </p>
5643            </td>
5644<td>
5645              <p>
5646                <span class="blue">1.57<br> (749ns)</span>
5647              </p>
5648            </td>
5649<td>
5650              <p>
5651                <span class="green">1.00<br> (476ns)</span>
5652              </p>
5653            </td>
5654</tr>
5655<tr>
5656<td>
5657              <p>
5658                Weibull (CDF)
5659              </p>
5660            </td>
5661<td>
5662              <p>
5663                <span class="blue">1.62<br> (63ns)</span>
5664              </p>
5665            </td>
5666<td>
5667              <p>
5668                <span class="blue">1.51<br> (59ns)</span>
5669              </p>
5670            </td>
5671<td>
5672              <p>
5673                <span class="green">1.00<br> (39ns)</span>
5674              </p>
5675            </td>
5676</tr>
5677<tr>
5678<td>
5679              <p>
5680                Weibull (PDF)
5681              </p>
5682            </td>
5683<td>
5684              <p>
5685                <span class="blue">1.75<br> (89ns)</span>
5686              </p>
5687            </td>
5688<td>
5689              <p>
5690                <span class="blue">1.76<br> (90ns)</span>
5691              </p>
5692            </td>
5693<td>
5694              <p>
5695                <span class="green">1.00<br> (51ns)</span>
5696              </p>
5697            </td>
5698</tr>
5699<tr>
5700<td>
5701              <p>
5702                Weibull (quantile)
5703              </p>
5704            </td>
5705<td>
5706              <p>
5707                <span class="blue">1.63<br> (62ns)</span>
5708              </p>
5709            </td>
5710<td>
5711              <p>
5712                <span class="blue">1.55<br> (59ns)</span>
5713              </p>
5714            </td>
5715<td>
5716              <p>
5717                <span class="green">1.00<br> (38ns)</span>
5718              </p>
5719            </td>
5720</tr>
5721</tbody>
5722</table></div>
5723</div>
5724<br class="table-break">
5725</div>
5726<div class="section">
5727<div class="titlepage"><div><div><h2 class="title" style="clear: both">
5728<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Distribution performance comparison with GNU C++ version 9.2.0 on Windows x64">Distribution
5729    performance comparison with GNU C++ version 9.2.0 on Windows x64</a>
5730</h2></div></div></div>
5731<div class="table">
5732<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;5.&#160;Distribution performance comparison with GNU C++ version 9.2.0 on Windows
5733      x64</b></p>
5734<div class="table-contents"><table class="table" summary="Distribution performance comparison with GNU C++ version 9.2.0 on Windows
5735      x64">
5736<colgroup>
5737<col>
5738<col>
5739<col>
5740</colgroup>
5741<thead><tr>
5742<th>
5743              <p>
5744                Function
5745              </p>
5746            </th>
5747<th>
5748              <p>
5749                boost 1.73
5750              </p>
5751            </th>
5752<th>
5753              <p>
5754                Boost<br> promote_double&lt;false&gt;
5755              </p>
5756            </th>
5757</tr></thead>
5758<tbody>
5759<tr>
5760<td>
5761              <p>
5762                ArcSine (CDF)
5763              </p>
5764            </td>
5765<td>
5766              <p>
5767                <span class="green">1.00<br> (22ns)</span>
5768              </p>
5769            </td>
5770<td>
5771              <p>
5772                <span class="green">1.18<br> (26ns)</span>
5773              </p>
5774            </td>
5775</tr>
5776<tr>
5777<td>
5778              <p>
5779                ArcSine (PDF)
5780              </p>
5781            </td>
5782<td>
5783              <p>
5784                <span class="green">1.00<br> (5ns)</span>
5785              </p>
5786            </td>
5787<td>
5788              <p>
5789                <span class="green">1.00<br> (5ns)</span>
5790              </p>
5791            </td>
5792</tr>
5793<tr>
5794<td>
5795              <p>
5796                ArcSine (quantile)
5797              </p>
5798            </td>
5799<td>
5800              <p>
5801                <span class="green">1.00<br> (53ns)</span>
5802              </p>
5803            </td>
5804<td>
5805              <p>
5806                <span class="green">1.00<br> (53ns)</span>
5807              </p>
5808            </td>
5809</tr>
5810<tr>
5811<td>
5812              <p>
5813                Beta (CDF)
5814              </p>
5815            </td>
5816<td>
5817              <p>
5818                <span class="blue">1.77<br> (362ns)</span>
5819              </p>
5820            </td>
5821<td>
5822              <p>
5823                <span class="green">1.00<br> (205ns)</span>
5824              </p>
5825            </td>
5826</tr>
5827<tr>
5828<td>
5829              <p>
5830                Beta (PDF)
5831              </p>
5832            </td>
5833<td>
5834              <p>
5835                <span class="red">2.17<br> (302ns)</span>
5836              </p>
5837            </td>
5838<td>
5839              <p>
5840                <span class="green">1.00<br> (139ns)</span>
5841              </p>
5842            </td>
5843</tr>
5844<tr>
5845<td>
5846              <p>
5847                Beta (quantile)
5848              </p>
5849            </td>
5850<td>
5851              <p>
5852                <span class="blue">1.42<br> (1968ns)</span>
5853              </p>
5854            </td>
5855<td>
5856              <p>
5857                <span class="green">1.00<br> (1383ns)</span>
5858              </p>
5859            </td>
5860</tr>
5861<tr>
5862<td>
5863              <p>
5864                Binomial (CDF)
5865              </p>
5866            </td>
5867<td>
5868              <p>
5869                <span class="red">2.74<br> (959ns)</span>
5870              </p>
5871            </td>
5872<td>
5873              <p>
5874                <span class="green">1.00<br> (350ns)</span>
5875              </p>
5876            </td>
5877</tr>
5878<tr>
5879<td>
5880              <p>
5881                Binomial (PDF)
5882              </p>
5883            </td>
5884<td>
5885              <p>
5886                <span class="red">2.39<br> (339ns)</span>
5887              </p>
5888            </td>
5889<td>
5890              <p>
5891                <span class="green">1.00<br> (142ns)</span>
5892              </p>
5893            </td>
5894</tr>
5895<tr>
5896<td>
5897              <p>
5898                Binomial (quantile)
5899              </p>
5900            </td>
5901<td>
5902              <p>
5903                <span class="red">2.26<br> (4255ns)</span>
5904              </p>
5905            </td>
5906<td>
5907              <p>
5908                <span class="green">1.00<br> (1884ns)</span>
5909              </p>
5910            </td>
5911</tr>
5912<tr>
5913<td>
5914              <p>
5915                Cauchy (CDF)
5916              </p>
5917            </td>
5918<td>
5919              <p>
5920                <span class="green">1.00<br> (19ns)</span>
5921              </p>
5922            </td>
5923<td>
5924              <p>
5925                <span class="green">1.05<br> (20ns)</span>
5926              </p>
5927            </td>
5928</tr>
5929<tr>
5930<td>
5931              <p>
5932                Cauchy (PDF)
5933              </p>
5934            </td>
5935<td>
5936              <p>
5937                <span class="green">1.00<br> (4ns)</span>
5938              </p>
5939            </td>
5940<td>
5941              <p>
5942                <span class="blue">1.25<br> (5ns)</span>
5943              </p>
5944            </td>
5945</tr>
5946<tr>
5947<td>
5948              <p>
5949                Cauchy (quantile)
5950              </p>
5951            </td>
5952<td>
5953              <p>
5954                <span class="green">1.09<br> (25ns)</span>
5955              </p>
5956            </td>
5957<td>
5958              <p>
5959                <span class="green">1.00<br> (23ns)</span>
5960              </p>
5961            </td>
5962</tr>
5963<tr>
5964<td>
5965              <p>
5966                ChiSquared (CDF)
5967              </p>
5968            </td>
5969<td>
5970              <p>
5971                <span class="blue">1.80<br> (953ns)</span>
5972              </p>
5973            </td>
5974<td>
5975              <p>
5976                <span class="green">1.00<br> (529ns)</span>
5977              </p>
5978            </td>
5979</tr>
5980<tr>
5981<td>
5982              <p>
5983                ChiSquared (PDF)
5984              </p>
5985            </td>
5986<td>
5987              <p>
5988                <span class="blue">1.82<br> (189ns)</span>
5989              </p>
5990            </td>
5991<td>
5992              <p>
5993                <span class="green">1.00<br> (104ns)</span>
5994              </p>
5995            </td>
5996</tr>
5997<tr>
5998<td>
5999              <p>
6000                ChiSquared (quantile)
6001              </p>
6002            </td>
6003<td>
6004              <p>
6005                <span class="blue">1.61<br> (1452ns)</span>
6006              </p>
6007            </td>
6008<td>
6009              <p>
6010                <span class="green">1.00<br> (901ns)</span>
6011              </p>
6012            </td>
6013</tr>
6014<tr>
6015<td>
6016              <p>
6017                Exponential (CDF)
6018              </p>
6019            </td>
6020<td>
6021              <p>
6022                <span class="green">1.14<br> (33ns)</span>
6023              </p>
6024            </td>
6025<td>
6026              <p>
6027                <span class="green">1.00<br> (29ns)</span>
6028              </p>
6029            </td>
6030</tr>
6031<tr>
6032<td>
6033              <p>
6034                Exponential (PDF)
6035              </p>
6036            </td>
6037<td>
6038              <p>
6039                <span class="green">1.06<br> (54ns)</span>
6040              </p>
6041            </td>
6042<td>
6043              <p>
6044                <span class="green">1.00<br> (51ns)</span>
6045              </p>
6046            </td>
6047</tr>
6048<tr>
6049<td>
6050              <p>
6051                Exponential (quantile)
6052              </p>
6053            </td>
6054<td>
6055              <p>
6056                <span class="blue">1.89<br> (36ns)</span>
6057              </p>
6058            </td>
6059<td>
6060              <p>
6061                <span class="green">1.00<br> (19ns)</span>
6062              </p>
6063            </td>
6064</tr>
6065<tr>
6066<td>
6067              <p>
6068                ExtremeValue (CDF)
6069              </p>
6070            </td>
6071<td>
6072              <p>
6073                <span class="green">1.03<br> (104ns)</span>
6074              </p>
6075            </td>
6076<td>
6077              <p>
6078                <span class="green">1.00<br> (101ns)</span>
6079              </p>
6080            </td>
6081</tr>
6082<tr>
6083<td>
6084              <p>
6085                ExtremeValue (PDF)
6086              </p>
6087            </td>
6088<td>
6089              <p>
6090                <span class="green">1.00<br> (144ns)</span>
6091              </p>
6092            </td>
6093<td>
6094              <p>
6095                <span class="green">1.00<br> (144ns)</span>
6096              </p>
6097            </td>
6098</tr>
6099<tr>
6100<td>
6101              <p>
6102                ExtremeValue (quantile)
6103              </p>
6104            </td>
6105<td>
6106              <p>
6107                <span class="green">1.05<br> (64ns)</span>
6108              </p>
6109            </td>
6110<td>
6111              <p>
6112                <span class="green">1.00<br> (61ns)</span>
6113              </p>
6114            </td>
6115</tr>
6116<tr>
6117<td>
6118              <p>
6119                F (CDF)
6120              </p>
6121            </td>
6122<td>
6123              <p>
6124                <span class="red">2.25<br> (668ns)</span>
6125              </p>
6126            </td>
6127<td>
6128              <p>
6129                <span class="green">1.00<br> (297ns)</span>
6130              </p>
6131            </td>
6132</tr>
6133<tr>
6134<td>
6135              <p>
6136                F (PDF)
6137              </p>
6138            </td>
6139<td>
6140              <p>
6141                <span class="red">2.16<br> (291ns)</span>
6142              </p>
6143            </td>
6144<td>
6145              <p>
6146                <span class="green">1.00<br> (135ns)</span>
6147              </p>
6148            </td>
6149</tr>
6150<tr>
6151<td>
6152              <p>
6153                F (quantile)
6154              </p>
6155            </td>
6156<td>
6157              <p>
6158                <span class="blue">1.90<br> (2215ns)</span>
6159              </p>
6160            </td>
6161<td>
6162              <p>
6163                <span class="green">1.00<br> (1163ns)</span>
6164              </p>
6165            </td>
6166</tr>
6167<tr>
6168<td>
6169              <p>
6170                Gamma (CDF)
6171              </p>
6172            </td>
6173<td>
6174              <p>
6175                <span class="blue">1.63<br> (492ns)</span>
6176              </p>
6177            </td>
6178<td>
6179              <p>
6180                <span class="green">1.00<br> (301ns)</span>
6181              </p>
6182            </td>
6183</tr>
6184<tr>
6185<td>
6186              <p>
6187                Gamma (PDF)
6188              </p>
6189            </td>
6190<td>
6191              <p>
6192                <span class="blue">1.55<br> (236ns)</span>
6193              </p>
6194            </td>
6195<td>
6196              <p>
6197                <span class="green">1.00<br> (152ns)</span>
6198              </p>
6199            </td>
6200</tr>
6201<tr>
6202<td>
6203              <p>
6204                Gamma (quantile)
6205              </p>
6206            </td>
6207<td>
6208              <p>
6209                <span class="blue">1.44<br> (1204ns)</span>
6210              </p>
6211            </td>
6212<td>
6213              <p>
6214                <span class="green">1.00<br> (837ns)</span>
6215              </p>
6216            </td>
6217</tr>
6218<tr>
6219<td>
6220              <p>
6221                Geometric (CDF)
6222              </p>
6223            </td>
6224<td>
6225              <p>
6226                <span class="blue">1.38<br> (40ns)</span>
6227              </p>
6228            </td>
6229<td>
6230              <p>
6231                <span class="green">1.00<br> (29ns)</span>
6232              </p>
6233            </td>
6234</tr>
6235<tr>
6236<td>
6237              <p>
6238                Geometric (PDF)
6239              </p>
6240            </td>
6241<td>
6242              <p>
6243                <span class="green">1.00<br> (46ns)</span>
6244              </p>
6245            </td>
6246<td>
6247              <p>
6248                <span class="green">1.00<br> (46ns)</span>
6249              </p>
6250            </td>
6251</tr>
6252<tr>
6253<td>
6254              <p>
6255                Geometric (quantile)
6256              </p>
6257            </td>
6258<td>
6259              <p>
6260                <span class="blue">1.64<br> (36ns)</span>
6261              </p>
6262            </td>
6263<td>
6264              <p>
6265                <span class="green">1.00<br> (22ns)</span>
6266              </p>
6267            </td>
6268</tr>
6269<tr>
6270<td>
6271              <p>
6272                Hypergeometric (CDF)
6273              </p>
6274            </td>
6275<td>
6276              <p>
6277                <span class="green">1.11<br> (49938ns)</span>
6278              </p>
6279            </td>
6280<td>
6281              <p>
6282                <span class="green">1.00<br> (45127ns)</span>
6283              </p>
6284            </td>
6285</tr>
6286<tr>
6287<td>
6288              <p>
6289                Hypergeometric (PDF)
6290              </p>
6291            </td>
6292<td>
6293              <p>
6294                <span class="green">1.08<br> (53353ns)</span>
6295              </p>
6296            </td>
6297<td>
6298              <p>
6299                <span class="green">1.00<br> (49364ns)</span>
6300              </p>
6301            </td>
6302</tr>
6303<tr>
6304<td>
6305              <p>
6306                Hypergeometric (quantile)
6307              </p>
6308            </td>
6309<td>
6310              <p>
6311                <span class="green">1.00<br> (105555ns)</span>
6312              </p>
6313            </td>
6314<td>
6315              <p>
6316                <span class="blue">1.25<br> (132253ns)</span>
6317              </p>
6318            </td>
6319</tr>
6320<tr>
6321<td>
6322              <p>
6323                InverseChiSquared (CDF)
6324              </p>
6325            </td>
6326<td>
6327              <p>
6328                <span class="red">2.05<br> (1326ns)</span>
6329              </p>
6330            </td>
6331<td>
6332              <p>
6333                <span class="green">1.00<br> (647ns)</span>
6334              </p>
6335            </td>
6336</tr>
6337<tr>
6338<td>
6339              <p>
6340                InverseChiSquared (PDF)
6341              </p>
6342            </td>
6343<td>
6344              <p>
6345                <span class="blue">1.72<br> (217ns)</span>
6346              </p>
6347            </td>
6348<td>
6349              <p>
6350                <span class="green">1.00<br> (126ns)</span>
6351              </p>
6352            </td>
6353</tr>
6354<tr>
6355<td>
6356              <p>
6357                InverseChiSquared (quantile)
6358              </p>
6359            </td>
6360<td>
6361              <p>
6362                <span class="blue">1.79<br> (1852ns)</span>
6363              </p>
6364            </td>
6365<td>
6366              <p>
6367                <span class="green">1.00<br> (1035ns)</span>
6368              </p>
6369            </td>
6370</tr>
6371<tr>
6372<td>
6373              <p>
6374                InverseGamma (CDF)
6375              </p>
6376            </td>
6377<td>
6378              <p>
6379                <span class="blue">1.61<br> (516ns)</span>
6380              </p>
6381            </td>
6382<td>
6383              <p>
6384                <span class="green">1.00<br> (320ns)</span>
6385              </p>
6386            </td>
6387</tr>
6388<tr>
6389<td>
6390              <p>
6391                InverseGamma (PDF)
6392              </p>
6393            </td>
6394<td>
6395              <p>
6396                <span class="blue">1.53<br> (256ns)</span>
6397              </p>
6398            </td>
6399<td>
6400              <p>
6401                <span class="green">1.00<br> (167ns)</span>
6402              </p>
6403            </td>
6404</tr>
6405<tr>
6406<td>
6407              <p>
6408                InverseGamma (quantile)
6409              </p>
6410            </td>
6411<td>
6412              <p>
6413                <span class="blue">1.43<br> (1268ns)</span>
6414              </p>
6415            </td>
6416<td>
6417              <p>
6418                <span class="green">1.00<br> (884ns)</span>
6419              </p>
6420            </td>
6421</tr>
6422<tr>
6423<td>
6424              <p>
6425                InverseGaussian (CDF)
6426              </p>
6427            </td>
6428<td>
6429              <p>
6430                <span class="green">1.00<br> (172ns)</span>
6431              </p>
6432            </td>
6433<td>
6434              <p>
6435                <span class="green">1.00<br> (172ns)</span>
6436              </p>
6437            </td>
6438</tr>
6439<tr>
6440<td>
6441              <p>
6442                InverseGaussian (PDF)
6443              </p>
6444            </td>
6445<td>
6446              <p>
6447                <span class="green">1.00<br> (28ns)</span>
6448              </p>
6449            </td>
6450<td>
6451              <p>
6452                <span class="green">1.14<br> (32ns)</span>
6453              </p>
6454            </td>
6455</tr>
6456<tr>
6457<td>
6458              <p>
6459                InverseGaussian (quantile)
6460              </p>
6461            </td>
6462<td>
6463              <p>
6464                <span class="green">1.01<br> (2657ns)</span>
6465              </p>
6466            </td>
6467<td>
6468              <p>
6469                <span class="green">1.00<br> (2635ns)</span>
6470              </p>
6471            </td>
6472</tr>
6473<tr>
6474<td>
6475              <p>
6476                Laplace (CDF)
6477              </p>
6478            </td>
6479<td>
6480              <p>
6481                <span class="green">1.02<br> (50ns)</span>
6482              </p>
6483            </td>
6484<td>
6485              <p>
6486                <span class="green">1.00<br> (49ns)</span>
6487              </p>
6488            </td>
6489</tr>
6490<tr>
6491<td>
6492              <p>
6493                Laplace (PDF)
6494              </p>
6495            </td>
6496<td>
6497              <p>
6498                <span class="green">1.00<br> (49ns)</span>
6499              </p>
6500            </td>
6501<td>
6502              <p>
6503                <span class="green">1.02<br> (50ns)</span>
6504              </p>
6505            </td>
6506</tr>
6507<tr>
6508<td>
6509              <p>
6510                Laplace (quantile)
6511              </p>
6512            </td>
6513<td>
6514              <p>
6515                <span class="green">1.00<br> (33ns)</span>
6516              </p>
6517            </td>
6518<td>
6519              <p>
6520                <span class="green">1.00<br> (33ns)</span>
6521              </p>
6522            </td>
6523</tr>
6524<tr>
6525<td>
6526              <p>
6527                LogNormal (CDF)
6528              </p>
6529            </td>
6530<td>
6531              <p>
6532                <span class="blue">1.39<br> (176ns)</span>
6533              </p>
6534            </td>
6535<td>
6536              <p>
6537                <span class="green">1.00<br> (127ns)</span>
6538              </p>
6539            </td>
6540</tr>
6541<tr>
6542<td>
6543              <p>
6544                LogNormal (PDF)
6545              </p>
6546            </td>
6547<td>
6548              <p>
6549                <span class="green">1.01<br> (87ns)</span>
6550              </p>
6551            </td>
6552<td>
6553              <p>
6554                <span class="green">1.00<br> (86ns)</span>
6555              </p>
6556            </td>
6557</tr>
6558<tr>
6559<td>
6560              <p>
6561                LogNormal (quantile)
6562              </p>
6563            </td>
6564<td>
6565              <p>
6566                <span class="blue">1.23<br> (116ns)</span>
6567              </p>
6568            </td>
6569<td>
6570              <p>
6571                <span class="green">1.00<br> (94ns)</span>
6572              </p>
6573            </td>
6574</tr>
6575<tr>
6576<td>
6577              <p>
6578                Logistic (CDF)
6579              </p>
6580            </td>
6581<td>
6582              <p>
6583                <span class="green">1.00<br> (46ns)</span>
6584              </p>
6585            </td>
6586<td>
6587              <p>
6588                <span class="green">1.02<br> (47ns)</span>
6589              </p>
6590            </td>
6591</tr>
6592<tr>
6593<td>
6594              <p>
6595                Logistic (PDF)
6596              </p>
6597            </td>
6598<td>
6599              <p>
6600                <span class="green">1.00<br> (46ns)</span>
6601              </p>
6602            </td>
6603<td>
6604              <p>
6605                <span class="green">1.02<br> (47ns)</span>
6606              </p>
6607            </td>
6608</tr>
6609<tr>
6610<td>
6611              <p>
6612                Logistic (quantile)
6613              </p>
6614            </td>
6615<td>
6616              <p>
6617                <span class="green">1.00<br> (33ns)</span>
6618              </p>
6619            </td>
6620<td>
6621              <p>
6622                <span class="green">1.03<br> (34ns)</span>
6623              </p>
6624            </td>
6625</tr>
6626<tr>
6627<td>
6628              <p>
6629                NegativeBinomial (CDF)
6630              </p>
6631            </td>
6632<td>
6633              <p>
6634                <span class="red">2.39<br> (1158ns)</span>
6635              </p>
6636            </td>
6637<td>
6638              <p>
6639                <span class="green">1.00<br> (485ns)</span>
6640              </p>
6641            </td>
6642</tr>
6643<tr>
6644<td>
6645              <p>
6646                NegativeBinomial (PDF)
6647              </p>
6648            </td>
6649<td>
6650              <p>
6651                <span class="red">2.27<br> (307ns)</span>
6652              </p>
6653            </td>
6654<td>
6655              <p>
6656                <span class="green">1.00<br> (135ns)</span>
6657              </p>
6658            </td>
6659</tr>
6660<tr>
6661<td>
6662              <p>
6663                NegativeBinomial (quantile)
6664              </p>
6665            </td>
6666<td>
6667              <p>
6668                <span class="red">2.36<br> (6154ns)</span>
6669              </p>
6670            </td>
6671<td>
6672              <p>
6673                <span class="green">1.00<br> (2608ns)</span>
6674              </p>
6675            </td>
6676</tr>
6677<tr>
6678<td>
6679              <p>
6680                NonCentralBeta (CDF)
6681              </p>
6682            </td>
6683<td>
6684              <p>
6685                <span class="blue">1.80<br> (1450ns)</span>
6686              </p>
6687            </td>
6688<td>
6689              <p>
6690                <span class="green">1.00<br> (806ns)</span>
6691              </p>
6692            </td>
6693</tr>
6694<tr>
6695<td>
6696              <p>
6697                NonCentralBeta (PDF)
6698              </p>
6699            </td>
6700<td>
6701              <p>
6702                <span class="blue">1.98<br> (969ns)</span>
6703              </p>
6704            </td>
6705<td>
6706              <p>
6707                <span class="green">1.00<br> (490ns)</span>
6708              </p>
6709            </td>
6710</tr>
6711<tr>
6712<td>
6713              <p>
6714                NonCentralBeta (quantile)
6715              </p>
6716            </td>
6717<td>
6718              <p>
6719                <span class="blue">1.85<br> (37583ns)</span>
6720              </p>
6721            </td>
6722<td>
6723              <p>
6724                <span class="green">1.00<br> (20369ns)</span>
6725              </p>
6726            </td>
6727</tr>
6728<tr>
6729<td>
6730              <p>
6731                NonCentralChiSquared (CDF)
6732              </p>
6733            </td>
6734<td>
6735              <p>
6736                <span class="blue">1.24<br> (4037ns)</span>
6737              </p>
6738            </td>
6739<td>
6740              <p>
6741                <span class="green">1.00<br> (3256ns)</span>
6742              </p>
6743            </td>
6744</tr>
6745<tr>
6746<td>
6747              <p>
6748                NonCentralChiSquared (PDF)
6749              </p>
6750            </td>
6751<td>
6752              <p>
6753                <span class="blue">1.23<br> (630ns)</span>
6754              </p>
6755            </td>
6756<td>
6757              <p>
6758                <span class="green">1.00<br> (514ns)</span>
6759              </p>
6760            </td>
6761</tr>
6762<tr>
6763<td>
6764              <p>
6765                NonCentralChiSquared (quantile)
6766              </p>
6767            </td>
6768<td>
6769              <p>
6770                <span class="blue">1.61<br> (33255ns)</span>
6771              </p>
6772            </td>
6773<td>
6774              <p>
6775                <span class="green">1.00<br> (20620ns)</span>
6776              </p>
6777            </td>
6778</tr>
6779<tr>
6780<td>
6781              <p>
6782                NonCentralF (CDF)
6783              </p>
6784            </td>
6785<td>
6786              <p>
6787                <span class="blue">1.87<br> (1426ns)</span>
6788              </p>
6789            </td>
6790<td>
6791              <p>
6792                <span class="green">1.00<br> (762ns)</span>
6793              </p>
6794            </td>
6795</tr>
6796<tr>
6797<td>
6798              <p>
6799                NonCentralF (PDF)
6800              </p>
6801            </td>
6802<td>
6803              <p>
6804                <span class="red">2.00<br> (1306ns)</span>
6805              </p>
6806            </td>
6807<td>
6808              <p>
6809                <span class="green">1.00<br> (652ns)</span>
6810              </p>
6811            </td>
6812</tr>
6813<tr>
6814<td>
6815              <p>
6816                NonCentralF (quantile)
6817              </p>
6818            </td>
6819<td>
6820              <p>
6821                <span class="blue">1.91<br> (22025ns)</span>
6822              </p>
6823            </td>
6824<td>
6825              <p>
6826                <span class="green">1.00<br> (11560ns)</span>
6827              </p>
6828            </td>
6829</tr>
6830<tr>
6831<td>
6832              <p>
6833                NonCentralT (CDF)
6834              </p>
6835            </td>
6836<td>
6837              <p>
6838                <span class="red">2.05<br> (6473ns)</span>
6839              </p>
6840            </td>
6841<td>
6842              <p>
6843                <span class="green">1.00<br> (3155ns)</span>
6844              </p>
6845            </td>
6846</tr>
6847<tr>
6848<td>
6849              <p>
6850                NonCentralT (PDF)
6851              </p>
6852            </td>
6853<td>
6854              <p>
6855                <span class="red">2.01<br> (4098ns)</span>
6856              </p>
6857            </td>
6858<td>
6859              <p>
6860                <span class="green">1.00<br> (2040ns)</span>
6861              </p>
6862            </td>
6863</tr>
6864<tr>
6865<td>
6866              <p>
6867                NonCentralT (quantile)
6868              </p>
6869            </td>
6870<td>
6871              <p>
6872                <span class="red">2.03<br> (65926ns)</span>
6873              </p>
6874            </td>
6875<td>
6876              <p>
6877                <span class="green">1.00<br> (32431ns)</span>
6878              </p>
6879            </td>
6880</tr>
6881<tr>
6882<td>
6883              <p>
6884                Normal (CDF)
6885              </p>
6886            </td>
6887<td>
6888              <p>
6889                <span class="green">1.16<br> (135ns)</span>
6890              </p>
6891            </td>
6892<td>
6893              <p>
6894                <span class="green">1.00<br> (116ns)</span>
6895              </p>
6896            </td>
6897</tr>
6898<tr>
6899<td>
6900              <p>
6901                Normal (PDF)
6902              </p>
6903            </td>
6904<td>
6905              <p>
6906                <span class="green">1.00<br> (48ns)</span>
6907              </p>
6908            </td>
6909<td>
6910              <p>
6911                <span class="blue">1.23<br> (59ns)</span>
6912              </p>
6913            </td>
6914</tr>
6915<tr>
6916<td>
6917              <p>
6918                Normal (quantile)
6919              </p>
6920            </td>
6921<td>
6922              <p>
6923                <span class="blue">1.45<br> (80ns)</span>
6924              </p>
6925            </td>
6926<td>
6927              <p>
6928                <span class="green">1.00<br> (55ns)</span>
6929              </p>
6930            </td>
6931</tr>
6932<tr>
6933<td>
6934              <p>
6935                Pareto (CDF)
6936              </p>
6937            </td>
6938<td>
6939              <p>
6940                <span class="green">1.13<br> (59ns)</span>
6941              </p>
6942            </td>
6943<td>
6944              <p>
6945                <span class="green">1.00<br> (52ns)</span>
6946              </p>
6947            </td>
6948</tr>
6949<tr>
6950<td>
6951              <p>
6952                Pareto (PDF)
6953              </p>
6954            </td>
6955<td>
6956              <p>
6957                <span class="green">1.04<br> (96ns)</span>
6958              </p>
6959            </td>
6960<td>
6961              <p>
6962                <span class="green">1.00<br> (92ns)</span>
6963              </p>
6964            </td>
6965</tr>
6966<tr>
6967<td>
6968              <p>
6969                Pareto (quantile)
6970              </p>
6971            </td>
6972<td>
6973              <p>
6974                <span class="green">1.00<br> (82ns)</span>
6975              </p>
6976            </td>
6977<td>
6978              <p>
6979                <span class="green">1.02<br> (84ns)</span>
6980              </p>
6981            </td>
6982</tr>
6983<tr>
6984<td>
6985              <p>
6986                Poisson (CDF)
6987              </p>
6988            </td>
6989<td>
6990              <p>
6991                <span class="blue">1.90<br> (254ns)</span>
6992              </p>
6993            </td>
6994<td>
6995              <p>
6996                <span class="green">1.00<br> (134ns)</span>
6997              </p>
6998            </td>
6999</tr>
7000<tr>
7001<td>
7002              <p>
7003                Poisson (PDF)
7004              </p>
7005            </td>
7006<td>
7007              <p>
7008                <span class="blue">1.53<br> (171ns)</span>
7009              </p>
7010            </td>
7011<td>
7012              <p>
7013                <span class="green">1.00<br> (112ns)</span>
7014              </p>
7015            </td>
7016</tr>
7017<tr>
7018<td>
7019              <p>
7020                Poisson (quantile)
7021              </p>
7022            </td>
7023<td>
7024              <p>
7025                <span class="blue">1.76<br> (1128ns)</span>
7026              </p>
7027            </td>
7028<td>
7029              <p>
7030                <span class="green">1.00<br> (641ns)</span>
7031              </p>
7032            </td>
7033</tr>
7034<tr>
7035<td>
7036              <p>
7037                Rayleigh (CDF)
7038              </p>
7039            </td>
7040<td>
7041              <p>
7042                <span class="blue">1.24<br> (47ns)</span>
7043              </p>
7044            </td>
7045<td>
7046              <p>
7047                <span class="green">1.00<br> (38ns)</span>
7048              </p>
7049            </td>
7050</tr>
7051<tr>
7052<td>
7053              <p>
7054                Rayleigh (PDF)
7055              </p>
7056            </td>
7057<td>
7058              <p>
7059                <span class="green">1.00<br> (64ns)</span>
7060              </p>
7061            </td>
7062<td>
7063              <p>
7064                <span class="green">1.09<br> (70ns)</span>
7065              </p>
7066            </td>
7067</tr>
7068<tr>
7069<td>
7070              <p>
7071                Rayleigh (quantile)
7072              </p>
7073            </td>
7074<td>
7075              <p>
7076                <span class="blue">2.00<br> (48ns)</span>
7077              </p>
7078            </td>
7079<td>
7080              <p>
7081                <span class="green">1.00<br> (24ns)</span>
7082              </p>
7083            </td>
7084</tr>
7085<tr>
7086<td>
7087              <p>
7088                SkewNormal (CDF)
7089              </p>
7090            </td>
7091<td>
7092              <p>
7093                <span class="green">1.06<br> (669ns)</span>
7094              </p>
7095            </td>
7096<td>
7097              <p>
7098                <span class="green">1.00<br> (632ns)</span>
7099              </p>
7100            </td>
7101</tr>
7102<tr>
7103<td>
7104              <p>
7105                SkewNormal (PDF)
7106              </p>
7107            </td>
7108<td>
7109              <p>
7110                <span class="green">1.09<br> (173ns)</span>
7111              </p>
7112            </td>
7113<td>
7114              <p>
7115                <span class="green">1.00<br> (159ns)</span>
7116              </p>
7117            </td>
7118</tr>
7119<tr>
7120<td>
7121              <p>
7122                SkewNormal (quantile)
7123              </p>
7124            </td>
7125<td>
7126              <p>
7127                <span class="green">1.18<br> (6968ns)</span>
7128              </p>
7129            </td>
7130<td>
7131              <p>
7132                <span class="green">1.00<br> (5903ns)</span>
7133              </p>
7134            </td>
7135</tr>
7136<tr>
7137<td>
7138              <p>
7139                StudentsT (CDF)
7140              </p>
7141            </td>
7142<td>
7143              <p>
7144                <span class="blue">1.60<br> (1151ns)</span>
7145              </p>
7146            </td>
7147<td>
7148              <p>
7149                <span class="green">1.00<br> (721ns)</span>
7150              </p>
7151            </td>
7152</tr>
7153<tr>
7154<td>
7155              <p>
7156                StudentsT (PDF)
7157              </p>
7158            </td>
7159<td>
7160              <p>
7161                <span class="blue">1.94<br> (360ns)</span>
7162              </p>
7163            </td>
7164<td>
7165              <p>
7166                <span class="green">1.00<br> (186ns)</span>
7167              </p>
7168            </td>
7169</tr>
7170<tr>
7171<td>
7172              <p>
7173                StudentsT (quantile)
7174              </p>
7175            </td>
7176<td>
7177              <p>
7178                <span class="blue">1.26<br> (1461ns)</span>
7179              </p>
7180            </td>
7181<td>
7182              <p>
7183                <span class="green">1.00<br> (1161ns)</span>
7184              </p>
7185            </td>
7186</tr>
7187<tr>
7188<td>
7189              <p>
7190                Weibull (CDF)
7191              </p>
7192            </td>
7193<td>
7194              <p>
7195                <span class="blue">1.25<br> (96ns)</span>
7196              </p>
7197            </td>
7198<td>
7199              <p>
7200                <span class="green">1.00<br> (77ns)</span>
7201              </p>
7202            </td>
7203</tr>
7204<tr>
7205<td>
7206              <p>
7207                Weibull (PDF)
7208              </p>
7209            </td>
7210<td>
7211              <p>
7212                <span class="green">1.18<br> (164ns)</span>
7213              </p>
7214            </td>
7215<td>
7216              <p>
7217                <span class="green">1.00<br> (139ns)</span>
7218              </p>
7219            </td>
7220</tr>
7221<tr>
7222<td>
7223              <p>
7224                Weibull (quantile)
7225              </p>
7226            </td>
7227<td>
7228              <p>
7229                <span class="green">1.00<br> (133ns)</span>
7230              </p>
7231            </td>
7232<td>
7233              <p>
7234                <span class="green">1.01<br> (134ns)</span>
7235              </p>
7236            </td>
7237</tr>
7238</tbody>
7239</table></div>
7240</div>
7241<br class="table-break">
7242</div>
7243<div class="section">
7244<div class="titlepage"><div><div><h2 class="title" style="clear: both">
7245<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Distribution performance comparison with Microsoft Visual C++ version 14.2 on Windows x64">Distribution
7246    performance comparison with Microsoft Visual C++ version 14.2 on Windows x64</a>
7247</h2></div></div></div>
7248<div class="table">
7249<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;6.&#160;Distribution performance comparison with Microsoft Visual C++ version
7250      14.2 on Windows x64</b></p>
7251<div class="table-contents"><table class="table" summary="Distribution performance comparison with Microsoft Visual C++ version
7252      14.2 on Windows x64">
7253<colgroup>
7254<col>
7255<col>
7256</colgroup>
7257<thead><tr>
7258<th>
7259              <p>
7260                Function
7261              </p>
7262            </th>
7263<th>
7264              <p>
7265                boost 1.73
7266              </p>
7267            </th>
7268</tr></thead>
7269<tbody>
7270<tr>
7271<td>
7272              <p>
7273                ArcSine (CDF)
7274              </p>
7275            </td>
7276<td>
7277              <p>
7278                <span class="green">1.00<br> (43ns)</span>
7279              </p>
7280            </td>
7281</tr>
7282<tr>
7283<td>
7284              <p>
7285                ArcSine (PDF)
7286              </p>
7287            </td>
7288<td>
7289              <p>
7290                <span class="green">1.00<br> (17ns)</span>
7291              </p>
7292            </td>
7293</tr>
7294<tr>
7295<td>
7296              <p>
7297                ArcSine (quantile)
7298              </p>
7299            </td>
7300<td>
7301              <p>
7302                <span class="green">1.00<br> (30ns)</span>
7303              </p>
7304            </td>
7305</tr>
7306<tr>
7307<td>
7308              <p>
7309                Beta (CDF)
7310              </p>
7311            </td>
7312<td>
7313              <p>
7314                <span class="green">1.00<br> (158ns)</span>
7315              </p>
7316            </td>
7317</tr>
7318<tr>
7319<td>
7320              <p>
7321                Beta (PDF)
7322              </p>
7323            </td>
7324<td>
7325              <p>
7326                <span class="green">1.00<br> (104ns)</span>
7327              </p>
7328            </td>
7329</tr>
7330<tr>
7331<td>
7332              <p>
7333                Beta (quantile)
7334              </p>
7335            </td>
7336<td>
7337              <p>
7338                <span class="green">1.00<br> (806ns)</span>
7339              </p>
7340            </td>
7341</tr>
7342<tr>
7343<td>
7344              <p>
7345                Binomial (CDF)
7346              </p>
7347            </td>
7348<td>
7349              <p>
7350                <span class="green">1.00<br> (413ns)</span>
7351              </p>
7352            </td>
7353</tr>
7354<tr>
7355<td>
7356              <p>
7357                Binomial (PDF)
7358              </p>
7359            </td>
7360<td>
7361              <p>
7362                <span class="green">1.00<br> (127ns)</span>
7363              </p>
7364            </td>
7365</tr>
7366<tr>
7367<td>
7368              <p>
7369                Binomial (quantile)
7370              </p>
7371            </td>
7372<td>
7373              <p>
7374                <span class="green">1.00<br> (2024ns)</span>
7375              </p>
7376            </td>
7377</tr>
7378<tr>
7379<td>
7380              <p>
7381                Cauchy (CDF)
7382              </p>
7383            </td>
7384<td>
7385              <p>
7386                <span class="green">1.00<br> (26ns)</span>
7387              </p>
7388            </td>
7389</tr>
7390<tr>
7391<td>
7392              <p>
7393                Cauchy (PDF)
7394              </p>
7395            </td>
7396<td>
7397              <p>
7398                <span class="green">1.00<br> (8ns)</span>
7399              </p>
7400            </td>
7401</tr>
7402<tr>
7403<td>
7404              <p>
7405                Cauchy (quantile)
7406              </p>
7407            </td>
7408<td>
7409              <p>
7410                <span class="green">1.00<br> (26ns)</span>
7411              </p>
7412            </td>
7413</tr>
7414<tr>
7415<td>
7416              <p>
7417                ChiSquared (CDF)
7418              </p>
7419            </td>
7420<td>
7421              <p>
7422                <span class="green">1.00<br> (676ns)</span>
7423              </p>
7424            </td>
7425</tr>
7426<tr>
7427<td>
7428              <p>
7429                ChiSquared (PDF)
7430              </p>
7431            </td>
7432<td>
7433              <p>
7434                <span class="green">1.00<br> (93ns)</span>
7435              </p>
7436            </td>
7437</tr>
7438<tr>
7439<td>
7440              <p>
7441                ChiSquared (quantile)
7442              </p>
7443            </td>
7444<td>
7445              <p>
7446                <span class="green">1.00<br> (1073ns)</span>
7447              </p>
7448            </td>
7449</tr>
7450<tr>
7451<td>
7452              <p>
7453                Exponential (CDF)
7454              </p>
7455            </td>
7456<td>
7457              <p>
7458                <span class="green">1.00<br> (17ns)</span>
7459              </p>
7460            </td>
7461</tr>
7462<tr>
7463<td>
7464              <p>
7465                Exponential (PDF)
7466              </p>
7467            </td>
7468<td>
7469              <p>
7470                <span class="green">1.00<br> (15ns)</span>
7471              </p>
7472            </td>
7473</tr>
7474<tr>
7475<td>
7476              <p>
7477                Exponential (quantile)
7478              </p>
7479            </td>
7480<td>
7481              <p>
7482                <span class="green">1.00<br> (20ns)</span>
7483              </p>
7484            </td>
7485</tr>
7486<tr>
7487<td>
7488              <p>
7489                ExtremeValue (CDF)
7490              </p>
7491            </td>
7492<td>
7493              <p>
7494                <span class="green">1.00<br> (26ns)</span>
7495              </p>
7496            </td>
7497</tr>
7498<tr>
7499<td>
7500              <p>
7501                ExtremeValue (PDF)
7502              </p>
7503            </td>
7504<td>
7505              <p>
7506                <span class="green">1.00<br> (27ns)</span>
7507              </p>
7508            </td>
7509</tr>
7510<tr>
7511<td>
7512              <p>
7513                ExtremeValue (quantile)
7514              </p>
7515            </td>
7516<td>
7517              <p>
7518                <span class="green">1.00<br> (34ns)</span>
7519              </p>
7520            </td>
7521</tr>
7522<tr>
7523<td>
7524              <p>
7525                F (CDF)
7526              </p>
7527            </td>
7528<td>
7529              <p>
7530                <span class="green">1.00<br> (277ns)</span>
7531              </p>
7532            </td>
7533</tr>
7534<tr>
7535<td>
7536              <p>
7537                F (PDF)
7538              </p>
7539            </td>
7540<td>
7541              <p>
7542                <span class="green">1.00<br> (97ns)</span>
7543              </p>
7544            </td>
7545</tr>
7546<tr>
7547<td>
7548              <p>
7549                F (quantile)
7550              </p>
7551            </td>
7552<td>
7553              <p>
7554                <span class="green">1.00<br> (901ns)</span>
7555              </p>
7556            </td>
7557</tr>
7558<tr>
7559<td>
7560              <p>
7561                Gamma (CDF)
7562              </p>
7563            </td>
7564<td>
7565              <p>
7566                <span class="green">1.00<br> (234ns)</span>
7567              </p>
7568            </td>
7569</tr>
7570<tr>
7571<td>
7572              <p>
7573                Gamma (PDF)
7574              </p>
7575            </td>
7576<td>
7577              <p>
7578                <span class="green">1.00<br> (85ns)</span>
7579              </p>
7580            </td>
7581</tr>
7582<tr>
7583<td>
7584              <p>
7585                Gamma (quantile)
7586              </p>
7587            </td>
7588<td>
7589              <p>
7590                <span class="green">1.00<br> (640ns)</span>
7591              </p>
7592            </td>
7593</tr>
7594<tr>
7595<td>
7596              <p>
7597                Geometric (CDF)
7598              </p>
7599            </td>
7600<td>
7601              <p>
7602                <span class="green">1.00<br> (18ns)</span>
7603              </p>
7604            </td>
7605</tr>
7606<tr>
7607<td>
7608              <p>
7609                Geometric (PDF)
7610              </p>
7611            </td>
7612<td>
7613              <p>
7614                <span class="green">1.00<br> (24ns)</span>
7615              </p>
7616            </td>
7617</tr>
7618<tr>
7619<td>
7620              <p>
7621                Geometric (quantile)
7622              </p>
7623            </td>
7624<td>
7625              <p>
7626                <span class="green">1.00<br> (20ns)</span>
7627              </p>
7628            </td>
7629</tr>
7630<tr>
7631<td>
7632              <p>
7633                Hypergeometric (CDF)
7634              </p>
7635            </td>
7636<td>
7637              <p>
7638                <span class="green">1.00<br> (244196ns)</span>
7639              </p>
7640            </td>
7641</tr>
7642<tr>
7643<td>
7644              <p>
7645                Hypergeometric (PDF)
7646              </p>
7647            </td>
7648<td>
7649              <p>
7650                <span class="green">1.00<br> (272497ns)</span>
7651              </p>
7652            </td>
7653</tr>
7654<tr>
7655<td>
7656              <p>
7657                Hypergeometric (quantile)
7658              </p>
7659            </td>
7660<td>
7661              <p>
7662                <span class="green">1.00<br> (308077ns)</span>
7663              </p>
7664            </td>
7665</tr>
7666<tr>
7667<td>
7668              <p>
7669                InverseChiSquared (CDF)
7670              </p>
7671            </td>
7672<td>
7673              <p>
7674                <span class="green">1.00<br> (584ns)</span>
7675              </p>
7676            </td>
7677</tr>
7678<tr>
7679<td>
7680              <p>
7681                InverseChiSquared (PDF)
7682              </p>
7683            </td>
7684<td>
7685              <p>
7686                <span class="green">1.00<br> (78ns)</span>
7687              </p>
7688            </td>
7689</tr>
7690<tr>
7691<td>
7692              <p>
7693                InverseChiSquared (quantile)
7694              </p>
7695            </td>
7696<td>
7697              <p>
7698                <span class="green">1.00<br> (884ns)</span>
7699              </p>
7700            </td>
7701</tr>
7702<tr>
7703<td>
7704              <p>
7705                InverseGamma (CDF)
7706              </p>
7707            </td>
7708<td>
7709              <p>
7710                <span class="green">1.00<br> (244ns)</span>
7711              </p>
7712            </td>
7713</tr>
7714<tr>
7715<td>
7716              <p>
7717                InverseGamma (PDF)
7718              </p>
7719            </td>
7720<td>
7721              <p>
7722                <span class="green">1.00<br> (91ns)</span>
7723              </p>
7724            </td>
7725</tr>
7726<tr>
7727<td>
7728              <p>
7729                InverseGamma (quantile)
7730              </p>
7731            </td>
7732<td>
7733              <p>
7734                <span class="green">1.00<br> (638ns)</span>
7735              </p>
7736            </td>
7737</tr>
7738<tr>
7739<td>
7740              <p>
7741                InverseGaussian (CDF)
7742              </p>
7743            </td>
7744<td>
7745              <p>
7746                <span class="green">1.00<br> (109ns)</span>
7747              </p>
7748            </td>
7749</tr>
7750<tr>
7751<td>
7752              <p>
7753                InverseGaussian (PDF)
7754              </p>
7755            </td>
7756<td>
7757              <p>
7758                <span class="green">1.00<br> (12ns)</span>
7759              </p>
7760            </td>
7761</tr>
7762<tr>
7763<td>
7764              <p>
7765                InverseGaussian (quantile)
7766              </p>
7767            </td>
7768<td>
7769              <p>
7770                <span class="green">1.00<br> (1651ns)</span>
7771              </p>
7772            </td>
7773</tr>
7774<tr>
7775<td>
7776              <p>
7777                Laplace (CDF)
7778              </p>
7779            </td>
7780<td>
7781              <p>
7782                <span class="green">1.00<br> (13ns)</span>
7783              </p>
7784            </td>
7785</tr>
7786<tr>
7787<td>
7788              <p>
7789                Laplace (PDF)
7790              </p>
7791            </td>
7792<td>
7793              <p>
7794                <span class="green">1.00<br> (14ns)</span>
7795              </p>
7796            </td>
7797</tr>
7798<tr>
7799<td>
7800              <p>
7801                Laplace (quantile)
7802              </p>
7803            </td>
7804<td>
7805              <p>
7806                <span class="green">1.00<br> (14ns)</span>
7807              </p>
7808            </td>
7809</tr>
7810<tr>
7811<td>
7812              <p>
7813                LogNormal (CDF)
7814              </p>
7815            </td>
7816<td>
7817              <p>
7818                <span class="green">1.00<br> (79ns)</span>
7819              </p>
7820            </td>
7821</tr>
7822<tr>
7823<td>
7824              <p>
7825                LogNormal (PDF)
7826              </p>
7827            </td>
7828<td>
7829              <p>
7830                <span class="green">1.00<br> (35ns)</span>
7831              </p>
7832            </td>
7833</tr>
7834<tr>
7835<td>
7836              <p>
7837                LogNormal (quantile)
7838              </p>
7839            </td>
7840<td>
7841              <p>
7842                <span class="green">1.00<br> (61ns)</span>
7843              </p>
7844            </td>
7845</tr>
7846<tr>
7847<td>
7848              <p>
7849                Logistic (CDF)
7850              </p>
7851            </td>
7852<td>
7853              <p>
7854                <span class="green">1.00<br> (14ns)</span>
7855              </p>
7856            </td>
7857</tr>
7858<tr>
7859<td>
7860              <p>
7861                Logistic (PDF)
7862              </p>
7863            </td>
7864<td>
7865              <p>
7866                <span class="green">1.00<br> (18ns)</span>
7867              </p>
7868            </td>
7869</tr>
7870<tr>
7871<td>
7872              <p>
7873                Logistic (quantile)
7874              </p>
7875            </td>
7876<td>
7877              <p>
7878                <span class="green">1.00<br> (15ns)</span>
7879              </p>
7880            </td>
7881</tr>
7882<tr>
7883<td>
7884              <p>
7885                NegativeBinomial (CDF)
7886              </p>
7887            </td>
7888<td>
7889              <p>
7890                <span class="green">1.00<br> (481ns)</span>
7891              </p>
7892            </td>
7893</tr>
7894<tr>
7895<td>
7896              <p>
7897                NegativeBinomial (PDF)
7898              </p>
7899            </td>
7900<td>
7901              <p>
7902                <span class="green">1.00<br> (114ns)</span>
7903              </p>
7904            </td>
7905</tr>
7906<tr>
7907<td>
7908              <p>
7909                NegativeBinomial (quantile)
7910              </p>
7911            </td>
7912<td>
7913              <p>
7914                <span class="green">1.00<br> (2651ns)</span>
7915              </p>
7916            </td>
7917</tr>
7918<tr>
7919<td>
7920              <p>
7921                NonCentralBeta (CDF)
7922              </p>
7923            </td>
7924<td>
7925              <p>
7926                <span class="green">1.00<br> (735ns)</span>
7927              </p>
7928            </td>
7929</tr>
7930<tr>
7931<td>
7932              <p>
7933                NonCentralBeta (PDF)
7934              </p>
7935            </td>
7936<td>
7937              <p>
7938                <span class="green">1.00<br> (489ns)</span>
7939              </p>
7940            </td>
7941</tr>
7942<tr>
7943<td>
7944              <p>
7945                NonCentralBeta (quantile)
7946              </p>
7947            </td>
7948<td>
7949              <p>
7950                <span class="green">1.00<br> (14689ns)</span>
7951              </p>
7952            </td>
7953</tr>
7954<tr>
7955<td>
7956              <p>
7957                NonCentralChiSquared (CDF)
7958              </p>
7959            </td>
7960<td>
7961              <p>
7962                <span class="green">1.00<br> (2643ns)</span>
7963              </p>
7964            </td>
7965</tr>
7966<tr>
7967<td>
7968              <p>
7969                NonCentralChiSquared (PDF)
7970              </p>
7971            </td>
7972<td>
7973              <p>
7974                <span class="green">1.00<br> (290ns)</span>
7975              </p>
7976            </td>
7977</tr>
7978<tr>
7979<td>
7980              <p>
7981                NonCentralChiSquared (quantile)
7982              </p>
7983            </td>
7984<td>
7985              <p>
7986                <span class="green">1.00<br> (16692ns)</span>
7987              </p>
7988            </td>
7989</tr>
7990<tr>
7991<td>
7992              <p>
7993                NonCentralF (CDF)
7994              </p>
7995            </td>
7996<td>
7997              <p>
7998                <span class="green">1.00<br> (608ns)</span>
7999              </p>
8000            </td>
8001</tr>
8002<tr>
8003<td>
8004              <p>
8005                NonCentralF (PDF)
8006              </p>
8007            </td>
8008<td>
8009              <p>
8010                <span class="green">1.00<br> (467ns)</span>
8011              </p>
8012            </td>
8013</tr>
8014<tr>
8015<td>
8016              <p>
8017                NonCentralF (quantile)
8018              </p>
8019            </td>
8020<td>
8021              <p>
8022                <span class="green">1.00<br> (9122ns)</span>
8023              </p>
8024            </td>
8025</tr>
8026<tr>
8027<td>
8028              <p>
8029                NonCentralT (CDF)
8030              </p>
8031            </td>
8032<td>
8033              <p>
8034                <span class="green">1.00<br> (2375ns)</span>
8035              </p>
8036            </td>
8037</tr>
8038<tr>
8039<td>
8040              <p>
8041                NonCentralT (PDF)
8042              </p>
8043            </td>
8044<td>
8045              <p>
8046                <span class="green">1.00<br> (1701ns)</span>
8047              </p>
8048            </td>
8049</tr>
8050<tr>
8051<td>
8052              <p>
8053                NonCentralT (quantile)
8054              </p>
8055            </td>
8056<td>
8057              <p>
8058                <span class="green">1.00<br> (23683ns)</span>
8059              </p>
8060            </td>
8061</tr>
8062<tr>
8063<td>
8064              <p>
8065                Normal (CDF)
8066              </p>
8067            </td>
8068<td>
8069              <p>
8070                <span class="green">1.00<br> (89ns)</span>
8071              </p>
8072            </td>
8073</tr>
8074<tr>
8075<td>
8076              <p>
8077                Normal (PDF)
8078              </p>
8079            </td>
8080<td>
8081              <p>
8082                <span class="green">1.00<br> (28ns)</span>
8083              </p>
8084            </td>
8085</tr>
8086<tr>
8087<td>
8088              <p>
8089                Normal (quantile)
8090              </p>
8091            </td>
8092<td>
8093              <p>
8094                <span class="green">1.00<br> (44ns)</span>
8095              </p>
8096            </td>
8097</tr>
8098<tr>
8099<td>
8100              <p>
8101                Pareto (CDF)
8102              </p>
8103            </td>
8104<td>
8105              <p>
8106                <span class="green">1.00<br> (34ns)</span>
8107              </p>
8108            </td>
8109</tr>
8110<tr>
8111<td>
8112              <p>
8113                Pareto (PDF)
8114              </p>
8115            </td>
8116<td>
8117              <p>
8118                <span class="green">1.00<br> (102ns)</span>
8119              </p>
8120            </td>
8121</tr>
8122<tr>
8123<td>
8124              <p>
8125                Pareto (quantile)
8126              </p>
8127            </td>
8128<td>
8129              <p>
8130                <span class="green">1.00<br> (50ns)</span>
8131              </p>
8132            </td>
8133</tr>
8134<tr>
8135<td>
8136              <p>
8137                Poisson (CDF)
8138              </p>
8139            </td>
8140<td>
8141              <p>
8142                <span class="green">1.00<br> (84ns)</span>
8143              </p>
8144            </td>
8145</tr>
8146<tr>
8147<td>
8148              <p>
8149                Poisson (PDF)
8150              </p>
8151            </td>
8152<td>
8153              <p>
8154                <span class="green">1.00<br> (49ns)</span>
8155              </p>
8156            </td>
8157</tr>
8158<tr>
8159<td>
8160              <p>
8161                Poisson (quantile)
8162              </p>
8163            </td>
8164<td>
8165              <p>
8166                <span class="green">1.00<br> (440ns)</span>
8167              </p>
8168            </td>
8169</tr>
8170<tr>
8171<td>
8172              <p>
8173                Rayleigh (CDF)
8174              </p>
8175            </td>
8176<td>
8177              <p>
8178                <span class="green">1.00<br> (15ns)</span>
8179              </p>
8180            </td>
8181</tr>
8182<tr>
8183<td>
8184              <p>
8185                Rayleigh (PDF)
8186              </p>
8187            </td>
8188<td>
8189              <p>
8190                <span class="green">1.00<br> (14ns)</span>
8191              </p>
8192            </td>
8193</tr>
8194<tr>
8195<td>
8196              <p>
8197                Rayleigh (quantile)
8198              </p>
8199            </td>
8200<td>
8201              <p>
8202                <span class="green">1.00<br> (23ns)</span>
8203              </p>
8204            </td>
8205</tr>
8206<tr>
8207<td>
8208              <p>
8209                SkewNormal (CDF)
8210              </p>
8211            </td>
8212<td>
8213              <p>
8214                <span class="green">1.00<br> (259ns)</span>
8215              </p>
8216            </td>
8217</tr>
8218<tr>
8219<td>
8220              <p>
8221                SkewNormal (PDF)
8222              </p>
8223            </td>
8224<td>
8225              <p>
8226                <span class="green">1.00<br> (94ns)</span>
8227              </p>
8228            </td>
8229</tr>
8230<tr>
8231<td>
8232              <p>
8233                SkewNormal (quantile)
8234              </p>
8235            </td>
8236<td>
8237              <p>
8238                <span class="green">1.00<br> (2843ns)</span>
8239              </p>
8240            </td>
8241</tr>
8242<tr>
8243<td>
8244              <p>
8245                StudentsT (CDF)
8246              </p>
8247            </td>
8248<td>
8249              <p>
8250                <span class="green">1.00<br> (429ns)</span>
8251              </p>
8252            </td>
8253</tr>
8254<tr>
8255<td>
8256              <p>
8257                StudentsT (PDF)
8258              </p>
8259            </td>
8260<td>
8261              <p>
8262                <span class="green">1.00<br> (146ns)</span>
8263              </p>
8264            </td>
8265</tr>
8266<tr>
8267<td>
8268              <p>
8269                StudentsT (quantile)
8270              </p>
8271            </td>
8272<td>
8273              <p>
8274                <span class="green">1.00<br> (729ns)</span>
8275              </p>
8276            </td>
8277</tr>
8278<tr>
8279<td>
8280              <p>
8281                Weibull (CDF)
8282              </p>
8283            </td>
8284<td>
8285              <p>
8286                <span class="green">1.00<br> (63ns)</span>
8287              </p>
8288            </td>
8289</tr>
8290<tr>
8291<td>
8292              <p>
8293                Weibull (PDF)
8294              </p>
8295            </td>
8296<td>
8297              <p>
8298                <span class="green">1.00<br> (89ns)</span>
8299              </p>
8300            </td>
8301</tr>
8302<tr>
8303<td>
8304              <p>
8305                Weibull (quantile)
8306              </p>
8307            </td>
8308<td>
8309              <p>
8310                <span class="green">1.00<br> (62ns)</span>
8311              </p>
8312            </td>
8313</tr>
8314</tbody>
8315</table></div>
8316</div>
8317<br class="table-break">
8318</div>
8319<div class="section">
8320<div class="titlepage"><div><div><h2 class="title" style="clear: both">
8321<a name="special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Library Comparison with GNU C++ version 9.2.0 on Windows x64">Library
8322    Comparison with GNU C++ version 9.2.0 on Windows x64</a>
8323</h2></div></div></div>
8324<div class="table">
8325<a name="special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;7.&#160;Library Comparison with GNU C++ version 9.2.0 on Windows x64</b></p>
8326<div class="table-contents"><table class="table" summary="Library Comparison with GNU C++ version 9.2.0 on Windows x64">
8327<colgroup>
8328<col>
8329<col>
8330<col>
8331<col>
8332<col>
8333</colgroup>
8334<thead><tr>
8335<th>
8336              <p>
8337                Function
8338              </p>
8339            </th>
8340<th>
8341              <p>
8342                boost 1.73
8343              </p>
8344            </th>
8345<th>
8346              <p>
8347                boost 1.73<br> promote_double&lt;false&gt;
8348              </p>
8349            </th>
8350<th>
8351              <p>
8352                tr1/cmath
8353              </p>
8354            </th>
8355<th>
8356              <p>
8357                math.h
8358              </p>
8359            </th>
8360</tr></thead>
8361<tbody>
8362<tr>
8363<td>
8364              <p>
8365                assoc_laguerre<br> (2240/2240 tests selected)
8366              </p>
8367            </td>
8368<td>
8369              <p>
8370                <span class="green">1.08<br> (137ns)</span>
8371              </p>
8372            </td>
8373<td>
8374              <p>
8375                <span class="green">1.00<br> (127ns)</span>
8376              </p>
8377            </td>
8378<td>
8379              <p>
8380                <span class="green">1.08<br> (137ns)</span>
8381              </p>
8382            </td>
8383<td>
8384              <p>
8385                <span class="grey">-</span>
8386              </p>
8387            </td>
8388</tr>
8389<tr>
8390<td>
8391              <p>
8392                assoc_legendre<br> (110/400 tests selected)
8393              </p>
8394            </td>
8395<td>
8396              <p>
8397                <span class="grey">-</span>
8398              </p>
8399            </td>
8400<td>
8401              <p>
8402                <span class="grey">-</span>
8403              </p>
8404            </td>
8405<td>
8406              <p>
8407                <span class="green">1.00<br> (40ns)</span>
8408              </p>
8409            </td>
8410<td>
8411              <p>
8412                <span class="grey">-</span>
8413              </p>
8414            </td>
8415</tr>
8416<tr>
8417<td>
8418              <p>
8419                beta<br> (2204/2204 tests selected)
8420              </p>
8421            </td>
8422<td>
8423              <p>
8424                <span class="blue">1.60<br> (322ns)</span>
8425              </p>
8426            </td>
8427<td>
8428              <p>
8429                <span class="green">1.18<br> (237ns)</span>
8430              </p>
8431            </td>
8432<td>
8433              <p>
8434                <span class="green">1.00<br> (201ns)</span>
8435              </p>
8436            </td>
8437<td>
8438              <p>
8439                <span class="grey">-</span>
8440              </p>
8441            </td>
8442</tr>
8443<tr>
8444<td>
8445              <p>
8446                cbrt<br> (85/85 tests selected)
8447              </p>
8448            </td>
8449<td>
8450              <p>
8451                <span class="red">4.67<br> (70ns)</span>
8452              </p>
8453            </td>
8454<td>
8455              <p>
8456                <span class="green">1.00<br> (15ns)</span>
8457              </p>
8458            </td>
8459<td>
8460              <p>
8461                <span class="blue">2.00<br> (30ns)</span>
8462              </p>
8463            </td>
8464<td>
8465              <p>
8466                <span class="red">2.13<br> (32ns)</span>
8467              </p>
8468            </td>
8469</tr>
8470<tr>
8471<td>
8472              <p>
8473                cyl_bessel_i (integer order)<br> (515/526 tests selected)
8474              </p>
8475            </td>
8476<td>
8477              <p>
8478                <span class="red">3.06<br> (597ns)</span>
8479              </p>
8480            </td>
8481<td>
8482              <p>
8483                <span class="green">1.00<br> (195ns)</span>
8484              </p>
8485            </td>
8486<td>
8487              <p>
8488                <span class="green">1.01<br> (196ns)</span>
8489              </p>
8490            </td>
8491<td>
8492              <p>
8493                <span class="grey">-</span>
8494              </p>
8495            </td>
8496</tr>
8497<tr>
8498<td>
8499              <p>
8500                cyl_bessel_i<br> (215/240 tests selected)
8501              </p>
8502            </td>
8503<td>
8504              <p>
8505                <span class="red">5.68<br> (949ns)</span>
8506              </p>
8507            </td>
8508<td>
8509              <p>
8510                <span class="red">2.32<br> (387ns)</span>
8511              </p>
8512            </td>
8513<td>
8514              <p>
8515                <span class="green">1.00<br> (167ns)</span>
8516              </p>
8517            </td>
8518<td>
8519              <p>
8520                <span class="grey">-</span>
8521              </p>
8522            </td>
8523</tr>
8524<tr>
8525<td>
8526              <p>
8527                cyl_bessel_j (integer order)<br> (253/268 tests selected)
8528              </p>
8529            </td>
8530<td>
8531              <p>
8532                <span class="blue">1.92<br> (184ns)</span>
8533              </p>
8534            </td>
8535<td>
8536              <p>
8537                <span class="green">1.00<br> (96ns)</span>
8538              </p>
8539            </td>
8540<td>
8541              <p>
8542                <span class="red">3.12<br> (300ns)</span>
8543              </p>
8544            </td>
8545<td>
8546              <p>
8547                <span class="blue">1.94<br> (186ns)</span>
8548              </p>
8549            </td>
8550</tr>
8551<tr>
8552<td>
8553              <p>
8554                cyl_bessel_j<br> (442/451 tests selected)
8555              </p>
8556            </td>
8557<td>
8558              <p>
8559                <span class="red">2.15<br> (886ns)</span>
8560              </p>
8561            </td>
8562<td>
8563              <p>
8564                <span class="blue">1.21<br> (499ns)</span>
8565              </p>
8566            </td>
8567<td>
8568              <p>
8569                <span class="green">1.00<br> (412ns)</span>
8570              </p>
8571            </td>
8572<td>
8573              <p>
8574                <span class="grey">-</span>
8575              </p>
8576            </td>
8577</tr>
8578<tr>
8579<td>
8580              <p>
8581                cyl_bessel_k (integer order)<br> (505/508 tests selected)
8582              </p>
8583            </td>
8584<td>
8585              <p>
8586                <span class="red">18.17<br> (3724ns)</span>
8587              </p>
8588            </td>
8589<td>
8590              <p>
8591                <span class="green">1.00<br> (205ns)</span>
8592              </p>
8593            </td>
8594<td>
8595              <p>
8596                <span class="red">8.40<br> (1722ns)</span>
8597              </p>
8598            </td>
8599<td>
8600              <p>
8601                <span class="grey">-</span>
8602              </p>
8603            </td>
8604</tr>
8605<tr>
8606<td>
8607              <p>
8608                cyl_bessel_k<br> (187/279 tests selected)
8609              </p>
8610            </td>
8611<td>
8612              <p>
8613                <span class="red">19.68<br> (6847ns)</span>
8614              </p>
8615            </td>
8616<td>
8617              <p>
8618                <span class="green">1.00<br> (348ns)</span>
8619              </p>
8620            </td>
8621<td>
8622              <p>
8623                <span class="red">6.31<br> (2196ns)</span>
8624              </p>
8625            </td>
8626<td>
8627              <p>
8628                <span class="grey">-</span>
8629              </p>
8630            </td>
8631</tr>
8632<tr>
8633<td>
8634              <p>
8635                cyl_neumann (integer order)<br> (424/428 tests selected)
8636              </p>
8637            </td>
8638<td>
8639              <p>
8640                <span class="red">2.13<br> (348ns)</span>
8641              </p>
8642            </td>
8643<td>
8644              <p>
8645                <span class="blue">1.55<br> (252ns)</span>
8646              </p>
8647            </td>
8648<td>
8649              <p>
8650                <span class="red">3.83<br> (624ns)</span>
8651              </p>
8652            </td>
8653<td>
8654              <p>
8655                <span class="green">1.00<br> (163ns)</span>
8656              </p>
8657            </td>
8658</tr>
8659<tr>
8660<td>
8661              <p>
8662                cyl_neumann<br> (428/450 tests selected)
8663              </p>
8664            </td>
8665<td>
8666              <p>
8667                <span class="red">12.46<br> (10032ns)</span>
8668              </p>
8669            </td>
8670<td>
8671              <p>
8672                <span class="red">7.10<br> (5715ns)</span>
8673              </p>
8674            </td>
8675<td>
8676              <p>
8677                <span class="green">1.00<br> (805ns)</span>
8678              </p>
8679            </td>
8680<td>
8681              <p>
8682                <span class="grey">-</span>
8683              </p>
8684            </td>
8685</tr>
8686<tr>
8687<td>
8688              <p>
8689                ellint_1 (complete)<br> (109/109 tests selected)
8690              </p>
8691            </td>
8692<td>
8693              <p>
8694                <span class="blue">1.64<br> (77ns)</span>
8695              </p>
8696            </td>
8697<td>
8698              <p>
8699                <span class="green">1.00<br> (47ns)</span>
8700              </p>
8701            </td>
8702<td>
8703              <p>
8704                <span class="red">2.36<br> (111ns)</span>
8705              </p>
8706            </td>
8707<td>
8708              <p>
8709                <span class="grey">-</span>
8710              </p>
8711            </td>
8712</tr>
8713<tr>
8714<td>
8715              <p>
8716                ellint_1<br> (627/629 tests selected)
8717              </p>
8718            </td>
8719<td>
8720              <p>
8721                <span class="blue">1.41<br> (349ns)</span>
8722              </p>
8723            </td>
8724<td>
8725              <p>
8726                <span class="green">1.00<br> (248ns)</span>
8727              </p>
8728            </td>
8729<td>
8730              <p>
8731                <span class="green">1.09<br> (270ns)</span>
8732              </p>
8733            </td>
8734<td>
8735              <p>
8736                <span class="grey">-</span>
8737              </p>
8738            </td>
8739</tr>
8740<tr>
8741<td>
8742              <p>
8743                ellint_2 (complete)<br> (110/110 tests selected)
8744              </p>
8745            </td>
8746<td>
8747              <p>
8748                <span class="red">2.11<br> (57ns)</span>
8749              </p>
8750            </td>
8751<td>
8752              <p>
8753                <span class="green">1.00<br> (27ns)</span>
8754              </p>
8755            </td>
8756<td>
8757              <p>
8758                <span class="red">9.37<br> (253ns)</span>
8759              </p>
8760            </td>
8761<td>
8762              <p>
8763                <span class="grey">-</span>
8764              </p>
8765            </td>
8766</tr>
8767<tr>
8768<td>
8769              <p>
8770                ellint_2<br> (527/530 tests selected)
8771              </p>
8772            </td>
8773<td>
8774              <p>
8775                <span class="blue">1.50<br> (583ns)</span>
8776              </p>
8777            </td>
8778<td>
8779              <p>
8780                <span class="green">1.00<br> (388ns)</span>
8781              </p>
8782            </td>
8783<td>
8784              <p>
8785                <span class="green">1.06<br> (412ns)</span>
8786              </p>
8787            </td>
8788<td>
8789              <p>
8790                <span class="grey">-</span>
8791              </p>
8792            </td>
8793</tr>
8794<tr>
8795<td>
8796              <p>
8797                ellint_3 (complete)<br> (0/500 tests selected)
8798              </p>
8799            </td>
8800<td>
8801              <p>
8802                <span class="green">nan<br> (0ns)</span>
8803              </p>
8804            </td>
8805<td>
8806              <p>
8807                <span class="green">nan<br> (0ns)</span>
8808              </p>
8809            </td>
8810<td>
8811              <p>
8812                <span class="green">nan<br> (0ns)</span>
8813              </p>
8814            </td>
8815<td>
8816              <p>
8817                <span class="grey">-</span>
8818              </p>
8819            </td>
8820</tr>
8821<tr>
8822<td>
8823              <p>
8824                ellint_3<br> (22/845 tests selected)
8825              </p>
8826            </td>
8827<td>
8828              <p>
8829                <span class="red">2.58<br> (670ns)</span>
8830              </p>
8831            </td>
8832<td>
8833              <p>
8834                <span class="blue">1.53<br> (398ns)</span>
8835              </p>
8836            </td>
8837<td>
8838              <p>
8839                <span class="green">1.00<br> (260ns)</span>
8840              </p>
8841            </td>
8842<td>
8843              <p>
8844                <span class="grey">-</span>
8845              </p>
8846            </td>
8847</tr>
8848<tr>
8849<td>
8850              <p>
8851                erf<br> (950/950 tests selected)
8852              </p>
8853            </td>
8854<td>
8855              <p>
8856                <span class="green">1.00<br> (33ns)</span>
8857              </p>
8858            </td>
8859<td>
8860              <p>
8861                <span class="grey">-</span>
8862              </p>
8863            </td>
8864<td>
8865              <p>
8866                <span class="green">1.15<br> (38ns)</span>
8867              </p>
8868            </td>
8869<td>
8870              <p>
8871                <span class="blue">1.30<br> (43ns)</span>
8872              </p>
8873            </td>
8874</tr>
8875<tr>
8876<td>
8877              <p>
8878                erfc<br> (950/950 tests selected)
8879              </p>
8880            </td>
8881<td>
8882              <p>
8883                <span class="blue">1.76<br> (90ns)</span>
8884              </p>
8885            </td>
8886<td>
8887              <p>
8888                <span class="green">1.00<br> (51ns)</span>
8889              </p>
8890            </td>
8891<td>
8892              <p>
8893                <span class="green">1.08<br> (55ns)</span>
8894              </p>
8895            </td>
8896<td>
8897              <p>
8898                <span class="blue">1.25<br> (64ns)</span>
8899              </p>
8900            </td>
8901</tr>
8902<tr>
8903<td>
8904              <p>
8905                expint<br> (436/436 tests selected)
8906              </p>
8907            </td>
8908<td>
8909              <p>
8910                <span class="blue">1.53<br> (92ns)</span>
8911              </p>
8912            </td>
8913<td>
8914              <p>
8915                <span class="green">1.00<br> (60ns)</span>
8916              </p>
8917            </td>
8918<td>
8919              <p>
8920                <span class="blue">1.83<br> (110ns)</span>
8921              </p>
8922            </td>
8923<td>
8924              <p>
8925                <span class="grey">-</span>
8926              </p>
8927            </td>
8928</tr>
8929<tr>
8930<td>
8931              <p>
8932                expm1<br> (80/80 tests selected)
8933              </p>
8934            </td>
8935<td>
8936              <p>
8937                <span class="blue">1.38<br> (33ns)</span>
8938              </p>
8939            </td>
8940<td>
8941              <p>
8942                <span class="green">1.08<br> (26ns)</span>
8943              </p>
8944            </td>
8945<td>
8946              <p>
8947                <span class="green">1.00<br> (24ns)</span>
8948              </p>
8949            </td>
8950<td>
8951              <p>
8952                <span class="green">1.00<br> (24ns)</span>
8953              </p>
8954            </td>
8955</tr>
8956<tr>
8957<td>
8958              <p>
8959                laguerre<br> (280/280 tests selected)
8960              </p>
8961            </td>
8962<td>
8963              <p>
8964                <span class="green">1.07<br> (112ns)</span>
8965              </p>
8966            </td>
8967<td>
8968              <p>
8969                <span class="green">1.00<br> (105ns)</span>
8970              </p>
8971            </td>
8972<td>
8973              <p>
8974                <span class="green">1.03<br> (108ns)</span>
8975              </p>
8976            </td>
8977<td>
8978              <p>
8979                <span class="grey">-</span>
8980              </p>
8981            </td>
8982</tr>
8983<tr>
8984<td>
8985              <p>
8986                legendre<br> (300/300 tests selected)
8987              </p>
8988            </td>
8989<td>
8990              <p>
8991                <span class="blue">1.25<br> (320ns)</span>
8992              </p>
8993            </td>
8994<td>
8995              <p>
8996                <span class="green">1.00<br> (255ns)</span>
8997              </p>
8998            </td>
8999<td>
9000              <p>
9001                <span class="blue">1.27<br> (323ns)</span>
9002              </p>
9003            </td>
9004<td>
9005              <p>
9006                <span class="grey">-</span>
9007              </p>
9008            </td>
9009</tr>
9010<tr>
9011<td>
9012              <p>
9013                lgamma<br> (400/400 tests selected)
9014              </p>
9015            </td>
9016<td>
9017              <p>
9018                <span class="red">3.40<br> (214ns)</span>
9019              </p>
9020            </td>
9021<td>
9022              <p>
9023                <span class="red">2.54<br> (160ns)</span>
9024              </p>
9025            </td>
9026<td>
9027              <p>
9028                <span class="green">1.00<br> (63ns)</span>
9029              </p>
9030            </td>
9031<td>
9032              <p>
9033                <span class="green">1.02<br> (64ns)</span>
9034              </p>
9035            </td>
9036</tr>
9037<tr>
9038<td>
9039              <p>
9040                log1p<br> (80/80 tests selected)
9041              </p>
9042            </td>
9043<td>
9044              <p>
9045                <span class="blue">1.71<br> (29ns)</span>
9046              </p>
9047            </td>
9048<td>
9049              <p>
9050                <span class="green">1.00<br> (17ns)</span>
9051              </p>
9052            </td>
9053<td>
9054              <p>
9055                <span class="blue">1.53<br> (26ns)</span>
9056              </p>
9057            </td>
9058<td>
9059              <p>
9060                <span class="blue">1.71<br> (29ns)</span>
9061              </p>
9062            </td>
9063</tr>
9064<tr>
9065<td>
9066              <p>
9067                sph_bessel<br> (483/483 tests selected)
9068              </p>
9069            </td>
9070<td>
9071              <p>
9072                <span class="blue">1.48<br> (975ns)</span>
9073              </p>
9074            </td>
9075<td>
9076              <p>
9077                <span class="green">1.00<br> (661ns)</span>
9078              </p>
9079            </td>
9080<td>
9081              <p>
9082                <span class="red">3.02<br> (1999ns)</span>
9083              </p>
9084            </td>
9085<td>
9086              <p>
9087                <span class="grey">-</span>
9088              </p>
9089            </td>
9090</tr>
9091<tr>
9092<td>
9093              <p>
9094                sph_neumann<br> (284/284 tests selected)
9095              </p>
9096            </td>
9097<td>
9098              <p>
9099                <span class="red">2.96<br> (3153ns)</span>
9100              </p>
9101            </td>
9102<td>
9103              <p>
9104                <span class="green">1.00<br> (1064ns)</span>
9105              </p>
9106            </td>
9107<td>
9108              <p>
9109                <span class="red">2.73<br> (2906ns)</span>
9110              </p>
9111            </td>
9112<td>
9113              <p>
9114                <span class="grey">-</span>
9115              </p>
9116            </td>
9117</tr>
9118<tr>
9119<td>
9120              <p>
9121                tgamma<br> (400/400 tests selected)
9122              </p>
9123            </td>
9124<td>
9125              <p>
9126                <span class="red">3.32<br> (259ns)</span>
9127              </p>
9128            </td>
9129<td>
9130              <p>
9131                <span class="red">2.03<br> (158ns)</span>
9132              </p>
9133            </td>
9134<td>
9135              <p>
9136                <span class="green">1.01<br> (79ns)</span>
9137              </p>
9138            </td>
9139<td>
9140              <p>
9141                <span class="green">1.00<br> (78ns)</span>
9142              </p>
9143            </td>
9144</tr>
9145<tr>
9146<td>
9147              <p>
9148                zeta<br> (448/448 tests selected)
9149              </p>
9150            </td>
9151<td>
9152              <p>
9153                <span class="blue">1.40<br> (310ns)</span>
9154              </p>
9155            </td>
9156<td>
9157              <p>
9158                <span class="green">1.00<br> (221ns)</span>
9159              </p>
9160            </td>
9161<td>
9162              <p>
9163                <span class="red">918.24<br> (202930ns)</span>
9164              </p>
9165            </td>
9166<td>
9167              <p>
9168                <span class="grey">-</span>
9169              </p>
9170            </td>
9171</tr>
9172</tbody>
9173</table></div>
9174</div>
9175<br class="table-break">
9176</div>
9177<div class="section">
9178<div class="titlepage"><div><div><h2 class="title" style="clear: both">
9179<a name="special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Library Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Library
9180    Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a>
9181</h2></div></div></div>
9182<div class="table">
9183<a name="special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;8.&#160;Library Comparison with Microsoft Visual C++ version 14.2 on Windows
9184      x64</b></p>
9185<div class="table-contents"><table class="table" summary="Library Comparison with Microsoft Visual C++ version 14.2 on Windows
9186      x64">
9187<colgroup>
9188<col>
9189<col>
9190<col>
9191</colgroup>
9192<thead><tr>
9193<th>
9194              <p>
9195                Function
9196              </p>
9197            </th>
9198<th>
9199              <p>
9200                boost 1.73
9201              </p>
9202            </th>
9203<th>
9204              <p>
9205                math.h
9206              </p>
9207            </th>
9208</tr></thead>
9209<tbody>
9210<tr>
9211<td>
9212              <p>
9213                cbrt<br> (85/85 tests selected)
9214              </p>
9215            </td>
9216<td>
9217              <p>
9218                <span class="green">1.00<br> (51ns)</span>
9219              </p>
9220            </td>
9221<td>
9222              <p>
9223                <span class="blue">1.22<br> (62ns)</span>
9224              </p>
9225            </td>
9226</tr>
9227<tr>
9228<td>
9229              <p>
9230                cyl_bessel_j (integer order)<br> (267/268 tests selected)
9231              </p>
9232            </td>
9233<td>
9234              <p>
9235                <span class="green">1.00<br> (123ns)</span>
9236              </p>
9237            </td>
9238<td>
9239              <p>
9240                <span class="blue">1.50<br> (185ns)</span>
9241              </p>
9242            </td>
9243</tr>
9244<tr>
9245<td>
9246              <p>
9247                cyl_neumann (integer order)<br> (428/428 tests selected)
9248              </p>
9249            </td>
9250<td>
9251              <p>
9252                <span class="green">1.01<br> (158ns)</span>
9253              </p>
9254            </td>
9255<td>
9256              <p>
9257                <span class="green">1.00<br> (156ns)</span>
9258              </p>
9259            </td>
9260</tr>
9261<tr>
9262<td>
9263              <p>
9264                erf<br> (950/950 tests selected)
9265              </p>
9266            </td>
9267<td>
9268              <p>
9269                <span class="red">2.15<br> (43ns)</span>
9270              </p>
9271            </td>
9272<td>
9273              <p>
9274                <span class="green">1.00<br> (20ns)</span>
9275              </p>
9276            </td>
9277</tr>
9278<tr>
9279<td>
9280              <p>
9281                erfc<br> (950/950 tests selected)
9282              </p>
9283            </td>
9284<td>
9285              <p>
9286                <span class="green">1.00<br> (54ns)</span>
9287              </p>
9288            </td>
9289<td>
9290              <p>
9291                <span class="green">1.09<br> (59ns)</span>
9292              </p>
9293            </td>
9294</tr>
9295<tr>
9296<td>
9297              <p>
9298                expm1<br> (80/80 tests selected)
9299              </p>
9300            </td>
9301<td>
9302              <p>
9303                <span class="green">1.10<br> (11ns)</span>
9304              </p>
9305            </td>
9306<td>
9307              <p>
9308                <span class="green">1.00<br> (10ns)</span>
9309              </p>
9310            </td>
9311</tr>
9312<tr>
9313<td>
9314              <p>
9315                lgamma<br> (400/400 tests selected)
9316              </p>
9317            </td>
9318<td>
9319              <p>
9320                <span class="green">1.00<br> (80ns)</span>
9321              </p>
9322            </td>
9323<td>
9324              <p>
9325                <span class="blue">1.60<br> (128ns)</span>
9326              </p>
9327            </td>
9328</tr>
9329<tr>
9330<td>
9331              <p>
9332                log1p<br> (80/80 tests selected)
9333              </p>
9334            </td>
9335<td>
9336              <p>
9337                <span class="green">1.00<br> (14ns)</span>
9338              </p>
9339            </td>
9340<td>
9341              <p>
9342                <span class="green">1.07<br> (15ns)</span>
9343              </p>
9344            </td>
9345</tr>
9346<tr>
9347<td>
9348              <p>
9349                tgamma<br> (400/400 tests selected)
9350              </p>
9351            </td>
9352<td>
9353              <p>
9354                <span class="green">1.00<br> (74ns)</span>
9355              </p>
9356            </td>
9357<td>
9358              <p>
9359                <span class="red">12.53<br> (927ns)</span>
9360              </p>
9361            </td>
9362</tr>
9363</tbody>
9364</table></div>
9365</div>
9366<br class="table-break">
9367</div>
9368<div class="section">
9369<div class="titlepage"><div><div><h2 class="title" style="clear: both">
9370<a name="special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_" title="Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)">Polynomial
9371    Arithmetic (GNU C++ version 9.2.0, Windows x64)</a>
9372</h2></div></div></div>
9373<div class="table">
9374<a name="special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_.table_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_"></a><p class="title"><b>Table&#160;9.&#160;Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)</b></p>
9375<div class="table-contents"><table class="table" summary="Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)">
9376<colgroup>
9377<col>
9378<col>
9379<col>
9380<col>
9381</colgroup>
9382<thead><tr>
9383<th>
9384              <p>
9385                Function
9386              </p>
9387            </th>
9388<th>
9389              <p>
9390                boost::uint64_t
9391              </p>
9392            </th>
9393<th>
9394              <p>
9395                double
9396              </p>
9397            </th>
9398<th>
9399              <p>
9400                cpp_int
9401              </p>
9402            </th>
9403</tr></thead>
9404<tbody>
9405<tr>
9406<td>
9407              <p>
9408                operator *
9409              </p>
9410            </td>
9411<td>
9412              <p>
9413                <span class="green">1.00<br> (503ns)</span>
9414              </p>
9415            </td>
9416<td>
9417              <p>
9418                <span class="green">1.00<br> (502ns)</span>
9419              </p>
9420            </td>
9421<td>
9422              <p>
9423                <span class="red">15.20<br> (7629ns)</span>
9424              </p>
9425            </td>
9426</tr>
9427<tr>
9428<td>
9429              <p>
9430                operator * (int)
9431              </p>
9432            </td>
9433<td>
9434              <p>
9435                <span class="green">1.05<br> (114ns)</span>
9436              </p>
9437            </td>
9438<td>
9439              <p>
9440                <span class="green">1.00<br> (109ns)</span>
9441              </p>
9442            </td>
9443<td>
9444              <p>
9445                <span class="red">6.04<br> (658ns)</span>
9446              </p>
9447            </td>
9448</tr>
9449<tr>
9450<td>
9451              <p>
9452                operator *=
9453              </p>
9454            </td>
9455<td>
9456              <p>
9457                <span class="green">1.04<br> (223824ns)</span>
9458              </p>
9459            </td>
9460<td>
9461              <p>
9462                <span class="green">1.00<br> (215955ns)</span>
9463              </p>
9464            </td>
9465<td>
9466              <p>
9467                <span class="red">19.30<br> (4168184ns)</span>
9468              </p>
9469            </td>
9470</tr>
9471<tr>
9472<td>
9473              <p>
9474                operator *= (int)
9475              </p>
9476            </td>
9477<td>
9478              <p>
9479                <span class="green">1.06<br> (13931ns)</span>
9480              </p>
9481            </td>
9482<td>
9483              <p>
9484                <span class="green">1.00<br> (13163ns)</span>
9485              </p>
9486            </td>
9487<td>
9488              <p>
9489                <span class="red">26.10<br> (343615ns)</span>
9490              </p>
9491            </td>
9492</tr>
9493<tr>
9494<td>
9495              <p>
9496                operator +
9497              </p>
9498            </td>
9499<td>
9500              <p>
9501                <span class="green">1.00<br> (163ns)</span>
9502              </p>
9503            </td>
9504<td>
9505              <p>
9506                <span class="green">1.14<br> (186ns)</span>
9507              </p>
9508            </td>
9509<td>
9510              <p>
9511                <span class="red">6.04<br> (985ns)</span>
9512              </p>
9513            </td>
9514</tr>
9515<tr>
9516<td>
9517              <p>
9518                operator + (int)
9519              </p>
9520            </td>
9521<td>
9522              <p>
9523                <span class="green">1.16<br> (116ns)</span>
9524              </p>
9525            </td>
9526<td>
9527              <p>
9528                <span class="green">1.00<br> (100ns)</span>
9529              </p>
9530            </td>
9531<td>
9532              <p>
9533                <span class="red">4.07<br> (407ns)</span>
9534              </p>
9535            </td>
9536</tr>
9537<tr>
9538<td>
9539              <p>
9540                operator +=
9541              </p>
9542            </td>
9543<td>
9544              <p>
9545                <span class="green">1.12<br> (18ns)</span>
9546              </p>
9547            </td>
9548<td>
9549              <p>
9550                <span class="green">1.00<br> (16ns)</span>
9551              </p>
9552            </td>
9553<td>
9554              <p>
9555                <span class="red">22.81<br> (365ns)</span>
9556              </p>
9557            </td>
9558</tr>
9559<tr>
9560<td>
9561              <p>
9562                operator += (int)
9563              </p>
9564            </td>
9565<td>
9566              <p>
9567                <span class="blue">1.33<br> (4ns)</span>
9568              </p>
9569            </td>
9570<td>
9571              <p>
9572                <span class="green">1.00<br> (3ns)</span>
9573              </p>
9574            </td>
9575<td>
9576              <p>
9577                <span class="red">33.00<br> (99ns)</span>
9578              </p>
9579            </td>
9580</tr>
9581<tr>
9582<td>
9583              <p>
9584                operator -
9585              </p>
9586            </td>
9587<td>
9588              <p>
9589                <span class="green">1.00<br> (159ns)</span>
9590              </p>
9591            </td>
9592<td>
9593              <p>
9594                <span class="green">1.16<br> (185ns)</span>
9595              </p>
9596            </td>
9597<td>
9598              <p>
9599                <span class="red">6.66<br> (1059ns)</span>
9600              </p>
9601            </td>
9602</tr>
9603<tr>
9604<td>
9605              <p>
9606                operator - (int)
9607              </p>
9608            </td>
9609<td>
9610              <p>
9611                <span class="green">1.11<br> (113ns)</span>
9612              </p>
9613            </td>
9614<td>
9615              <p>
9616                <span class="green">1.00<br> (102ns)</span>
9617              </p>
9618            </td>
9619<td>
9620              <p>
9621                <span class="red">3.75<br> (382ns)</span>
9622              </p>
9623            </td>
9624</tr>
9625<tr>
9626<td>
9627              <p>
9628                operator -=
9629              </p>
9630            </td>
9631<td>
9632              <p>
9633                <span class="blue">1.38<br> (22ns)</span>
9634              </p>
9635            </td>
9636<td>
9637              <p>
9638                <span class="green">1.00<br> (16ns)</span>
9639              </p>
9640            </td>
9641<td>
9642              <p>
9643                <span class="red">23.38<br> (374ns)</span>
9644              </p>
9645            </td>
9646</tr>
9647<tr>
9648<td>
9649              <p>
9650                operator -= (int)
9651              </p>
9652            </td>
9653<td>
9654              <p>
9655                <span class="green">1.00<br> (3ns)</span>
9656              </p>
9657            </td>
9658<td>
9659              <p>
9660                <span class="green">1.00<br> (3ns)</span>
9661              </p>
9662            </td>
9663<td>
9664              <p>
9665                <span class="red">31.00<br> (93ns)</span>
9666              </p>
9667            </td>
9668</tr>
9669<tr>
9670<td>
9671              <p>
9672                operator /
9673              </p>
9674            </td>
9675<td>
9676              <p>
9677                <span class="blue">1.44<br> (767ns)</span>
9678              </p>
9679            </td>
9680<td>
9681              <p>
9682                <span class="green">1.00<br> (533ns)</span>
9683              </p>
9684            </td>
9685<td>
9686              <p>
9687                <span class="red">41.38<br> (22054ns)</span>
9688              </p>
9689            </td>
9690</tr>
9691<tr>
9692<td>
9693              <p>
9694                operator / (int)
9695              </p>
9696            </td>
9697<td>
9698              <p>
9699                <span class="blue">1.29<br> (138ns)</span>
9700              </p>
9701            </td>
9702<td>
9703              <p>
9704                <span class="green">1.00<br> (107ns)</span>
9705              </p>
9706            </td>
9707<td>
9708              <p>
9709                <span class="red">13.58<br> (1453ns)</span>
9710              </p>
9711            </td>
9712</tr>
9713<tr>
9714<td>
9715              <p>
9716                operator /=
9717              </p>
9718            </td>
9719<td>
9720              <p>
9721                <span class="green">1.10<br> (11ns)</span>
9722              </p>
9723            </td>
9724<td>
9725              <p>
9726                <span class="green">1.00<br> (10ns)</span>
9727              </p>
9728            </td>
9729<td>
9730              <p>
9731                <span class="red">194.00<br> (1940ns)</span>
9732              </p>
9733            </td>
9734</tr>
9735<tr>
9736<td>
9737              <p>
9738                operator /= (int)
9739              </p>
9740            </td>
9741<td>
9742              <p>
9743                <span class="green">1.00<br> (679ns)</span>
9744              </p>
9745            </td>
9746<td>
9747              <p>
9748                <span class="red">21.14<br> (14351ns)</span>
9749              </p>
9750            </td>
9751<td>
9752              <p>
9753                <span class="red">3447.12<br> (2340595ns)</span>
9754              </p>
9755            </td>
9756</tr>
9757</tbody>
9758</table></div>
9759</div>
9760<br class="table-break">
9761</div>
9762<div class="section">
9763<div class="titlepage"><div><div><h2 class="title" style="clear: both">
9764<a name="special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_" title="Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)">Polynomial
9765    Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</a>
9766</h2></div></div></div>
9767<div class="table">
9768<a name="special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_.table_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_"></a><p class="title"><b>Table&#160;10.&#160;Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</b></p>
9769<div class="table-contents"><table class="table" summary="Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)">
9770<colgroup>
9771<col>
9772<col>
9773<col>
9774<col>
9775</colgroup>
9776<thead><tr>
9777<th>
9778              <p>
9779                Function
9780              </p>
9781            </th>
9782<th>
9783              <p>
9784                boost::uint64_t
9785              </p>
9786            </th>
9787<th>
9788              <p>
9789                double
9790              </p>
9791            </th>
9792<th>
9793              <p>
9794                cpp_int
9795              </p>
9796            </th>
9797</tr></thead>
9798<tbody>
9799<tr>
9800<td>
9801              <p>
9802                operator *
9803              </p>
9804            </td>
9805<td>
9806              <p>
9807                <span class="blue">1.54<br> (951ns)</span>
9808              </p>
9809            </td>
9810<td>
9811              <p>
9812                <span class="green">1.00<br> (617ns)</span>
9813              </p>
9814            </td>
9815<td>
9816              <p>
9817                <span class="red">15.22<br> (9391ns)</span>
9818              </p>
9819            </td>
9820</tr>
9821<tr>
9822<td>
9823              <p>
9824                operator * (int)
9825              </p>
9826            </td>
9827<td>
9828              <p>
9829                <span class="green">1.16<br> (135ns)</span>
9830              </p>
9831            </td>
9832<td>
9833              <p>
9834                <span class="green">1.00<br> (116ns)</span>
9835              </p>
9836            </td>
9837<td>
9838              <p>
9839                <span class="red">5.22<br> (605ns)</span>
9840              </p>
9841            </td>
9842</tr>
9843<tr>
9844<td>
9845              <p>
9846                operator *=
9847              </p>
9848            </td>
9849<td>
9850              <p>
9851                <span class="blue">1.30<br> (371957ns)</span>
9852              </p>
9853            </td>
9854<td>
9855              <p>
9856                <span class="green">1.00<br> (286462ns)</span>
9857              </p>
9858            </td>
9859<td>
9860              <p>
9861                <span class="red">17.11<br> (4901613ns)</span>
9862              </p>
9863            </td>
9864</tr>
9865<tr>
9866<td>
9867              <p>
9868                operator *= (int)
9869              </p>
9870            </td>
9871<td>
9872              <p>
9873                <span class="green">1.00<br> (14157ns)</span>
9874              </p>
9875            </td>
9876<td>
9877              <p>
9878                <span class="green">1.04<br> (14670ns)</span>
9879              </p>
9880            </td>
9881<td>
9882              <p>
9883                <span class="red">19.69<br> (278738ns)</span>
9884              </p>
9885            </td>
9886</tr>
9887<tr>
9888<td>
9889              <p>
9890                operator +
9891              </p>
9892            </td>
9893<td>
9894              <p>
9895                <span class="blue">1.41<br> (273ns)</span>
9896              </p>
9897            </td>
9898<td>
9899              <p>
9900                <span class="green">1.00<br> (194ns)</span>
9901              </p>
9902            </td>
9903<td>
9904              <p>
9905                <span class="red">6.20<br> (1203ns)</span>
9906              </p>
9907            </td>
9908</tr>
9909<tr>
9910<td>
9911              <p>
9912                operator + (int)
9913              </p>
9914            </td>
9915<td>
9916              <p>
9917                <span class="blue">1.25<br> (126ns)</span>
9918              </p>
9919            </td>
9920<td>
9921              <p>
9922                <span class="green">1.00<br> (101ns)</span>
9923              </p>
9924            </td>
9925<td>
9926              <p>
9927                <span class="red">3.47<br> (350ns)</span>
9928              </p>
9929            </td>
9930</tr>
9931<tr>
9932<td>
9933              <p>
9934                operator +=
9935              </p>
9936            </td>
9937<td>
9938              <p>
9939                <span class="blue">1.35<br> (42ns)</span>
9940              </p>
9941            </td>
9942<td>
9943              <p>
9944                <span class="green">1.00<br> (31ns)</span>
9945              </p>
9946            </td>
9947<td>
9948              <p>
9949                <span class="red">11.16<br> (346ns)</span>
9950              </p>
9951            </td>
9952</tr>
9953<tr>
9954<td>
9955              <p>
9956                operator += (int)
9957              </p>
9958            </td>
9959<td>
9960              <p>
9961                <span class="blue">1.25<br> (5ns)</span>
9962              </p>
9963            </td>
9964<td>
9965              <p>
9966                <span class="green">1.00<br> (4ns)</span>
9967              </p>
9968            </td>
9969<td>
9970              <p>
9971                <span class="red">25.50<br> (102ns)</span>
9972              </p>
9973            </td>
9974</tr>
9975<tr>
9976<td>
9977              <p>
9978                operator -
9979              </p>
9980            </td>
9981<td>
9982              <p>
9983                <span class="blue">1.20<br> (231ns)</span>
9984              </p>
9985            </td>
9986<td>
9987              <p>
9988                <span class="green">1.00<br> (192ns)</span>
9989              </p>
9990            </td>
9991<td>
9992              <p>
9993                <span class="red">6.44<br> (1236ns)</span>
9994              </p>
9995            </td>
9996</tr>
9997<tr>
9998<td>
9999              <p>
10000                operator - (int)
10001              </p>
10002            </td>
10003<td>
10004              <p>
10005                <span class="green">1.20<br> (121ns)</span>
10006              </p>
10007            </td>
10008<td>
10009              <p>
10010                <span class="green">1.00<br> (101ns)</span>
10011              </p>
10012            </td>
10013<td>
10014              <p>
10015                <span class="red">3.34<br> (337ns)</span>
10016              </p>
10017            </td>
10018</tr>
10019<tr>
10020<td>
10021              <p>
10022                operator -=
10023              </p>
10024            </td>
10025<td>
10026              <p>
10027                <span class="blue">1.35<br> (42ns)</span>
10028              </p>
10029            </td>
10030<td>
10031              <p>
10032                <span class="green">1.00<br> (31ns)</span>
10033              </p>
10034            </td>
10035<td>
10036              <p>
10037                <span class="red">11.13<br> (345ns)</span>
10038              </p>
10039            </td>
10040</tr>
10041<tr>
10042<td>
10043              <p>
10044                operator -= (int)
10045              </p>
10046            </td>
10047<td>
10048              <p>
10049                <span class="green">1.00<br> (4ns)</span>
10050              </p>
10051            </td>
10052<td>
10053              <p>
10054                <span class="green">1.00<br> (4ns)</span>
10055              </p>
10056            </td>
10057<td>
10058              <p>
10059                <span class="red">23.50<br> (94ns)</span>
10060              </p>
10061            </td>
10062</tr>
10063<tr>
10064<td>
10065              <p>
10066                operator /
10067              </p>
10068            </td>
10069<td>
10070              <p>
10071                <span class="red">2.17<br> (1164ns)</span>
10072              </p>
10073            </td>
10074<td>
10075              <p>
10076                <span class="green">1.00<br> (537ns)</span>
10077              </p>
10078            </td>
10079<td>
10080              <p>
10081                <span class="red">51.34<br> (27568ns)</span>
10082              </p>
10083            </td>
10084</tr>
10085<tr>
10086<td>
10087              <p>
10088                operator / (int)
10089              </p>
10090            </td>
10091<td>
10092              <p>
10093                <span class="green">1.17<br> (138ns)</span>
10094              </p>
10095            </td>
10096<td>
10097              <p>
10098                <span class="green">1.00<br> (118ns)</span>
10099              </p>
10100            </td>
10101<td>
10102              <p>
10103                <span class="red">9.73<br> (1148ns)</span>
10104              </p>
10105            </td>
10106</tr>
10107<tr>
10108<td>
10109              <p>
10110                operator /=
10111              </p>
10112            </td>
10113<td>
10114              <p>
10115                <span class="green">1.08<br> (13ns)</span>
10116              </p>
10117            </td>
10118<td>
10119              <p>
10120                <span class="green">1.00<br> (12ns)</span>
10121              </p>
10122            </td>
10123<td>
10124              <p>
10125                <span class="red">192.42<br> (2309ns)</span>
10126              </p>
10127            </td>
10128</tr>
10129<tr>
10130<td>
10131              <p>
10132                operator /= (int)
10133              </p>
10134            </td>
10135<td>
10136              <p>
10137                <span class="green">1.00<br> (697ns)</span>
10138              </p>
10139            </td>
10140<td>
10141              <p>
10142                <span class="red">36.29<br> (25293ns)</span>
10143              </p>
10144            </td>
10145<td>
10146              <p>
10147                <span class="red">2700.21<br> (1882045ns)</span>
10148              </p>
10149            </td>
10150</tr>
10151</tbody>
10152</table></div>
10153</div>
10154<br class="table-break">
10155</div>
10156<div class="section">
10157<div class="titlepage"><div><div><h2 class="title" style="clear: both">
10158<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64">Polynomial
10159    Method Comparison with GNU C++ version 9.2.0 on Windows x64</a>
10160</h2></div></div></div>
10161<div class="table">
10162<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;11.&#160;Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64</b></p>
10163<div class="table-contents"><table class="table" summary="Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64">
10164<colgroup>
10165<col>
10166<col>
10167<col>
10168<col>
10169<col>
10170<col>
10171<col>
10172<col>
10173<col>
10174</colgroup>
10175<thead><tr>
10176<th>
10177              <p>
10178                Function
10179              </p>
10180            </th>
10181<th>
10182              <p>
10183                Method 0<br> (Double Coefficients)
10184              </p>
10185            </th>
10186<th>
10187              <p>
10188                Method 0<br> (Integer Coefficients)
10189              </p>
10190            </th>
10191<th>
10192              <p>
10193                Method 1<br> (Double Coefficients)
10194              </p>
10195            </th>
10196<th>
10197              <p>
10198                Method 1<br> (Integer Coefficients)
10199              </p>
10200            </th>
10201<th>
10202              <p>
10203                Method 2<br> (Double Coefficients)
10204              </p>
10205            </th>
10206<th>
10207              <p>
10208                Method 2<br> (Integer Coefficients)
10209              </p>
10210            </th>
10211<th>
10212              <p>
10213                Method 3<br> (Double Coefficients)
10214              </p>
10215            </th>
10216<th>
10217              <p>
10218                Method 3<br> (Integer Coefficients)
10219              </p>
10220            </th>
10221</tr></thead>
10222<tbody>
10223<tr>
10224<td>
10225              <p>
10226                Order 2
10227              </p>
10228            </td>
10229<td>
10230              <p>
10231                <span class="grey">-</span>
10232              </p>
10233            </td>
10234<td>
10235              <p>
10236                <span class="grey">-</span>
10237              </p>
10238            </td>
10239<td>
10240              <p>
10241                <span class="green">1.00<br> (6ns)</span>
10242              </p>
10243            </td>
10244<td>
10245              <p>
10246                <span class="green">1.00<br> (6ns)</span>
10247              </p>
10248            </td>
10249<td>
10250              <p>
10251                <span class="green">1.00<br> (6ns)</span>
10252              </p>
10253            </td>
10254<td>
10255              <p>
10256                <span class="green">1.00<br> (6ns)</span>
10257              </p>
10258            </td>
10259<td>
10260              <p>
10261                <span class="green">1.00<br> (6ns)</span>
10262              </p>
10263            </td>
10264<td>
10265              <p>
10266                <span class="green">1.00<br> (6ns)</span>
10267              </p>
10268            </td>
10269</tr>
10270<tr>
10271<td>
10272              <p>
10273                Order 3
10274              </p>
10275            </td>
10276<td>
10277              <p>
10278                <span class="blue">1.56<br> (14ns)</span>
10279              </p>
10280            </td>
10281<td>
10282              <p>
10283                <span class="red">2.56<br> (23ns)</span>
10284              </p>
10285            </td>
10286<td>
10287              <p>
10288                <span class="green">1.00<br> (9ns)</span>
10289              </p>
10290            </td>
10291<td>
10292              <p>
10293                <span class="green">1.00<br> (9ns)</span>
10294              </p>
10295            </td>
10296<td>
10297              <p>
10298                <span class="green">1.00<br> (9ns)</span>
10299              </p>
10300            </td>
10301<td>
10302              <p>
10303                <span class="green">1.00<br> (9ns)</span>
10304              </p>
10305            </td>
10306<td>
10307              <p>
10308                <span class="green">1.11<br> (10ns)</span>
10309              </p>
10310            </td>
10311<td>
10312              <p>
10313                <span class="green">1.00<br> (9ns)</span>
10314              </p>
10315            </td>
10316</tr>
10317<tr>
10318<td>
10319              <p>
10320                Order 4
10321              </p>
10322            </td>
10323<td>
10324              <p>
10325                <span class="blue">1.50<br> (18ns)</span>
10326              </p>
10327            </td>
10328<td>
10329              <p>
10330                <span class="red">2.42<br> (29ns)</span>
10331              </p>
10332            </td>
10333<td>
10334              <p>
10335                <span class="green">1.08<br> (13ns)</span>
10336              </p>
10337            </td>
10338<td>
10339              <p>
10340                <span class="green">1.00<br> (12ns)</span>
10341              </p>
10342            </td>
10343<td>
10344              <p>
10345                <span class="green">1.08<br> (13ns)</span>
10346              </p>
10347            </td>
10348<td>
10349              <p>
10350                <span class="green">1.08<br> (13ns)</span>
10351              </p>
10352            </td>
10353<td>
10354              <p>
10355                <span class="green">1.08<br> (13ns)</span>
10356              </p>
10357            </td>
10358<td>
10359              <p>
10360                <span class="green">1.08<br> (13ns)</span>
10361              </p>
10362            </td>
10363</tr>
10364<tr>
10365<td>
10366              <p>
10367                Order 5
10368              </p>
10369            </td>
10370<td>
10371              <p>
10372                <span class="blue">1.38<br> (22ns)</span>
10373              </p>
10374            </td>
10375<td>
10376              <p>
10377                <span class="red">2.31<br> (37ns)</span>
10378              </p>
10379            </td>
10380<td>
10381              <p>
10382                <span class="green">1.06<br> (17ns)</span>
10383              </p>
10384            </td>
10385<td>
10386              <p>
10387                <span class="green">1.00<br> (16ns)</span>
10388              </p>
10389            </td>
10390<td>
10391              <p>
10392                <span class="green">1.06<br> (17ns)</span>
10393              </p>
10394            </td>
10395<td>
10396              <p>
10397                <span class="green">1.12<br> (18ns)</span>
10398              </p>
10399            </td>
10400<td>
10401              <p>
10402                <span class="green">1.12<br> (18ns)</span>
10403              </p>
10404            </td>
10405<td>
10406              <p>
10407                <span class="green">1.12<br> (18ns)</span>
10408              </p>
10409            </td>
10410</tr>
10411<tr>
10412<td>
10413              <p>
10414                Order 6
10415              </p>
10416            </td>
10417<td>
10418              <p>
10419                <span class="blue">1.48<br> (31ns)</span>
10420              </p>
10421            </td>
10422<td>
10423              <p>
10424                <span class="red">2.14<br> (45ns)</span>
10425              </p>
10426            </td>
10427<td>
10428              <p>
10429                <span class="green">1.00<br> (21ns)</span>
10430              </p>
10431            </td>
10432<td>
10433              <p>
10434                <span class="green">1.00<br> (21ns)</span>
10435              </p>
10436            </td>
10437<td>
10438              <p>
10439                <span class="green">1.05<br> (22ns)</span>
10440              </p>
10441            </td>
10442<td>
10443              <p>
10444                <span class="green">1.05<br> (22ns)</span>
10445              </p>
10446            </td>
10447<td>
10448              <p>
10449                <span class="blue">1.24<br> (26ns)</span>
10450              </p>
10451            </td>
10452<td>
10453              <p>
10454                <span class="green">1.05<br> (22ns)</span>
10455              </p>
10456            </td>
10457</tr>
10458<tr>
10459<td>
10460              <p>
10461                Order 7
10462              </p>
10463            </td>
10464<td>
10465              <p>
10466                <span class="blue">1.31<br> (34ns)</span>
10467              </p>
10468            </td>
10469<td>
10470              <p>
10471                <span class="red">2.15<br> (56ns)</span>
10472              </p>
10473            </td>
10474<td>
10475              <p>
10476                <span class="green">1.00<br> (26ns)</span>
10477              </p>
10478            </td>
10479<td>
10480              <p>
10481                <span class="green">1.00<br> (26ns)</span>
10482              </p>
10483            </td>
10484<td>
10485              <p>
10486                <span class="green">1.00<br> (26ns)</span>
10487              </p>
10488            </td>
10489<td>
10490              <p>
10491                <span class="green">1.12<br> (29ns)</span>
10492              </p>
10493            </td>
10494<td>
10495              <p>
10496                <span class="green">1.04<br> (27ns)</span>
10497              </p>
10498            </td>
10499<td>
10500              <p>
10501                <span class="green">1.19<br> (31ns)</span>
10502              </p>
10503            </td>
10504</tr>
10505<tr>
10506<td>
10507              <p>
10508                Order 8
10509              </p>
10510            </td>
10511<td>
10512              <p>
10513                <span class="blue">1.37<br> (41ns)</span>
10514              </p>
10515            </td>
10516<td>
10517              <p>
10518                <span class="red">2.23<br> (67ns)</span>
10519              </p>
10520            </td>
10521<td>
10522              <p>
10523                <span class="green">1.07<br> (32ns)</span>
10524              </p>
10525            </td>
10526<td>
10527              <p>
10528                <span class="green">1.03<br> (31ns)</span>
10529              </p>
10530            </td>
10531<td>
10532              <p>
10533                <span class="green">1.10<br> (33ns)</span>
10534              </p>
10535            </td>
10536<td>
10537              <p>
10538                <span class="green">1.03<br> (31ns)</span>
10539              </p>
10540            </td>
10541<td>
10542              <p>
10543                <span class="green">1.20<br> (36ns)</span>
10544              </p>
10545            </td>
10546<td>
10547              <p>
10548                <span class="green">1.00<br> (30ns)</span>
10549              </p>
10550            </td>
10551</tr>
10552<tr>
10553<td>
10554              <p>
10555                Order 9
10556              </p>
10557            </td>
10558<td>
10559              <p>
10560                <span class="blue">1.58<br> (52ns)</span>
10561              </p>
10562            </td>
10563<td>
10564              <p>
10565                <span class="red">2.42<br> (80ns)</span>
10566              </p>
10567            </td>
10568<td>
10569              <p>
10570                <span class="green">1.15<br> (38ns)</span>
10571              </p>
10572            </td>
10573<td>
10574              <p>
10575                <span class="green">1.15<br> (38ns)</span>
10576              </p>
10577            </td>
10578<td>
10579              <p>
10580                <span class="green">1.00<br> (33ns)</span>
10581              </p>
10582            </td>
10583<td>
10584              <p>
10585                <span class="green">1.00<br> (33ns)</span>
10586              </p>
10587            </td>
10588<td>
10589              <p>
10590                <span class="green">1.00<br> (33ns)</span>
10591              </p>
10592            </td>
10593<td>
10594              <p>
10595                <span class="green">1.03<br> (34ns)</span>
10596              </p>
10597            </td>
10598</tr>
10599<tr>
10600<td>
10601              <p>
10602                Order 10
10603              </p>
10604            </td>
10605<td>
10606              <p>
10607                <span class="blue">1.51<br> (56ns)</span>
10608              </p>
10609            </td>
10610<td>
10611              <p>
10612                <span class="red">2.41<br> (89ns)</span>
10613              </p>
10614            </td>
10615<td>
10616              <p>
10617                <span class="blue">1.22<br> (45ns)</span>
10618              </p>
10619            </td>
10620<td>
10621              <p>
10622                <span class="blue">1.22<br> (45ns)</span>
10623              </p>
10624            </td>
10625<td>
10626              <p>
10627                <span class="green">1.00<br> (37ns)</span>
10628              </p>
10629            </td>
10630<td>
10631              <p>
10632                <span class="green">1.03<br> (38ns)</span>
10633              </p>
10634            </td>
10635<td>
10636              <p>
10637                <span class="green">1.05<br> (39ns)</span>
10638              </p>
10639            </td>
10640<td>
10641              <p>
10642                <span class="green">1.05<br> (39ns)</span>
10643              </p>
10644            </td>
10645</tr>
10646<tr>
10647<td>
10648              <p>
10649                Order 11
10650              </p>
10651            </td>
10652<td>
10653              <p>
10654                <span class="blue">1.56<br> (64ns)</span>
10655              </p>
10656            </td>
10657<td>
10658              <p>
10659                <span class="red">2.46<br> (101ns)</span>
10660              </p>
10661            </td>
10662<td>
10663              <p>
10664                <span class="blue">1.27<br> (52ns)</span>
10665              </p>
10666            </td>
10667<td>
10668              <p>
10669                <span class="blue">1.27<br> (52ns)</span>
10670              </p>
10671            </td>
10672<td>
10673              <p>
10674                <span class="green">1.00<br> (41ns)</span>
10675              </p>
10676            </td>
10677<td>
10678              <p>
10679                <span class="green">1.00<br> (41ns)</span>
10680              </p>
10681            </td>
10682<td>
10683              <p>
10684                <span class="green">1.00<br> (41ns)</span>
10685              </p>
10686            </td>
10687<td>
10688              <p>
10689                <span class="green">1.00<br> (41ns)</span>
10690              </p>
10691            </td>
10692</tr>
10693<tr>
10694<td>
10695              <p>
10696                Order 12
10697              </p>
10698            </td>
10699<td>
10700              <p>
10701                <span class="blue">1.70<br> (78ns)</span>
10702              </p>
10703            </td>
10704<td>
10705              <p>
10706                <span class="red">2.63<br> (121ns)</span>
10707              </p>
10708            </td>
10709<td>
10710              <p>
10711                <span class="blue">1.30<br> (60ns)</span>
10712              </p>
10713            </td>
10714<td>
10715              <p>
10716                <span class="blue">1.28<br> (59ns)</span>
10717              </p>
10718            </td>
10719<td>
10720              <p>
10721                <span class="green">1.00<br> (46ns)</span>
10722              </p>
10723            </td>
10724<td>
10725              <p>
10726                <span class="green">1.04<br> (48ns)</span>
10727              </p>
10728            </td>
10729<td>
10730              <p>
10731                <span class="green">1.02<br> (47ns)</span>
10732              </p>
10733            </td>
10734<td>
10735              <p>
10736                <span class="green">1.02<br> (47ns)</span>
10737              </p>
10738            </td>
10739</tr>
10740<tr>
10741<td>
10742              <p>
10743                Order 13
10744              </p>
10745            </td>
10746<td>
10747              <p>
10748                <span class="blue">1.78<br> (87ns)</span>
10749              </p>
10750            </td>
10751<td>
10752              <p>
10753                <span class="red">2.78<br> (136ns)</span>
10754              </p>
10755            </td>
10756<td>
10757              <p>
10758                <span class="blue">1.29<br> (63ns)</span>
10759              </p>
10760            </td>
10761<td>
10762              <p>
10763                <span class="blue">1.29<br> (63ns)</span>
10764              </p>
10765            </td>
10766<td>
10767              <p>
10768                <span class="green">1.00<br> (49ns)</span>
10769              </p>
10770            </td>
10771<td>
10772              <p>
10773                <span class="green">1.02<br> (50ns)</span>
10774              </p>
10775            </td>
10776<td>
10777              <p>
10778                <span class="green">1.00<br> (49ns)</span>
10779              </p>
10780            </td>
10781<td>
10782              <p>
10783                <span class="green">1.00<br> (49ns)</span>
10784              </p>
10785            </td>
10786</tr>
10787<tr>
10788<td>
10789              <p>
10790                Order 14
10791              </p>
10792            </td>
10793<td>
10794              <p>
10795                <span class="blue">1.79<br> (95ns)</span>
10796              </p>
10797            </td>
10798<td>
10799              <p>
10800                <span class="red">2.75<br> (146ns)</span>
10801              </p>
10802            </td>
10803<td>
10804              <p>
10805                <span class="blue">1.43<br> (76ns)</span>
10806              </p>
10807            </td>
10808<td>
10809              <p>
10810                <span class="blue">1.43<br> (76ns)</span>
10811              </p>
10812            </td>
10813<td>
10814              <p>
10815                <span class="green">1.00<br> (53ns)</span>
10816              </p>
10817            </td>
10818<td>
10819              <p>
10820                <span class="green">1.02<br> (54ns)</span>
10821              </p>
10822            </td>
10823<td>
10824              <p>
10825                <span class="green">1.00<br> (53ns)</span>
10826              </p>
10827            </td>
10828<td>
10829              <p>
10830                <span class="green">1.00<br> (53ns)</span>
10831              </p>
10832            </td>
10833</tr>
10834<tr>
10835<td>
10836              <p>
10837                Order 15
10838              </p>
10839            </td>
10840<td>
10841              <p>
10842                <span class="blue">1.63<br> (103ns)</span>
10843              </p>
10844            </td>
10845<td>
10846              <p>
10847                <span class="red">2.51<br> (158ns)</span>
10848              </p>
10849            </td>
10850<td>
10851              <p>
10852                <span class="blue">1.33<br> (84ns)</span>
10853              </p>
10854            </td>
10855<td>
10856              <p>
10857                <span class="blue">1.43<br> (90ns)</span>
10858              </p>
10859            </td>
10860<td>
10861              <p>
10862                <span class="green">1.02<br> (64ns)</span>
10863              </p>
10864            </td>
10865<td>
10866              <p>
10867                <span class="green">1.02<br> (64ns)</span>
10868              </p>
10869            </td>
10870<td>
10871              <p>
10872                <span class="green">1.00<br> (63ns)</span>
10873              </p>
10874            </td>
10875<td>
10876              <p>
10877                <span class="green">1.02<br> (64ns)</span>
10878              </p>
10879            </td>
10880</tr>
10881<tr>
10882<td>
10883              <p>
10884                Order 16
10885              </p>
10886            </td>
10887<td>
10888              <p>
10889                <span class="blue">1.61<br> (119ns)</span>
10890              </p>
10891            </td>
10892<td>
10893              <p>
10894                <span class="red">2.31<br> (171ns)</span>
10895              </p>
10896            </td>
10897<td>
10898              <p>
10899                <span class="blue">1.31<br> (97ns)</span>
10900              </p>
10901            </td>
10902<td>
10903              <p>
10904                <span class="blue">1.31<br> (97ns)</span>
10905              </p>
10906            </td>
10907<td>
10908              <p>
10909                <span class="green">1.01<br> (75ns)</span>
10910              </p>
10911            </td>
10912<td>
10913              <p>
10914                <span class="green">1.01<br> (75ns)</span>
10915              </p>
10916            </td>
10917<td>
10918              <p>
10919                <span class="green">1.01<br> (75ns)</span>
10920              </p>
10921            </td>
10922<td>
10923              <p>
10924                <span class="green">1.00<br> (74ns)</span>
10925              </p>
10926            </td>
10927</tr>
10928<tr>
10929<td>
10930              <p>
10931                Order 17
10932              </p>
10933            </td>
10934<td>
10935              <p>
10936                <span class="blue">1.67<br> (127ns)</span>
10937              </p>
10938            </td>
10939<td>
10940              <p>
10941                <span class="red">2.42<br> (184ns)</span>
10942              </p>
10943            </td>
10944<td>
10945              <p>
10946                <span class="blue">1.42<br> (108ns)</span>
10947              </p>
10948            </td>
10949<td>
10950              <p>
10951                <span class="blue">1.41<br> (107ns)</span>
10952              </p>
10953            </td>
10954<td>
10955              <p>
10956                <span class="green">1.00<br> (76ns)</span>
10957              </p>
10958            </td>
10959<td>
10960              <p>
10961                <span class="green">1.00<br> (76ns)</span>
10962              </p>
10963            </td>
10964<td>
10965              <p>
10966                <span class="green">1.01<br> (77ns)</span>
10967              </p>
10968            </td>
10969<td>
10970              <p>
10971                <span class="green">1.01<br> (77ns)</span>
10972              </p>
10973            </td>
10974</tr>
10975<tr>
10976<td>
10977              <p>
10978                Order 18
10979              </p>
10980            </td>
10981<td>
10982              <p>
10983                <span class="blue">1.66<br> (136ns)</span>
10984              </p>
10985            </td>
10986<td>
10987              <p>
10988                <span class="red">2.39<br> (196ns)</span>
10989              </p>
10990            </td>
10991<td>
10992              <p>
10993                <span class="blue">1.41<br> (116ns)</span>
10994              </p>
10995            </td>
10996<td>
10997              <p>
10998                <span class="blue">1.44<br> (118ns)</span>
10999              </p>
11000            </td>
11001<td>
11002              <p>
11003                <span class="green">1.05<br> (86ns)</span>
11004              </p>
11005            </td>
11006<td>
11007              <p>
11008                <span class="green">1.02<br> (84ns)</span>
11009              </p>
11010            </td>
11011<td>
11012              <p>
11013                <span class="green">1.06<br> (87ns)</span>
11014              </p>
11015            </td>
11016<td>
11017              <p>
11018                <span class="green">1.00<br> (82ns)</span>
11019              </p>
11020            </td>
11021</tr>
11022<tr>
11023<td>
11024              <p>
11025                Order 19
11026              </p>
11027            </td>
11028<td>
11029              <p>
11030                <span class="blue">1.72<br> (146ns)</span>
11031              </p>
11032            </td>
11033<td>
11034              <p>
11035                <span class="red">2.51<br> (213ns)</span>
11036              </p>
11037            </td>
11038<td>
11039              <p>
11040                <span class="blue">1.59<br> (135ns)</span>
11041              </p>
11042            </td>
11043<td>
11044              <p>
11045                <span class="blue">1.56<br> (133ns)</span>
11046              </p>
11047            </td>
11048<td>
11049              <p>
11050                <span class="green">1.01<br> (86ns)</span>
11051              </p>
11052            </td>
11053<td>
11054              <p>
11055                <span class="green">1.01<br> (86ns)</span>
11056              </p>
11057            </td>
11058<td>
11059              <p>
11060                <span class="green">1.00<br> (85ns)</span>
11061              </p>
11062            </td>
11063<td>
11064              <p>
11065                <span class="green">1.02<br> (87ns)</span>
11066              </p>
11067            </td>
11068</tr>
11069<tr>
11070<td>
11071              <p>
11072                Order 20
11073              </p>
11074            </td>
11075<td>
11076              <p>
11077                <span class="blue">1.70<br> (158ns)</span>
11078              </p>
11079            </td>
11080<td>
11081              <p>
11082                <span class="red">2.52<br> (234ns)</span>
11083              </p>
11084            </td>
11085<td>
11086              <p>
11087                <span class="blue">1.55<br> (144ns)</span>
11088              </p>
11089            </td>
11090<td>
11091              <p>
11092                <span class="blue">1.59<br> (148ns)</span>
11093              </p>
11094            </td>
11095<td>
11096              <p>
11097                <span class="green">1.05<br> (98ns)</span>
11098              </p>
11099            </td>
11100<td>
11101              <p>
11102                <span class="green">1.02<br> (95ns)</span>
11103              </p>
11104            </td>
11105<td>
11106              <p>
11107                <span class="green">1.00<br> (93ns)</span>
11108              </p>
11109            </td>
11110<td>
11111              <p>
11112                <span class="green">1.06<br> (99ns)</span>
11113              </p>
11114            </td>
11115</tr>
11116</tbody>
11117</table></div>
11118</div>
11119<br class="table-break">
11120</div>
11121<div class="section">
11122<div class="titlepage"><div><div><h2 class="title" style="clear: both">
11123<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Polynomial Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Polynomial
11124    Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a>
11125</h2></div></div></div>
11126<div class="table">
11127<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;12.&#160;Polynomial Method Comparison with Microsoft Visual C++ version 14.2
11128      on Windows x64</b></p>
11129<div class="table-contents"><table class="table" summary="Polynomial Method Comparison with Microsoft Visual C++ version 14.2
11130      on Windows x64">
11131<colgroup>
11132<col>
11133<col>
11134<col>
11135<col>
11136<col>
11137<col>
11138<col>
11139<col>
11140<col>
11141</colgroup>
11142<thead><tr>
11143<th>
11144              <p>
11145                Function
11146              </p>
11147            </th>
11148<th>
11149              <p>
11150                Method 0<br> (Double Coefficients)
11151              </p>
11152            </th>
11153<th>
11154              <p>
11155                Method 0<br> (Integer Coefficients)
11156              </p>
11157            </th>
11158<th>
11159              <p>
11160                Method 1<br> (Double Coefficients)
11161              </p>
11162            </th>
11163<th>
11164              <p>
11165                Method 1<br> (Integer Coefficients)
11166              </p>
11167            </th>
11168<th>
11169              <p>
11170                Method 2<br> (Double Coefficients)
11171              </p>
11172            </th>
11173<th>
11174              <p>
11175                Method 2<br> (Integer Coefficients)
11176              </p>
11177            </th>
11178<th>
11179              <p>
11180                Method 3<br> (Double Coefficients)
11181              </p>
11182            </th>
11183<th>
11184              <p>
11185                Method 3<br> (Integer Coefficients)
11186              </p>
11187            </th>
11188</tr></thead>
11189<tbody>
11190<tr>
11191<td>
11192              <p>
11193                Order 2
11194              </p>
11195            </td>
11196<td>
11197              <p>
11198                <span class="grey">-</span>
11199              </p>
11200            </td>
11201<td>
11202              <p>
11203                <span class="grey">-</span>
11204              </p>
11205            </td>
11206<td>
11207              <p>
11208                <span class="green">1.00<br> (6ns)</span>
11209              </p>
11210            </td>
11211<td>
11212              <p>
11213                <span class="green">1.00<br> (6ns)</span>
11214              </p>
11215            </td>
11216<td>
11217              <p>
11218                <span class="green">1.00<br> (6ns)</span>
11219              </p>
11220            </td>
11221<td>
11222              <p>
11223                <span class="green">1.00<br> (6ns)</span>
11224              </p>
11225            </td>
11226<td>
11227              <p>
11228                <span class="green">1.00<br> (6ns)</span>
11229              </p>
11230            </td>
11231<td>
11232              <p>
11233                <span class="green">1.00<br> (6ns)</span>
11234              </p>
11235            </td>
11236</tr>
11237<tr>
11238<td>
11239              <p>
11240                Order 3
11241              </p>
11242            </td>
11243<td>
11244              <p>
11245                <span class="red">2.33<br> (21ns)</span>
11246              </p>
11247            </td>
11248<td>
11249              <p>
11250                <span class="red">3.33<br> (30ns)</span>
11251              </p>
11252            </td>
11253<td>
11254              <p>
11255                <span class="green">1.00<br> (9ns)</span>
11256              </p>
11257            </td>
11258<td>
11259              <p>
11260                <span class="green">1.00<br> (9ns)</span>
11261              </p>
11262            </td>
11263<td>
11264              <p>
11265                <span class="green">1.00<br> (9ns)</span>
11266              </p>
11267            </td>
11268<td>
11269              <p>
11270                <span class="green">1.00<br> (9ns)</span>
11271              </p>
11272            </td>
11273<td>
11274              <p>
11275                <span class="green">1.00<br> (9ns)</span>
11276              </p>
11277            </td>
11278<td>
11279              <p>
11280                <span class="green">1.00<br> (9ns)</span>
11281              </p>
11282            </td>
11283</tr>
11284<tr>
11285<td>
11286              <p>
11287                Order 4
11288              </p>
11289            </td>
11290<td>
11291              <p>
11292                <span class="blue">2.00<br> (24ns)</span>
11293              </p>
11294            </td>
11295<td>
11296              <p>
11297                <span class="red">3.00<br> (36ns)</span>
11298              </p>
11299            </td>
11300<td>
11301              <p>
11302                <span class="green">1.00<br> (12ns)</span>
11303              </p>
11304            </td>
11305<td>
11306              <p>
11307                <span class="green">1.00<br> (12ns)</span>
11308              </p>
11309            </td>
11310<td>
11311              <p>
11312                <span class="green">1.00<br> (12ns)</span>
11313              </p>
11314            </td>
11315<td>
11316              <p>
11317                <span class="green">1.00<br> (12ns)</span>
11318              </p>
11319            </td>
11320<td>
11321              <p>
11322                <span class="green">1.08<br> (13ns)</span>
11323              </p>
11324            </td>
11325<td>
11326              <p>
11327                <span class="green">1.08<br> (13ns)</span>
11328              </p>
11329            </td>
11330</tr>
11331<tr>
11332<td>
11333              <p>
11334                Order 5
11335              </p>
11336            </td>
11337<td>
11338              <p>
11339                <span class="blue">1.56<br> (25ns)</span>
11340              </p>
11341            </td>
11342<td>
11343              <p>
11344                <span class="red">2.31<br> (37ns)</span>
11345              </p>
11346            </td>
11347<td>
11348              <p>
11349                <span class="green">1.00<br> (16ns)</span>
11350              </p>
11351            </td>
11352<td>
11353              <p>
11354                <span class="green">1.00<br> (16ns)</span>
11355              </p>
11356            </td>
11357<td>
11358              <p>
11359                <span class="green">1.13<br> (18ns)</span>
11360              </p>
11361            </td>
11362<td>
11363              <p>
11364                <span class="green">1.13<br> (18ns)</span>
11365              </p>
11366            </td>
11367<td>
11368              <p>
11369                <span class="blue">1.56<br> (25ns)</span>
11370              </p>
11371            </td>
11372<td>
11373              <p>
11374                <span class="blue">1.56<br> (25ns)</span>
11375              </p>
11376            </td>
11377</tr>
11378<tr>
11379<td>
11380              <p>
11381                Order 6
11382              </p>
11383            </td>
11384<td>
11385              <p>
11386                <span class="blue">1.48<br> (31ns)</span>
11387              </p>
11388            </td>
11389<td>
11390              <p>
11391                <span class="red">2.19<br> (46ns)</span>
11392              </p>
11393            </td>
11394<td>
11395              <p>
11396                <span class="green">1.05<br> (22ns)</span>
11397              </p>
11398            </td>
11399<td>
11400              <p>
11401                <span class="green">1.00<br> (21ns)</span>
11402              </p>
11403            </td>
11404<td>
11405              <p>
11406                <span class="green">1.00<br> (21ns)</span>
11407              </p>
11408            </td>
11409<td>
11410              <p>
11411                <span class="green">1.00<br> (21ns)</span>
11412              </p>
11413            </td>
11414<td>
11415              <p>
11416                <span class="blue">1.29<br> (27ns)</span>
11417              </p>
11418            </td>
11419<td>
11420              <p>
11421                <span class="blue">1.29<br> (27ns)</span>
11422              </p>
11423            </td>
11424</tr>
11425<tr>
11426<td>
11427              <p>
11428                Order 7
11429              </p>
11430            </td>
11431<td>
11432              <p>
11433                <span class="blue">1.54<br> (37ns)</span>
11434              </p>
11435            </td>
11436<td>
11437              <p>
11438                <span class="red">2.33<br> (56ns)</span>
11439              </p>
11440            </td>
11441<td>
11442              <p>
11443                <span class="green">1.08<br> (26ns)</span>
11444              </p>
11445            </td>
11446<td>
11447              <p>
11448                <span class="green">1.08<br> (26ns)</span>
11449              </p>
11450            </td>
11451<td>
11452              <p>
11453                <span class="green">1.04<br> (25ns)</span>
11454              </p>
11455            </td>
11456<td>
11457              <p>
11458                <span class="green">1.00<br> (24ns)</span>
11459              </p>
11460            </td>
11461<td>
11462              <p>
11463                <span class="green">1.13<br> (27ns)</span>
11464              </p>
11465            </td>
11466<td>
11467              <p>
11468                <span class="green">1.17<br> (28ns)</span>
11469              </p>
11470            </td>
11471</tr>
11472<tr>
11473<td>
11474              <p>
11475                Order 8
11476              </p>
11477            </td>
11478<td>
11479              <p>
11480                <span class="blue">1.53<br> (46ns)</span>
11481              </p>
11482            </td>
11483<td>
11484              <p>
11485                <span class="red">2.23<br> (67ns)</span>
11486              </p>
11487            </td>
11488<td>
11489              <p>
11490                <span class="green">1.07<br> (32ns)</span>
11491              </p>
11492            </td>
11493<td>
11494              <p>
11495                <span class="green">1.07<br> (32ns)</span>
11496              </p>
11497            </td>
11498<td>
11499              <p>
11500                <span class="green">1.00<br> (30ns)</span>
11501              </p>
11502            </td>
11503<td>
11504              <p>
11505                <span class="green">1.00<br> (30ns)</span>
11506              </p>
11507            </td>
11508<td>
11509              <p>
11510                <span class="green">1.03<br> (31ns)</span>
11511              </p>
11512            </td>
11513<td>
11514              <p>
11515                <span class="green">1.03<br> (31ns)</span>
11516              </p>
11517            </td>
11518</tr>
11519<tr>
11520<td>
11521              <p>
11522                Order 9
11523              </p>
11524            </td>
11525<td>
11526              <p>
11527                <span class="blue">1.35<br> (46ns)</span>
11528              </p>
11529            </td>
11530<td>
11531              <p>
11532                <span class="red">2.06<br> (70ns)</span>
11533              </p>
11534            </td>
11535<td>
11536              <p>
11537                <span class="green">1.18<br> (40ns)</span>
11538              </p>
11539            </td>
11540<td>
11541              <p>
11542                <span class="blue">1.32<br> (45ns)</span>
11543              </p>
11544            </td>
11545<td>
11546              <p>
11547                <span class="green">1.00<br> (34ns)</span>
11548              </p>
11549            </td>
11550<td>
11551              <p>
11552                <span class="green">1.00<br> (34ns)</span>
11553              </p>
11554            </td>
11555<td>
11556              <p>
11557                <span class="green">1.09<br> (37ns)</span>
11558              </p>
11559            </td>
11560<td>
11561              <p>
11562                <span class="green">1.06<br> (36ns)</span>
11563              </p>
11564            </td>
11565</tr>
11566<tr>
11567<td>
11568              <p>
11569                Order 10
11570              </p>
11571            </td>
11572<td>
11573              <p>
11574                <span class="blue">1.38<br> (54ns)</span>
11575              </p>
11576            </td>
11577<td>
11578              <p>
11579                <span class="red">2.13<br> (83ns)</span>
11580              </p>
11581            </td>
11582<td>
11583              <p>
11584                <span class="blue">1.21<br> (47ns)</span>
11585              </p>
11586            </td>
11587<td>
11588              <p>
11589                <span class="green">1.15<br> (45ns)</span>
11590              </p>
11591            </td>
11592<td>
11593              <p>
11594                <span class="green">1.00<br> (39ns)</span>
11595              </p>
11596            </td>
11597<td>
11598              <p>
11599                <span class="green">1.00<br> (39ns)</span>
11600              </p>
11601            </td>
11602<td>
11603              <p>
11604                <span class="green">1.03<br> (40ns)</span>
11605              </p>
11606            </td>
11607<td>
11608              <p>
11609                <span class="green">1.03<br> (40ns)</span>
11610              </p>
11611            </td>
11612</tr>
11613<tr>
11614<td>
11615              <p>
11616                Order 11
11617              </p>
11618            </td>
11619<td>
11620              <p>
11621                <span class="blue">1.48<br> (62ns)</span>
11622              </p>
11623            </td>
11624<td>
11625              <p>
11626                <span class="red">2.24<br> (94ns)</span>
11627              </p>
11628            </td>
11629<td>
11630              <p>
11631                <span class="blue">1.24<br> (52ns)</span>
11632              </p>
11633            </td>
11634<td>
11635              <p>
11636                <span class="blue">1.26<br> (53ns)</span>
11637              </p>
11638            </td>
11639<td>
11640              <p>
11641                <span class="green">1.07<br> (45ns)</span>
11642              </p>
11643            </td>
11644<td>
11645              <p>
11646                <span class="green">1.00<br> (42ns)</span>
11647              </p>
11648            </td>
11649<td>
11650              <p>
11651                <span class="green">1.10<br> (46ns)</span>
11652              </p>
11653            </td>
11654<td>
11655              <p>
11656                <span class="green">1.02<br> (43ns)</span>
11657              </p>
11658            </td>
11659</tr>
11660<tr>
11661<td>
11662              <p>
11663                Order 12
11664              </p>
11665            </td>
11666<td>
11667              <p>
11668                <span class="blue">1.48<br> (71ns)</span>
11669              </p>
11670            </td>
11671<td>
11672              <p>
11673                <span class="red">2.27<br> (109ns)</span>
11674              </p>
11675            </td>
11676<td>
11677              <p>
11678                <span class="blue">1.25<br> (60ns)</span>
11679              </p>
11680            </td>
11681<td>
11682              <p>
11683                <span class="blue">1.27<br> (61ns)</span>
11684              </p>
11685            </td>
11686<td>
11687              <p>
11688                <span class="green">1.04<br> (50ns)</span>
11689              </p>
11690            </td>
11691<td>
11692              <p>
11693                <span class="green">1.00<br> (48ns)</span>
11694              </p>
11695            </td>
11696<td>
11697              <p>
11698                <span class="green">1.00<br> (48ns)</span>
11699              </p>
11700            </td>
11701<td>
11702              <p>
11703                <span class="green">1.00<br> (48ns)</span>
11704              </p>
11705            </td>
11706</tr>
11707<tr>
11708<td>
11709              <p>
11710                Order 13
11711              </p>
11712            </td>
11713<td>
11714              <p>
11715                <span class="blue">1.55<br> (76ns)</span>
11716              </p>
11717            </td>
11718<td>
11719              <p>
11720                <span class="red">2.33<br> (114ns)</span>
11721              </p>
11722            </td>
11723<td>
11724              <p>
11725                <span class="blue">1.31<br> (64ns)</span>
11726              </p>
11727            </td>
11728<td>
11729              <p>
11730                <span class="blue">1.31<br> (64ns)</span>
11731              </p>
11732            </td>
11733<td>
11734              <p>
11735                <span class="green">1.04<br> (51ns)</span>
11736              </p>
11737            </td>
11738<td>
11739              <p>
11740                <span class="green">1.04<br> (51ns)</span>
11741              </p>
11742            </td>
11743<td>
11744              <p>
11745                <span class="green">1.02<br> (50ns)</span>
11746              </p>
11747            </td>
11748<td>
11749              <p>
11750                <span class="green">1.00<br> (49ns)</span>
11751              </p>
11752            </td>
11753</tr>
11754<tr>
11755<td>
11756              <p>
11757                Order 14
11758              </p>
11759            </td>
11760<td>
11761              <p>
11762                <span class="blue">1.53<br> (84ns)</span>
11763              </p>
11764            </td>
11765<td>
11766              <p>
11767                <span class="red">2.40<br> (132ns)</span>
11768              </p>
11769            </td>
11770<td>
11771              <p>
11772                <span class="blue">1.44<br> (79ns)</span>
11773              </p>
11774            </td>
11775<td>
11776              <p>
11777                <span class="blue">1.40<br> (77ns)</span>
11778              </p>
11779            </td>
11780<td>
11781              <p>
11782                <span class="green">1.04<br> (57ns)</span>
11783              </p>
11784            </td>
11785<td>
11786              <p>
11787                <span class="green">1.02<br> (56ns)</span>
11788              </p>
11789            </td>
11790<td>
11791              <p>
11792                <span class="green">1.00<br> (55ns)</span>
11793              </p>
11794            </td>
11795<td>
11796              <p>
11797                <span class="green">1.00<br> (55ns)</span>
11798              </p>
11799            </td>
11800</tr>
11801<tr>
11802<td>
11803              <p>
11804                Order 15
11805              </p>
11806            </td>
11807<td>
11808              <p>
11809                <span class="blue">1.51<br> (95ns)</span>
11810              </p>
11811            </td>
11812<td>
11813              <p>
11814                <span class="red">2.33<br> (147ns)</span>
11815              </p>
11816            </td>
11817<td>
11818              <p>
11819                <span class="blue">1.37<br> (86ns)</span>
11820              </p>
11821            </td>
11822<td>
11823              <p>
11824                <span class="blue">1.38<br> (87ns)</span>
11825              </p>
11826            </td>
11827<td>
11828              <p>
11829                <span class="green">1.05<br> (66ns)</span>
11830              </p>
11831            </td>
11832<td>
11833              <p>
11834                <span class="green">1.06<br> (67ns)</span>
11835              </p>
11836            </td>
11837<td>
11838              <p>
11839                <span class="green">1.00<br> (63ns)</span>
11840              </p>
11841            </td>
11842<td>
11843              <p>
11844                <span class="green">1.00<br> (63ns)</span>
11845              </p>
11846            </td>
11847</tr>
11848<tr>
11849<td>
11850              <p>
11851                Order 16
11852              </p>
11853            </td>
11854<td>
11855              <p>
11856                <span class="blue">1.47<br> (106ns)</span>
11857              </p>
11858            </td>
11859<td>
11860              <p>
11861                <span class="red">2.18<br> (157ns)</span>
11862              </p>
11863            </td>
11864<td>
11865              <p>
11866                <span class="blue">1.40<br> (101ns)</span>
11867              </p>
11868            </td>
11869<td>
11870              <p>
11871                <span class="blue">1.33<br> (96ns)</span>
11872              </p>
11873            </td>
11874<td>
11875              <p>
11876                <span class="green">1.01<br> (73ns)</span>
11877              </p>
11878            </td>
11879<td>
11880              <p>
11881                <span class="green">1.03<br> (74ns)</span>
11882              </p>
11883            </td>
11884<td>
11885              <p>
11886                <span class="green">1.00<br> (72ns)</span>
11887              </p>
11888            </td>
11889<td>
11890              <p>
11891                <span class="green">1.04<br> (75ns)</span>
11892              </p>
11893            </td>
11894</tr>
11895<tr>
11896<td>
11897              <p>
11898                Order 17
11899              </p>
11900            </td>
11901<td>
11902              <p>
11903                <span class="blue">1.46<br> (114ns)</span>
11904              </p>
11905            </td>
11906<td>
11907              <p>
11908                <span class="red">2.08<br> (162ns)</span>
11909              </p>
11910            </td>
11911<td>
11912              <p>
11913                <span class="blue">1.44<br> (112ns)</span>
11914              </p>
11915            </td>
11916<td>
11917              <p>
11918                <span class="blue">1.44<br> (112ns)</span>
11919              </p>
11920            </td>
11921<td>
11922              <p>
11923                <span class="green">1.00<br> (78ns)</span>
11924              </p>
11925            </td>
11926<td>
11927              <p>
11928                <span class="green">1.01<br> (79ns)</span>
11929              </p>
11930            </td>
11931<td>
11932              <p>
11933                <span class="green">1.05<br> (82ns)</span>
11934              </p>
11935            </td>
11936<td>
11937              <p>
11938                <span class="green">1.03<br> (80ns)</span>
11939              </p>
11940            </td>
11941</tr>
11942<tr>
11943<td>
11944              <p>
11945                Order 18
11946              </p>
11947            </td>
11948<td>
11949              <p>
11950                <span class="blue">1.48<br> (126ns)</span>
11951              </p>
11952            </td>
11953<td>
11954              <p>
11955                <span class="red">2.08<br> (177ns)</span>
11956              </p>
11957            </td>
11958<td>
11959              <p>
11960                <span class="blue">1.44<br> (122ns)</span>
11961              </p>
11962            </td>
11963<td>
11964              <p>
11965                <span class="blue">1.46<br> (124ns)</span>
11966              </p>
11967            </td>
11968<td>
11969              <p>
11970                <span class="green">1.02<br> (87ns)</span>
11971              </p>
11972            </td>
11973<td>
11974              <p>
11975                <span class="green">1.04<br> (88ns)</span>
11976              </p>
11977            </td>
11978<td>
11979              <p>
11980                <span class="green">1.01<br> (86ns)</span>
11981              </p>
11982            </td>
11983<td>
11984              <p>
11985                <span class="green">1.00<br> (85ns)</span>
11986              </p>
11987            </td>
11988</tr>
11989<tr>
11990<td>
11991              <p>
11992                Order 19
11993              </p>
11994            </td>
11995<td>
11996              <p>
11997                <span class="blue">1.49<br> (136ns)</span>
11998              </p>
11999            </td>
12000<td>
12001              <p>
12002                <span class="red">2.07<br> (188ns)</span>
12003              </p>
12004            </td>
12005<td>
12006              <p>
12007                <span class="blue">1.47<br> (134ns)</span>
12008              </p>
12009            </td>
12010<td>
12011              <p>
12012                <span class="blue">1.47<br> (134ns)</span>
12013              </p>
12014            </td>
12015<td>
12016              <p>
12017                <span class="green">1.00<br> (91ns)</span>
12018              </p>
12019            </td>
12020<td>
12021              <p>
12022                <span class="green">1.01<br> (92ns)</span>
12023              </p>
12024            </td>
12025<td>
12026              <p>
12027                <span class="green">1.05<br> (96ns)</span>
12028              </p>
12029            </td>
12030<td>
12031              <p>
12032                <span class="green">1.03<br> (94ns)</span>
12033              </p>
12034            </td>
12035</tr>
12036<tr>
12037<td>
12038              <p>
12039                Order 20
12040              </p>
12041            </td>
12042<td>
12043              <p>
12044                <span class="blue">1.52<br> (150ns)</span>
12045              </p>
12046            </td>
12047<td>
12048              <p>
12049                <span class="red">2.05<br> (203ns)</span>
12050              </p>
12051            </td>
12052<td>
12053              <p>
12054                <span class="blue">1.45<br> (144ns)</span>
12055              </p>
12056            </td>
12057<td>
12058              <p>
12059                <span class="blue">1.46<br> (145ns)</span>
12060              </p>
12061            </td>
12062<td>
12063              <p>
12064                <span class="green">1.00<br> (99ns)</span>
12065              </p>
12066            </td>
12067<td>
12068              <p>
12069                <span class="green">1.02<br> (101ns)</span>
12070              </p>
12071            </td>
12072<td>
12073              <p>
12074                <span class="green">1.02<br> (101ns)</span>
12075              </p>
12076            </td>
12077<td>
12078              <p>
12079                <span class="green">1.02<br> (101ns)</span>
12080              </p>
12081            </td>
12082</tr>
12083</tbody>
12084</table></div>
12085</div>
12086<br class="table-break">
12087</div>
12088<div class="section">
12089<div class="titlepage"><div><div><h2 class="title" style="clear: both">
12090<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64">Rational
12091    Method Comparison with GNU C++ version 9.2.0 on Windows x64</a>
12092</h2></div></div></div>
12093<div class="table">
12094<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;13.&#160;Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64</b></p>
12095<div class="table-contents"><table class="table" summary="Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64">
12096<colgroup>
12097<col>
12098<col>
12099<col>
12100<col>
12101<col>
12102<col>
12103<col>
12104<col>
12105<col>
12106</colgroup>
12107<thead><tr>
12108<th>
12109              <p>
12110                Function
12111              </p>
12112            </th>
12113<th>
12114              <p>
12115                Method 0<br> (Double Coefficients)
12116              </p>
12117            </th>
12118<th>
12119              <p>
12120                Method 0<br> (Integer Coefficients)
12121              </p>
12122            </th>
12123<th>
12124              <p>
12125                Method 1<br> (Double Coefficients)
12126              </p>
12127            </th>
12128<th>
12129              <p>
12130                Method 1<br> (Integer Coefficients)
12131              </p>
12132            </th>
12133<th>
12134              <p>
12135                Method 2<br> (Double Coefficients)
12136              </p>
12137            </th>
12138<th>
12139              <p>
12140                Method 2<br> (Integer Coefficients)
12141              </p>
12142            </th>
12143<th>
12144              <p>
12145                Method 3<br> (Double Coefficients)
12146              </p>
12147            </th>
12148<th>
12149              <p>
12150                Method 3<br> (Integer Coefficients)
12151              </p>
12152            </th>
12153</tr></thead>
12154<tbody>
12155<tr>
12156<td>
12157              <p>
12158                Order 2
12159              </p>
12160            </td>
12161<td>
12162              <p>
12163                <span class="grey">-</span>
12164              </p>
12165            </td>
12166<td>
12167              <p>
12168                <span class="grey">-</span>
12169              </p>
12170            </td>
12171<td>
12172              <p>
12173                <span class="blue">1.83<br> (22ns)</span>
12174              </p>
12175            </td>
12176<td>
12177              <p>
12178                <span class="blue">1.83<br> (22ns)</span>
12179              </p>
12180            </td>
12181<td>
12182              <p>
12183                <span class="green">1.00<br> (12ns)</span>
12184              </p>
12185            </td>
12186<td>
12187              <p>
12188                <span class="green">1.00<br> (12ns)</span>
12189              </p>
12190            </td>
12191<td>
12192              <p>
12193                <span class="green">1.17<br> (14ns)</span>
12194              </p>
12195            </td>
12196<td>
12197              <p>
12198                <span class="green">1.08<br> (13ns)</span>
12199              </p>
12200            </td>
12201</tr>
12202<tr>
12203<td>
12204              <p>
12205                Order 3
12206              </p>
12207            </td>
12208<td>
12209              <p>
12210                <span class="blue">1.83<br> (33ns)</span>
12211              </p>
12212            </td>
12213<td>
12214              <p>
12215                <span class="red">2.17<br> (39ns)</span>
12216              </p>
12217            </td>
12218<td>
12219              <p>
12220                <span class="blue">1.56<br> (28ns)</span>
12221              </p>
12222            </td>
12223<td>
12224              <p>
12225                <span class="blue">1.44<br> (26ns)</span>
12226              </p>
12227            </td>
12228<td>
12229              <p>
12230                <span class="green">1.00<br> (18ns)</span>
12231              </p>
12232            </td>
12233<td>
12234              <p>
12235                <span class="green">1.00<br> (18ns)</span>
12236              </p>
12237            </td>
12238<td>
12239              <p>
12240                <span class="green">1.00<br> (18ns)</span>
12241              </p>
12242            </td>
12243<td>
12244              <p>
12245                <span class="green">1.00<br> (18ns)</span>
12246              </p>
12247            </td>
12248</tr>
12249<tr>
12250<td>
12251              <p>
12252                Order 4
12253              </p>
12254            </td>
12255<td>
12256              <p>
12257                <span class="blue">1.65<br> (43ns)</span>
12258              </p>
12259            </td>
12260<td>
12261              <p>
12262                <span class="blue">2.00<br> (52ns)</span>
12263              </p>
12264            </td>
12265<td>
12266              <p>
12267                <span class="blue">1.46<br> (38ns)</span>
12268              </p>
12269            </td>
12270<td>
12271              <p>
12272                <span class="blue">1.46<br> (38ns)</span>
12273              </p>
12274            </td>
12275<td>
12276              <p>
12277                <span class="green">1.00<br> (26ns)</span>
12278              </p>
12279            </td>
12280<td>
12281              <p>
12282                <span class="green">1.00<br> (26ns)</span>
12283              </p>
12284            </td>
12285<td>
12286              <p>
12287                <span class="green">1.04<br> (27ns)</span>
12288              </p>
12289            </td>
12290<td>
12291              <p>
12292                <span class="green">1.12<br> (29ns)</span>
12293              </p>
12294            </td>
12295</tr>
12296<tr>
12297<td>
12298              <p>
12299                Order 5
12300              </p>
12301            </td>
12302<td>
12303              <p>
12304                <span class="green">1.17<br> (56ns)</span>
12305              </p>
12306            </td>
12307<td>
12308              <p>
12309                <span class="blue">1.40<br> (67ns)</span>
12310              </p>
12311            </td>
12312<td>
12313              <p>
12314                <span class="green">1.02<br> (49ns)</span>
12315              </p>
12316            </td>
12317<td>
12318              <p>
12319                <span class="green">1.00<br> (48ns)</span>
12320              </p>
12321            </td>
12322<td>
12323              <p>
12324                <span class="green">1.12<br> (54ns)</span>
12325              </p>
12326            </td>
12327<td>
12328              <p>
12329                <span class="green">1.10<br> (53ns)</span>
12330              </p>
12331            </td>
12332<td>
12333              <p>
12334                <span class="green">1.17<br> (56ns)</span>
12335              </p>
12336            </td>
12337<td>
12338              <p>
12339                <span class="green">1.12<br> (54ns)</span>
12340              </p>
12341            </td>
12342</tr>
12343<tr>
12344<td>
12345              <p>
12346                Order 6
12347              </p>
12348            </td>
12349<td>
12350              <p>
12351                <span class="green">1.02<br> (62ns)</span>
12352              </p>
12353            </td>
12354<td>
12355              <p>
12356                <span class="blue">1.25<br> (76ns)</span>
12357              </p>
12358            </td>
12359<td>
12360              <p>
12361                <span class="green">1.00<br> (61ns)</span>
12362              </p>
12363            </td>
12364<td>
12365              <p>
12366                <span class="green">1.00<br> (61ns)</span>
12367              </p>
12368            </td>
12369<td>
12370              <p>
12371                <span class="green">1.02<br> (62ns)</span>
12372              </p>
12373            </td>
12374<td>
12375              <p>
12376                <span class="green">1.02<br> (62ns)</span>
12377              </p>
12378            </td>
12379<td>
12380              <p>
12381                <span class="green">1.05<br> (64ns)</span>
12382              </p>
12383            </td>
12384<td>
12385              <p>
12386                <span class="blue">1.30<br> (79ns)</span>
12387              </p>
12388            </td>
12389</tr>
12390<tr>
12391<td>
12392              <p>
12393                Order 7
12394              </p>
12395            </td>
12396<td>
12397              <p>
12398                <span class="green">1.03<br> (74ns)</span>
12399              </p>
12400            </td>
12401<td>
12402              <p>
12403                <span class="blue">1.29<br> (93ns)</span>
12404              </p>
12405            </td>
12406<td>
12407              <p>
12408                <span class="green">1.01<br> (73ns)</span>
12409              </p>
12410            </td>
12411<td>
12412              <p>
12413                <span class="green">1.00<br> (72ns)</span>
12414              </p>
12415            </td>
12416<td>
12417              <p>
12418                <span class="green">1.01<br> (73ns)</span>
12419              </p>
12420            </td>
12421<td>
12422              <p>
12423                <span class="green">1.01<br> (73ns)</span>
12424              </p>
12425            </td>
12426<td>
12427              <p>
12428                <span class="green">1.03<br> (74ns)</span>
12429              </p>
12430            </td>
12431<td>
12432              <p>
12433                <span class="green">1.01<br> (73ns)</span>
12434              </p>
12435            </td>
12436</tr>
12437<tr>
12438<td>
12439              <p>
12440                Order 8
12441              </p>
12442            </td>
12443<td>
12444              <p>
12445                <span class="green">1.10<br> (90ns)</span>
12446              </p>
12447            </td>
12448<td>
12449              <p>
12450                <span class="blue">1.27<br> (104ns)</span>
12451              </p>
12452            </td>
12453<td>
12454              <p>
12455                <span class="green">1.00<br> (82ns)</span>
12456              </p>
12457            </td>
12458<td>
12459              <p>
12460                <span class="green">1.00<br> (82ns)</span>
12461              </p>
12462            </td>
12463<td>
12464              <p>
12465                <span class="green">1.00<br> (82ns)</span>
12466              </p>
12467            </td>
12468<td>
12469              <p>
12470                <span class="green">1.02<br> (84ns)</span>
12471              </p>
12472            </td>
12473<td>
12474              <p>
12475                <span class="green">1.12<br> (92ns)</span>
12476              </p>
12477            </td>
12478<td>
12479              <p>
12480                <span class="green">1.05<br> (86ns)</span>
12481              </p>
12482            </td>
12483</tr>
12484<tr>
12485<td>
12486              <p>
12487                Order 9
12488              </p>
12489            </td>
12490<td>
12491              <p>
12492                <span class="blue">1.27<br> (119ns)</span>
12493              </p>
12494            </td>
12495<td>
12496              <p>
12497                <span class="blue">1.66<br> (156ns)</span>
12498              </p>
12499            </td>
12500<td>
12501              <p>
12502                <span class="green">1.03<br> (97ns)</span>
12503              </p>
12504            </td>
12505<td>
12506              <p>
12507                <span class="green">1.02<br> (96ns)</span>
12508              </p>
12509            </td>
12510<td>
12511              <p>
12512                <span class="green">1.00<br> (94ns)</span>
12513              </p>
12514            </td>
12515<td>
12516              <p>
12517                <span class="green">1.01<br> (95ns)</span>
12518              </p>
12519            </td>
12520<td>
12521              <p>
12522                <span class="green">1.00<br> (94ns)</span>
12523              </p>
12524            </td>
12525<td>
12526              <p>
12527                <span class="green">1.01<br> (95ns)</span>
12528              </p>
12529            </td>
12530</tr>
12531<tr>
12532<td>
12533              <p>
12534                Order 10
12535              </p>
12536            </td>
12537<td>
12538              <p>
12539                <span class="blue">1.22<br> (128ns)</span>
12540              </p>
12541            </td>
12542<td>
12543              <p>
12544                <span class="blue">1.40<br> (147ns)</span>
12545              </p>
12546            </td>
12547<td>
12548              <p>
12549                <span class="green">1.06<br> (111ns)</span>
12550              </p>
12551            </td>
12552<td>
12553              <p>
12554                <span class="green">1.07<br> (112ns)</span>
12555              </p>
12556            </td>
12557<td>
12558              <p>
12559                <span class="green">1.00<br> (105ns)</span>
12560              </p>
12561            </td>
12562<td>
12563              <p>
12564                <span class="green">1.02<br> (107ns)</span>
12565              </p>
12566            </td>
12567<td>
12568              <p>
12569                <span class="green">1.00<br> (105ns)</span>
12570              </p>
12571            </td>
12572<td>
12573              <p>
12574                <span class="green">1.08<br> (113ns)</span>
12575              </p>
12576            </td>
12577</tr>
12578<tr>
12579<td>
12580              <p>
12581                Order 11
12582              </p>
12583            </td>
12584<td>
12585              <p>
12586                <span class="green">1.20<br> (140ns)</span>
12587              </p>
12588            </td>
12589<td>
12590              <p>
12591                <span class="blue">1.44<br> (169ns)</span>
12592              </p>
12593            </td>
12594<td>
12595              <p>
12596                <span class="green">1.07<br> (125ns)</span>
12597              </p>
12598            </td>
12599<td>
12600              <p>
12601                <span class="green">1.06<br> (124ns)</span>
12602              </p>
12603            </td>
12604<td>
12605              <p>
12606                <span class="green">1.00<br> (117ns)</span>
12607              </p>
12608            </td>
12609<td>
12610              <p>
12611                <span class="green">1.07<br> (125ns)</span>
12612              </p>
12613            </td>
12614<td>
12615              <p>
12616                <span class="green">1.01<br> (118ns)</span>
12617              </p>
12618            </td>
12619<td>
12620              <p>
12621                <span class="green">1.04<br> (122ns)</span>
12622              </p>
12623            </td>
12624</tr>
12625<tr>
12626<td>
12627              <p>
12628                Order 12
12629              </p>
12630            </td>
12631<td>
12632              <p>
12633                <span class="blue">1.24<br> (155ns)</span>
12634              </p>
12635            </td>
12636<td>
12637              <p>
12638                <span class="blue">1.32<br> (165ns)</span>
12639              </p>
12640            </td>
12641<td>
12642              <p>
12643                <span class="green">1.10<br> (137ns)</span>
12644              </p>
12645            </td>
12646<td>
12647              <p>
12648                <span class="green">1.12<br> (140ns)</span>
12649              </p>
12650            </td>
12651<td>
12652              <p>
12653                <span class="green">1.02<br> (128ns)</span>
12654              </p>
12655            </td>
12656<td>
12657              <p>
12658                <span class="blue">1.23<br> (154ns)</span>
12659              </p>
12660            </td>
12661<td>
12662              <p>
12663                <span class="green">1.04<br> (130ns)</span>
12664              </p>
12665            </td>
12666<td>
12667              <p>
12668                <span class="green">1.00<br> (125ns)</span>
12669              </p>
12670            </td>
12671</tr>
12672<tr>
12673<td>
12674              <p>
12675                Order 13
12676              </p>
12677            </td>
12678<td>
12679              <p>
12680                <span class="blue">1.27<br> (171ns)</span>
12681              </p>
12682            </td>
12683<td>
12684              <p>
12685                <span class="blue">1.36<br> (183ns)</span>
12686              </p>
12687            </td>
12688<td>
12689              <p>
12690                <span class="green">1.18<br> (159ns)</span>
12691              </p>
12692            </td>
12693<td>
12694              <p>
12695                <span class="green">1.13<br> (153ns)</span>
12696              </p>
12697            </td>
12698<td>
12699              <p>
12700                <span class="green">1.06<br> (143ns)</span>
12701              </p>
12702            </td>
12703<td>
12704              <p>
12705                <span class="green">1.00<br> (135ns)</span>
12706              </p>
12707            </td>
12708<td>
12709              <p>
12710                <span class="green">1.01<br> (136ns)</span>
12711              </p>
12712            </td>
12713<td>
12714              <p>
12715                <span class="green">1.02<br> (138ns)</span>
12716              </p>
12717            </td>
12718</tr>
12719<tr>
12720<td>
12721              <p>
12722                Order 14
12723              </p>
12724            </td>
12725<td>
12726              <p>
12727                <span class="green">1.16<br> (178ns)</span>
12728              </p>
12729            </td>
12730<td>
12731              <p>
12732                <span class="blue">1.28<br> (196ns)</span>
12733              </p>
12734            </td>
12735<td>
12736              <p>
12737                <span class="green">1.10<br> (168ns)</span>
12738              </p>
12739            </td>
12740<td>
12741              <p>
12742                <span class="green">1.08<br> (166ns)</span>
12743              </p>
12744            </td>
12745<td>
12746              <p>
12747                <span class="green">1.14<br> (174ns)</span>
12748              </p>
12749            </td>
12750<td>
12751              <p>
12752                <span class="green">1.10<br> (168ns)</span>
12753              </p>
12754            </td>
12755<td>
12756              <p>
12757                <span class="green">1.13<br> (173ns)</span>
12758              </p>
12759            </td>
12760<td>
12761              <p>
12762                <span class="green">1.00<br> (153ns)</span>
12763              </p>
12764            </td>
12765</tr>
12766<tr>
12767<td>
12768              <p>
12769                Order 15
12770              </p>
12771            </td>
12772<td>
12773              <p>
12774                <span class="blue">1.32<br> (196ns)</span>
12775              </p>
12776            </td>
12777<td>
12778              <p>
12779                <span class="blue">1.47<br> (217ns)</span>
12780              </p>
12781            </td>
12782<td>
12783              <p>
12784                <span class="blue">1.23<br> (182ns)</span>
12785              </p>
12786            </td>
12787<td>
12788              <p>
12789                <span class="blue">1.22<br> (181ns)</span>
12790              </p>
12791            </td>
12792<td>
12793              <p>
12794                <span class="green">1.00<br> (148ns)</span>
12795              </p>
12796            </td>
12797<td>
12798              <p>
12799                <span class="green">1.01<br> (150ns)</span>
12800              </p>
12801            </td>
12802<td>
12803              <p>
12804                <span class="green">1.15<br> (170ns)</span>
12805              </p>
12806            </td>
12807<td>
12808              <p>
12809                <span class="green">1.03<br> (152ns)</span>
12810              </p>
12811            </td>
12812</tr>
12813<tr>
12814<td>
12815              <p>
12816                Order 16
12817              </p>
12818            </td>
12819<td>
12820              <p>
12821                <span class="blue">1.31<br> (209ns)</span>
12822              </p>
12823            </td>
12824<td>
12825              <p>
12826                <span class="blue">1.39<br> (223ns)</span>
12827              </p>
12828            </td>
12829<td>
12830              <p>
12831                <span class="blue">1.26<br> (202ns)</span>
12832              </p>
12833            </td>
12834<td>
12835              <p>
12836                <span class="blue">1.28<br> (205ns)</span>
12837              </p>
12838            </td>
12839<td>
12840              <p>
12841                <span class="green">1.00<br> (160ns)</span>
12842              </p>
12843            </td>
12844<td>
12845              <p>
12846                <span class="green">1.01<br> (161ns)</span>
12847              </p>
12848            </td>
12849<td>
12850              <p>
12851                <span class="green">1.09<br> (174ns)</span>
12852              </p>
12853            </td>
12854<td>
12855              <p>
12856                <span class="green">1.01<br> (161ns)</span>
12857              </p>
12858            </td>
12859</tr>
12860<tr>
12861<td>
12862              <p>
12863                Order 17
12864              </p>
12865            </td>
12866<td>
12867              <p>
12868                <span class="blue">1.34<br> (221ns)</span>
12869              </p>
12870            </td>
12871<td>
12872              <p>
12873                <span class="blue">1.46<br> (241ns)</span>
12874              </p>
12875            </td>
12876<td>
12877              <p>
12878                <span class="blue">1.32<br> (217ns)</span>
12879              </p>
12880            </td>
12881<td>
12882              <p>
12883                <span class="blue">1.37<br> (226ns)</span>
12884              </p>
12885            </td>
12886<td>
12887              <p>
12888                <span class="green">1.00<br> (165ns)</span>
12889              </p>
12890            </td>
12891<td>
12892              <p>
12893                <span class="green">1.06<br> (175ns)</span>
12894              </p>
12895            </td>
12896<td>
12897              <p>
12898                <span class="green">1.08<br> (178ns)</span>
12899              </p>
12900            </td>
12901<td>
12902              <p>
12903                <span class="green">1.00<br> (165ns)</span>
12904              </p>
12905            </td>
12906</tr>
12907<tr>
12908<td>
12909              <p>
12910                Order 18
12911              </p>
12912            </td>
12913<td>
12914              <p>
12915                <span class="blue">1.52<br> (264ns)</span>
12916              </p>
12917            </td>
12918<td>
12919              <p>
12920                <span class="blue">1.53<br> (266ns)</span>
12921              </p>
12922            </td>
12923<td>
12924              <p>
12925                <span class="blue">1.41<br> (246ns)</span>
12926              </p>
12927            </td>
12928<td>
12929              <p>
12930                <span class="blue">1.43<br> (249ns)</span>
12931              </p>
12932            </td>
12933<td>
12934              <p>
12935                <span class="blue">1.23<br> (214ns)</span>
12936              </p>
12937            </td>
12938<td>
12939              <p>
12940                <span class="green">1.03<br> (179ns)</span>
12941              </p>
12942            </td>
12943<td>
12944              <p>
12945                <span class="green">1.00<br> (174ns)</span>
12946              </p>
12947            </td>
12948<td>
12949              <p>
12950                <span class="green">1.05<br> (182ns)</span>
12951              </p>
12952            </td>
12953</tr>
12954<tr>
12955<td>
12956              <p>
12957                Order 19
12958              </p>
12959            </td>
12960<td>
12961              <p>
12962                <span class="blue">1.35<br> (252ns)</span>
12963              </p>
12964            </td>
12965<td>
12966              <p>
12967                <span class="blue">1.56<br> (292ns)</span>
12968              </p>
12969            </td>
12970<td>
12971              <p>
12972                <span class="blue">1.54<br> (288ns)</span>
12973              </p>
12974            </td>
12975<td>
12976              <p>
12977                <span class="blue">1.39<br> (259ns)</span>
12978              </p>
12979            </td>
12980<td>
12981              <p>
12982                <span class="green">1.00<br> (187ns)</span>
12983              </p>
12984            </td>
12985<td>
12986              <p>
12987                <span class="blue">1.22<br> (228ns)</span>
12988              </p>
12989            </td>
12990<td>
12991              <p>
12992                <span class="green">1.02<br> (191ns)</span>
12993              </p>
12994            </td>
12995<td>
12996              <p>
12997                <span class="green">1.04<br> (195ns)</span>
12998              </p>
12999            </td>
13000</tr>
13001<tr>
13002<td>
13003              <p>
13004                Order 20
13005              </p>
13006            </td>
13007<td>
13008              <p>
13009                <span class="blue">1.34<br> (271ns)</span>
13010              </p>
13011            </td>
13012<td>
13013              <p>
13014                <span class="blue">1.59<br> (322ns)</span>
13015              </p>
13016            </td>
13017<td>
13018              <p>
13019                <span class="blue">1.39<br> (280ns)</span>
13020              </p>
13021            </td>
13022<td>
13023              <p>
13024                <span class="blue">1.46<br> (294ns)</span>
13025              </p>
13026            </td>
13027<td>
13028              <p>
13029                <span class="green">1.06<br> (214ns)</span>
13030              </p>
13031            </td>
13032<td>
13033              <p>
13034                <span class="green">1.01<br> (205ns)</span>
13035              </p>
13036            </td>
13037<td>
13038              <p>
13039                <span class="green">1.00<br> (202ns)</span>
13040              </p>
13041            </td>
13042<td>
13043              <p>
13044                <span class="green">1.00<br> (202ns)</span>
13045              </p>
13046            </td>
13047</tr>
13048</tbody>
13049</table></div>
13050</div>
13051<br class="table-break">
13052</div>
13053<div class="section">
13054<div class="titlepage"><div><div><h2 class="title" style="clear: both">
13055<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Rational Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Rational
13056    Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a>
13057</h2></div></div></div>
13058<div class="table">
13059<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;14.&#160;Rational Method Comparison with Microsoft Visual C++ version 14.2 on
13060      Windows x64</b></p>
13061<div class="table-contents"><table class="table" summary="Rational Method Comparison with Microsoft Visual C++ version 14.2 on
13062      Windows x64">
13063<colgroup>
13064<col>
13065<col>
13066<col>
13067<col>
13068<col>
13069<col>
13070<col>
13071<col>
13072<col>
13073</colgroup>
13074<thead><tr>
13075<th>
13076              <p>
13077                Function
13078              </p>
13079            </th>
13080<th>
13081              <p>
13082                Method 0<br> (Double Coefficients)
13083              </p>
13084            </th>
13085<th>
13086              <p>
13087                Method 0<br> (Integer Coefficients)
13088              </p>
13089            </th>
13090<th>
13091              <p>
13092                Method 1<br> (Double Coefficients)
13093              </p>
13094            </th>
13095<th>
13096              <p>
13097                Method 1<br> (Integer Coefficients)
13098              </p>
13099            </th>
13100<th>
13101              <p>
13102                Method 2<br> (Double Coefficients)
13103              </p>
13104            </th>
13105<th>
13106              <p>
13107                Method 2<br> (Integer Coefficients)
13108              </p>
13109            </th>
13110<th>
13111              <p>
13112                Method 3<br> (Double Coefficients)
13113              </p>
13114            </th>
13115<th>
13116              <p>
13117                Method 3<br> (Integer Coefficients)
13118              </p>
13119            </th>
13120</tr></thead>
13121<tbody>
13122<tr>
13123<td>
13124              <p>
13125                Order 2
13126              </p>
13127            </td>
13128<td>
13129              <p>
13130                <span class="grey">-</span>
13131              </p>
13132            </td>
13133<td>
13134              <p>
13135                <span class="grey">-</span>
13136              </p>
13137            </td>
13138<td>
13139              <p>
13140                <span class="blue">1.92<br> (23ns)</span>
13141              </p>
13142            </td>
13143<td>
13144              <p>
13145                <span class="blue">1.92<br> (23ns)</span>
13146              </p>
13147            </td>
13148<td>
13149              <p>
13150                <span class="green">1.00<br> (12ns)</span>
13151              </p>
13152            </td>
13153<td>
13154              <p>
13155                <span class="green">1.17<br> (14ns)</span>
13156              </p>
13157            </td>
13158<td>
13159              <p>
13160                <span class="green">1.00<br> (12ns)</span>
13161              </p>
13162            </td>
13163<td>
13164              <p>
13165                <span class="green">1.00<br> (12ns)</span>
13166              </p>
13167            </td>
13168</tr>
13169<tr>
13170<td>
13171              <p>
13172                Order 3
13173              </p>
13174            </td>
13175<td>
13176              <p>
13177                <span class="blue">1.89<br> (34ns)</span>
13178              </p>
13179            </td>
13180<td>
13181              <p>
13182                <span class="red">2.28<br> (41ns)</span>
13183              </p>
13184            </td>
13185<td>
13186              <p>
13187                <span class="blue">1.67<br> (30ns)</span>
13188              </p>
13189            </td>
13190<td>
13191              <p>
13192                <span class="blue">1.61<br> (29ns)</span>
13193              </p>
13194            </td>
13195<td>
13196              <p>
13197                <span class="green">1.06<br> (19ns)</span>
13198              </p>
13199            </td>
13200<td>
13201              <p>
13202                <span class="green">1.00<br> (18ns)</span>
13203              </p>
13204            </td>
13205<td>
13206              <p>
13207                <span class="green">1.00<br> (18ns)</span>
13208              </p>
13209            </td>
13210<td>
13211              <p>
13212                <span class="green">1.00<br> (18ns)</span>
13213              </p>
13214            </td>
13215</tr>
13216<tr>
13217<td>
13218              <p>
13219                Order 4
13220              </p>
13221            </td>
13222<td>
13223              <p>
13224                <span class="blue">1.72<br> (43ns)</span>
13225              </p>
13226            </td>
13227<td>
13228              <p>
13229                <span class="red">2.16<br> (54ns)</span>
13230              </p>
13231            </td>
13232<td>
13233              <p>
13234                <span class="blue">1.64<br> (41ns)</span>
13235              </p>
13236            </td>
13237<td>
13238              <p>
13239                <span class="blue">1.60<br> (40ns)</span>
13240              </p>
13241            </td>
13242<td>
13243              <p>
13244                <span class="green">1.00<br> (25ns)</span>
13245              </p>
13246            </td>
13247<td>
13248              <p>
13249                <span class="green">1.00<br> (25ns)</span>
13250              </p>
13251            </td>
13252<td>
13253              <p>
13254                <span class="green">1.00<br> (25ns)</span>
13255              </p>
13256            </td>
13257<td>
13258              <p>
13259                <span class="green">1.04<br> (26ns)</span>
13260              </p>
13261            </td>
13262</tr>
13263<tr>
13264<td>
13265              <p>
13266                Order 5
13267              </p>
13268            </td>
13269<td>
13270              <p>
13271                <span class="green">1.08<br> (53ns)</span>
13272              </p>
13273            </td>
13274<td>
13275              <p>
13276                <span class="blue">1.41<br> (69ns)</span>
13277              </p>
13278            </td>
13279<td>
13280              <p>
13281                <span class="green">1.00<br> (49ns)</span>
13282              </p>
13283            </td>
13284<td>
13285              <p>
13286                <span class="green">1.00<br> (49ns)</span>
13287              </p>
13288            </td>
13289<td>
13290              <p>
13291                <span class="green">1.08<br> (53ns)</span>
13292              </p>
13293            </td>
13294<td>
13295              <p>
13296                <span class="green">1.08<br> (53ns)</span>
13297              </p>
13298            </td>
13299<td>
13300              <p>
13301                <span class="green">1.00<br> (49ns)</span>
13302              </p>
13303            </td>
13304<td>
13305              <p>
13306                <span class="green">1.10<br> (54ns)</span>
13307              </p>
13308            </td>
13309</tr>
13310<tr>
13311<td>
13312              <p>
13313                Order 6
13314              </p>
13315            </td>
13316<td>
13317              <p>
13318                <span class="green">1.08<br> (65ns)</span>
13319              </p>
13320            </td>
13321<td>
13322              <p>
13323                <span class="blue">1.42<br> (85ns)</span>
13324              </p>
13325            </td>
13326<td>
13327              <p>
13328                <span class="green">1.02<br> (61ns)</span>
13329              </p>
13330            </td>
13331<td>
13332              <p>
13333                <span class="green">1.00<br> (60ns)</span>
13334              </p>
13335            </td>
13336<td>
13337              <p>
13338                <span class="green">1.05<br> (63ns)</span>
13339              </p>
13340            </td>
13341<td>
13342              <p>
13343                <span class="blue">1.23<br> (74ns)</span>
13344              </p>
13345            </td>
13346<td>
13347              <p>
13348                <span class="blue">1.25<br> (75ns)</span>
13349              </p>
13350            </td>
13351<td>
13352              <p>
13353                <span class="blue">1.40<br> (84ns)</span>
13354              </p>
13355            </td>
13356</tr>
13357<tr>
13358<td>
13359              <p>
13360                Order 7
13361              </p>
13362            </td>
13363<td>
13364              <p>
13365                <span class="green">1.06<br> (75ns)</span>
13366              </p>
13367            </td>
13368<td>
13369              <p>
13370                <span class="blue">1.37<br> (97ns)</span>
13371              </p>
13372            </td>
13373<td>
13374              <p>
13375                <span class="green">1.01<br> (72ns)</span>
13376              </p>
13377            </td>
13378<td>
13379              <p>
13380                <span class="green">1.00<br> (71ns)</span>
13381              </p>
13382            </td>
13383<td>
13384              <p>
13385                <span class="green">1.14<br> (81ns)</span>
13386              </p>
13387            </td>
13388<td>
13389              <p>
13390                <span class="green">1.01<br> (72ns)</span>
13391              </p>
13392            </td>
13393<td>
13394              <p>
13395                <span class="green">1.20<br> (85ns)</span>
13396              </p>
13397            </td>
13398<td>
13399              <p>
13400                <span class="blue">1.35<br> (96ns)</span>
13401              </p>
13402            </td>
13403</tr>
13404<tr>
13405<td>
13406              <p>
13407                Order 8
13408              </p>
13409            </td>
13410<td>
13411              <p>
13412                <span class="green">1.07<br> (87ns)</span>
13413              </p>
13414            </td>
13415<td>
13416              <p>
13417                <span class="blue">1.38<br> (112ns)</span>
13418              </p>
13419            </td>
13420<td>
13421              <p>
13422                <span class="green">1.04<br> (84ns)</span>
13423              </p>
13424            </td>
13425<td>
13426              <p>
13427                <span class="green">1.02<br> (83ns)</span>
13428              </p>
13429            </td>
13430<td>
13431              <p>
13432                <span class="green">1.01<br> (82ns)</span>
13433              </p>
13434            </td>
13435<td>
13436              <p>
13437                <span class="green">1.00<br> (81ns)</span>
13438              </p>
13439            </td>
13440<td>
13441              <p>
13442                <span class="red">2.49<br> (202ns)</span>
13443              </p>
13444            </td>
13445<td>
13446              <p>
13447                <span class="red">2.60<br> (211ns)</span>
13448              </p>
13449            </td>
13450</tr>
13451<tr>
13452<td>
13453              <p>
13454                Order 9
13455              </p>
13456            </td>
13457<td>
13458              <p>
13459                <span class="green">1.16<br> (103ns)</span>
13460              </p>
13461            </td>
13462<td>
13463              <p>
13464                <span class="blue">1.61<br> (143ns)</span>
13465              </p>
13466            </td>
13467<td>
13468              <p>
13469                <span class="green">1.18<br> (105ns)</span>
13470              </p>
13471            </td>
13472<td>
13473              <p>
13474                <span class="blue">1.27<br> (113ns)</span>
13475              </p>
13476            </td>
13477<td>
13478              <p>
13479                <span class="green">1.01<br> (90ns)</span>
13480              </p>
13481            </td>
13482<td>
13483              <p>
13484                <span class="green">1.02<br> (91ns)</span>
13485              </p>
13486            </td>
13487<td>
13488              <p>
13489                <span class="green">1.02<br> (91ns)</span>
13490              </p>
13491            </td>
13492<td>
13493              <p>
13494                <span class="green">1.00<br> (89ns)</span>
13495              </p>
13496            </td>
13497</tr>
13498<tr>
13499<td>
13500              <p>
13501                Order 10
13502              </p>
13503            </td>
13504<td>
13505              <p>
13506                <span class="green">1.15<br> (115ns)</span>
13507              </p>
13508            </td>
13509<td>
13510              <p>
13511                <span class="blue">1.46<br> (146ns)</span>
13512              </p>
13513            </td>
13514<td>
13515              <p>
13516                <span class="green">1.14<br> (114ns)</span>
13517              </p>
13518            </td>
13519<td>
13520              <p>
13521                <span class="green">1.12<br> (112ns)</span>
13522              </p>
13523            </td>
13524<td>
13525              <p>
13526                <span class="green">1.01<br> (101ns)</span>
13527              </p>
13528            </td>
13529<td>
13530              <p>
13531                <span class="green">1.02<br> (102ns)</span>
13532              </p>
13533            </td>
13534<td>
13535              <p>
13536                <span class="green">1.01<br> (101ns)</span>
13537              </p>
13538            </td>
13539<td>
13540              <p>
13541                <span class="green">1.00<br> (100ns)</span>
13542              </p>
13543            </td>
13544</tr>
13545<tr>
13546<td>
13547              <p>
13548                Order 11
13549              </p>
13550            </td>
13551<td>
13552              <p>
13553                <span class="blue">1.21<br> (131ns)</span>
13554              </p>
13555            </td>
13556<td>
13557              <p>
13558                <span class="blue">1.48<br> (160ns)</span>
13559              </p>
13560            </td>
13561<td>
13562              <p>
13563                <span class="green">1.17<br> (126ns)</span>
13564              </p>
13565            </td>
13566<td>
13567              <p>
13568                <span class="green">1.16<br> (125ns)</span>
13569              </p>
13570            </td>
13571<td>
13572              <p>
13573                <span class="green">1.00<br> (108ns)</span>
13574              </p>
13575            </td>
13576<td>
13577              <p>
13578                <span class="blue">1.27<br> (137ns)</span>
13579              </p>
13580            </td>
13581<td>
13582              <p>
13583                <span class="green">1.00<br> (108ns)</span>
13584              </p>
13585            </td>
13586<td>
13587              <p>
13588                <span class="green">1.01<br> (109ns)</span>
13589              </p>
13590            </td>
13591</tr>
13592<tr>
13593<td>
13594              <p>
13595                Order 12
13596              </p>
13597            </td>
13598<td>
13599              <p>
13600                <span class="blue">1.26<br> (148ns)</span>
13601              </p>
13602            </td>
13603<td>
13604              <p>
13605                <span class="blue">1.53<br> (179ns)</span>
13606              </p>
13607            </td>
13608<td>
13609              <p>
13610                <span class="green">1.19<br> (139ns)</span>
13611              </p>
13612            </td>
13613<td>
13614              <p>
13615                <span class="green">1.19<br> (139ns)</span>
13616              </p>
13617            </td>
13618<td>
13619              <p>
13620                <span class="green">1.02<br> (119ns)</span>
13621              </p>
13622            </td>
13623<td>
13624              <p>
13625                <span class="blue">1.24<br> (145ns)</span>
13626              </p>
13627            </td>
13628<td>
13629              <p>
13630                <span class="green">1.00<br> (117ns)</span>
13631              </p>
13632            </td>
13633<td>
13634              <p>
13635                <span class="green">1.00<br> (117ns)</span>
13636              </p>
13637            </td>
13638</tr>
13639<tr>
13640<td>
13641              <p>
13642                Order 13
13643              </p>
13644            </td>
13645<td>
13646              <p>
13647                <span class="blue">1.31<br> (163ns)</span>
13648              </p>
13649            </td>
13650<td>
13651              <p>
13652                <span class="blue">1.71<br> (212ns)</span>
13653              </p>
13654            </td>
13655<td>
13656              <p>
13657                <span class="blue">1.23<br> (153ns)</span>
13658              </p>
13659            </td>
13660<td>
13661              <p>
13662                <span class="blue">1.52<br> (189ns)</span>
13663              </p>
13664            </td>
13665<td>
13666              <p>
13667                <span class="green">1.01<br> (125ns)</span>
13668              </p>
13669            </td>
13670<td>
13671              <p>
13672                <span class="blue">1.29<br> (160ns)</span>
13673              </p>
13674            </td>
13675<td>
13676              <p>
13677                <span class="green">1.01<br> (125ns)</span>
13678              </p>
13679            </td>
13680<td>
13681              <p>
13682                <span class="green">1.00<br> (124ns)</span>
13683              </p>
13684            </td>
13685</tr>
13686<tr>
13687<td>
13688              <p>
13689                Order 14
13690              </p>
13691            </td>
13692<td>
13693              <p>
13694                <span class="blue">1.42<br> (190ns)</span>
13695              </p>
13696            </td>
13697<td>
13698              <p>
13699                <span class="blue">1.56<br> (209ns)</span>
13700              </p>
13701            </td>
13702<td>
13703              <p>
13704                <span class="blue">1.32<br> (177ns)</span>
13705              </p>
13706            </td>
13707<td>
13708              <p>
13709                <span class="blue">1.47<br> (197ns)</span>
13710              </p>
13711            </td>
13712<td>
13713              <p>
13714                <span class="green">1.02<br> (137ns)</span>
13715              </p>
13716            </td>
13717<td>
13718              <p>
13719                <span class="blue">1.31<br> (175ns)</span>
13720              </p>
13721            </td>
13722<td>
13723              <p>
13724                <span class="green">1.00<br> (134ns)</span>
13725              </p>
13726            </td>
13727<td>
13728              <p>
13729                <span class="green">1.01<br> (136ns)</span>
13730              </p>
13731            </td>
13732</tr>
13733<tr>
13734<td>
13735              <p>
13736                Order 15
13737              </p>
13738            </td>
13739<td>
13740              <p>
13741                <span class="blue">1.34<br> (194ns)</span>
13742              </p>
13743            </td>
13744<td>
13745              <p>
13746                <span class="blue">1.51<br> (219ns)</span>
13747              </p>
13748            </td>
13749<td>
13750              <p>
13751                <span class="blue">1.36<br> (197ns)</span>
13752              </p>
13753            </td>
13754<td>
13755              <p>
13756                <span class="blue">1.46<br> (212ns)</span>
13757              </p>
13758            </td>
13759<td>
13760              <p>
13761                <span class="green">1.02<br> (148ns)</span>
13762              </p>
13763            </td>
13764<td>
13765              <p>
13766                <span class="blue">1.30<br> (188ns)</span>
13767              </p>
13768            </td>
13769<td>
13770              <p>
13771                <span class="green">1.00<br> (145ns)</span>
13772              </p>
13773            </td>
13774<td>
13775              <p>
13776                <span class="red">2.23<br> (323ns)</span>
13777              </p>
13778            </td>
13779</tr>
13780<tr>
13781<td>
13782              <p>
13783                Order 16
13784              </p>
13785            </td>
13786<td>
13787              <p>
13788                <span class="blue">1.38<br> (216ns)</span>
13789              </p>
13790            </td>
13791<td>
13792              <p>
13793                <span class="blue">1.56<br> (244ns)</span>
13794              </p>
13795            </td>
13796<td>
13797              <p>
13798                <span class="blue">1.36<br> (212ns)</span>
13799              </p>
13800            </td>
13801<td>
13802              <p>
13803                <span class="blue">1.31<br> (204ns)</span>
13804              </p>
13805            </td>
13806<td>
13807              <p>
13808                <span class="green">1.15<br> (179ns)</span>
13809              </p>
13810            </td>
13811<td>
13812              <p>
13813                <span class="blue">1.34<br> (209ns)</span>
13814              </p>
13815            </td>
13816<td>
13817              <p>
13818                <span class="green">1.00<br> (156ns)</span>
13819              </p>
13820            </td>
13821<td>
13822              <p>
13823                <span class="red">2.10<br> (328ns)</span>
13824              </p>
13825            </td>
13826</tr>
13827<tr>
13828<td>
13829              <p>
13830                Order 17
13831              </p>
13832            </td>
13833<td>
13834              <p>
13835                <span class="blue">1.39<br> (227ns)</span>
13836              </p>
13837            </td>
13838<td>
13839              <p>
13840                <span class="blue">1.67<br> (273ns)</span>
13841              </p>
13842            </td>
13843<td>
13844              <p>
13845                <span class="blue">1.34<br> (218ns)</span>
13846              </p>
13847            </td>
13848<td>
13849              <p>
13850                <span class="blue">1.69<br> (275ns)</span>
13851              </p>
13852            </td>
13853<td>
13854              <p>
13855                <span class="green">1.00<br> (163ns)</span>
13856              </p>
13857            </td>
13858<td>
13859              <p>
13860                <span class="blue">1.32<br> (215ns)</span>
13861              </p>
13862            </td>
13863<td>
13864              <p>
13865                <span class="green">1.02<br> (167ns)</span>
13866              </p>
13867            </td>
13868<td>
13869              <p>
13870                <span class="red">2.53<br> (412ns)</span>
13871              </p>
13872            </td>
13873</tr>
13874<tr>
13875<td>
13876              <p>
13877                Order 18
13878              </p>
13879            </td>
13880<td>
13881              <p>
13882                <span class="blue">1.37<br> (242ns)</span>
13883              </p>
13884            </td>
13885<td>
13886              <p>
13887                <span class="blue">1.73<br> (306ns)</span>
13888              </p>
13889            </td>
13890<td>
13891              <p>
13892                <span class="blue">1.40<br> (248ns)</span>
13893              </p>
13894            </td>
13895<td>
13896              <p>
13897                <span class="blue">1.56<br> (276ns)</span>
13898              </p>
13899            </td>
13900<td>
13901              <p>
13902                <span class="green">1.06<br> (187ns)</span>
13903              </p>
13904            </td>
13905<td>
13906              <p>
13907                <span class="blue">1.32<br> (233ns)</span>
13908              </p>
13909            </td>
13910<td>
13911              <p>
13912                <span class="green">1.00<br> (177ns)</span>
13913              </p>
13914            </td>
13915<td>
13916              <p>
13917                <span class="red">2.15<br> (380ns)</span>
13918              </p>
13919            </td>
13920</tr>
13921<tr>
13922<td>
13923              <p>
13924                Order 19
13925              </p>
13926            </td>
13927<td>
13928              <p>
13929                <span class="blue">1.28<br> (254ns)</span>
13930              </p>
13931            </td>
13932<td>
13933              <p>
13934                <span class="blue">1.60<br> (319ns)</span>
13935              </p>
13936            </td>
13937<td>
13938              <p>
13939                <span class="blue">1.27<br> (253ns)</span>
13940              </p>
13941            </td>
13942<td>
13943              <p>
13944                <span class="blue">1.51<br> (300ns)</span>
13945              </p>
13946            </td>
13947<td>
13948              <p>
13949                <span class="green">1.00<br> (199ns)</span>
13950              </p>
13951            </td>
13952<td>
13953              <p>
13954                <span class="blue">1.22<br> (243ns)</span>
13955              </p>
13956            </td>
13957<td>
13958              <p>
13959                <span class="blue">1.80<br> (359ns)</span>
13960              </p>
13961            </td>
13962<td>
13963              <p>
13964                <span class="blue">1.92<br> (382ns)</span>
13965              </p>
13966            </td>
13967</tr>
13968<tr>
13969<td>
13970              <p>
13971                Order 20
13972              </p>
13973            </td>
13974<td>
13975              <p>
13976                <span class="blue">1.28<br> (268ns)</span>
13977              </p>
13978            </td>
13979<td>
13980              <p>
13981                <span class="blue">1.62<br> (338ns)</span>
13982              </p>
13983            </td>
13984<td>
13985              <p>
13986                <span class="blue">1.27<br> (265ns)</span>
13987              </p>
13988            </td>
13989<td>
13990              <p>
13991                <span class="blue">1.56<br> (325ns)</span>
13992              </p>
13993            </td>
13994<td>
13995              <p>
13996                <span class="green">1.00<br> (209ns)</span>
13997              </p>
13998            </td>
13999<td>
14000              <p>
14001                <span class="blue">1.24<br> (259ns)</span>
14002              </p>
14003            </td>
14004<td>
14005              <p>
14006                <span class="blue">1.87<br> (391ns)</span>
14007              </p>
14008            </td>
14009<td>
14010              <p>
14011                <span class="red">2.04<br> (427ns)</span>
14012              </p>
14013            </td>
14014</tr>
14015</tbody>
14016</table></div>
14017</div>
14018<br class="table-break">
14019</div>
14020<div class="section">
14021<div class="titlepage"><div><div><h2 class="title" style="clear: both">
14022<a name="special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="gcd method comparison with GNU C++ version 9.2.0 on Windows x64">gcd
14023    method comparison with GNU C++ version 9.2.0 on Windows x64</a>
14024</h2></div></div></div>
14025<div class="table">
14026<a name="special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table&#160;15.&#160;gcd method comparison with GNU C++ version 9.2.0 on Windows x64</b></p>
14027<div class="table-contents"><table class="table" summary="gcd method comparison with GNU C++ version 9.2.0 on Windows x64">
14028<colgroup>
14029<col>
14030<col>
14031<col>
14032<col>
14033<col>
14034<col>
14035<col>
14036</colgroup>
14037<thead><tr>
14038<th>
14039              <p>
14040                Function
14041              </p>
14042            </th>
14043<th>
14044              <p>
14045                gcd boost 1.73
14046              </p>
14047            </th>
14048<th>
14049              <p>
14050                Euclid_gcd boost 1.73
14051              </p>
14052            </th>
14053<th>
14054              <p>
14055                Stein_gcd boost 1.73
14056              </p>
14057            </th>
14058<th>
14059              <p>
14060                mixed_binary_gcd boost 1.73
14061              </p>
14062            </th>
14063<th>
14064              <p>
14065                Stein_gcd_textbook boost 1.73
14066              </p>
14067            </th>
14068<th>
14069              <p>
14070                gcd_euclid_textbook boost 1.73
14071              </p>
14072            </th>
14073</tr></thead>
14074<tbody>
14075<tr>
14076<td>
14077              <p>
14078                gcd&lt;boost::multiprecision::uint1024_t&gt; (Trivial cases)
14079              </p>
14080            </td>
14081<td>
14082              <p>
14083                <span class="green">1.00<br> (585ns)</span>
14084              </p>
14085            </td>
14086<td>
14087              <p>
14088                <span class="blue">1.30<br> (761ns)</span>
14089              </p>
14090            </td>
14091<td>
14092              <p>
14093                <span class="red">3.82<br> (2237ns)</span>
14094              </p>
14095            </td>
14096<td>
14097              <p>
14098                <span class="red">3.97<br> (2321ns)</span>
14099              </p>
14100            </td>
14101<td>
14102              <p>
14103                <span class="blue">1.43<br> (836ns)</span>
14104              </p>
14105            </td>
14106<td>
14107              <p>
14108                <span class="green">1.10<br> (645ns)</span>
14109              </p>
14110            </td>
14111</tr>
14112<tr>
14113<td>
14114              <p>
14115                gcd&lt;boost::multiprecision::uint1024_t&gt; (adjacent Fibonacci
14116                numbers)
14117              </p>
14118            </td>
14119<td>
14120              <p>
14121                <span class="green">1.00<br> (9970176ns)</span>
14122              </p>
14123            </td>
14124<td>
14125              <p>
14126                <span class="red">7.06<br> (70352275ns)</span>
14127              </p>
14128            </td>
14129<td>
14130              <p>
14131                <span class="red">3.96<br> (39452018ns)</span>
14132              </p>
14133            </td>
14134<td>
14135              <p>
14136                <span class="red">3.33<br> (33171075ns)</span>
14137              </p>
14138            </td>
14139<td>
14140              <p>
14141                <span class="red">2.04<br> (20368737ns)</span>
14142              </p>
14143            </td>
14144<td>
14145              <p>
14146                <span class="red">7.38<br> (73577712ns)</span>
14147              </p>
14148            </td>
14149</tr>
14150<tr>
14151<td>
14152              <p>
14153                gcd&lt;boost::multiprecision::uint1024_t&gt; (permutations of Fibonacci
14154                numbers)
14155              </p>
14156            </td>
14157<td>
14158              <p>
14159                <span class="red">3.58<br> (5700044700ns)</span>
14160              </p>
14161            </td>
14162<td>
14163              <p>
14164                <span class="green">1.02<br> (1619575299ns)</span>
14165              </p>
14166            </td>
14167<td>
14168              <p>
14169                <span class="red">15.19<br> (24170880700ns)</span>
14170              </p>
14171            </td>
14172<td>
14173              <p>
14174                <span class="red">3.10<br> (4926301699ns)</span>
14175              </p>
14176            </td>
14177<td>
14178              <p>
14179                <span class="red">7.61<br> (12103557199ns)</span>
14180              </p>
14181            </td>
14182<td>
14183              <p>
14184                <span class="green">1.00<br> (1591386600ns)</span>
14185              </p>
14186            </td>
14187</tr>
14188<tr>
14189<td>
14190              <p>
14191                gcd&lt;boost::multiprecision::uint1024_t&gt; (random prime number
14192                products)
14193              </p>
14194            </td>
14195<td>
14196              <p>
14197                <span class="green">1.00<br> (776840ns)</span>
14198              </p>
14199            </td>
14200<td>
14201              <p>
14202                <span class="blue">1.83<br> (1420825ns)</span>
14203              </p>
14204            </td>
14205<td>
14206              <p>
14207                <span class="red">7.78<br> (6040362ns)</span>
14208              </p>
14209            </td>
14210<td>
14211              <p>
14212                <span class="red">2.39<br> (1853658ns)</span>
14213              </p>
14214            </td>
14215<td>
14216              <p>
14217                <span class="red">4.19<br> (3251426ns)</span>
14218              </p>
14219            </td>
14220<td>
14221              <p>
14222                <span class="blue">1.96<br> (1522179ns)</span>
14223              </p>
14224            </td>
14225</tr>
14226<tr>
14227<td>
14228              <p>
14229                gcd&lt;boost::multiprecision::uint1024_t&gt; (uniform random numbers)
14230              </p>
14231            </td>
14232<td>
14233              <p>
14234                <span class="green">1.00<br> (55462256ns)</span>
14235              </p>
14236            </td>
14237<td>
14238              <p>
14239                <span class="red">2.02<br> (112246250ns)</span>
14240              </p>
14241            </td>
14242<td>
14243              <p>
14244                <span class="red">2.55<br> (141227725ns)</span>
14245              </p>
14246            </td>
14247<td>
14248              <p>
14249                <span class="red">2.21<br> (122643774ns)</span>
14250              </p>
14251            </td>
14252<td>
14253              <p>
14254                <span class="blue">1.49<br> (82400762ns)</span>
14255              </p>
14256            </td>
14257<td>
14258              <p>
14259                <span class="blue">1.99<br> (110242300ns)</span>
14260              </p>
14261            </td>
14262</tr>
14263<tr>
14264<td>
14265              <p>
14266                gcd&lt;boost::multiprecision::uint256_t&gt; (Trivial cases)
14267              </p>
14268            </td>
14269<td>
14270              <p>
14271                <span class="green">1.00<br> (442ns)</span>
14272              </p>
14273            </td>
14274<td>
14275              <p>
14276                <span class="green">1.08<br> (475ns)</span>
14277              </p>
14278            </td>
14279<td>
14280              <p>
14281                <span class="red">4.12<br> (1815ns)</span>
14282              </p>
14283            </td>
14284<td>
14285              <p>
14286                <span class="red">4.11<br> (1813ns)</span>
14287              </p>
14288            </td>
14289<td>
14290              <p>
14291                <span class="green">1.17<br> (515ns)</span>
14292              </p>
14293            </td>
14294<td>
14295              <p>
14296                <span class="green">1.00<br> (441ns)</span>
14297              </p>
14298            </td>
14299</tr>
14300<tr>
14301<td>
14302              <p>
14303                gcd&lt;boost::multiprecision::uint256_t&gt; (adjacent Fibonacci numbers)
14304              </p>
14305            </td>
14306<td>
14307              <p>
14308                <span class="green">1.00<br> (4055238ns)</span>
14309              </p>
14310            </td>
14311<td>
14312              <p>
14313                <span class="red">3.74<br> (15153867ns)</span>
14314              </p>
14315            </td>
14316<td>
14317              <p>
14318                <span class="red">3.14<br> (12714485ns)</span>
14319              </p>
14320            </td>
14321<td>
14322              <p>
14323                <span class="red">2.78<br> (11263817ns)</span>
14324              </p>
14325            </td>
14326<td>
14327              <p>
14328                <span class="blue">1.83<br> (7405233ns)</span>
14329              </p>
14330            </td>
14331<td>
14332              <p>
14333                <span class="red">3.79<br> (15349360ns)</span>
14334              </p>
14335            </td>
14336</tr>
14337<tr>
14338<td>
14339              <p>
14340                gcd&lt;boost::multiprecision::uint256_t&gt; (permutations of Fibonacci
14341                numbers)
14342              </p>
14343            </td>
14344<td>
14345              <p>
14346                <span class="green">1.00<br> (2188053200ns)</span>
14347              </p>
14348            </td>
14349<td>
14350              <p>
14351                <span class="red">2.24<br> (4905530400ns)</span>
14352              </p>
14353            </td>
14354<td>
14355              <p>
14356                <span class="red">3.53<br> (7720779699ns)</span>
14357              </p>
14358            </td>
14359<td>
14360              <p>
14361                <span class="red">2.26<br> (4951713400ns)</span>
14362              </p>
14363            </td>
14364<td>
14365              <p>
14366                <span class="red">2.06<br> (4508168099ns)</span>
14367              </p>
14368            </td>
14369<td>
14370              <p>
14371                <span class="red">2.60<br> (5692910900ns)</span>
14372              </p>
14373            </td>
14374</tr>
14375<tr>
14376<td>
14377              <p>
14378                gcd&lt;boost::multiprecision::uint256_t&gt; (random prime number
14379                products)
14380              </p>
14381            </td>
14382<td>
14383              <p>
14384                <span class="green">1.00<br> (788189ns)</span>
14385              </p>
14386            </td>
14387<td>
14388              <p>
14389                <span class="blue">1.65<br> (1298322ns)</span>
14390              </p>
14391            </td>
14392<td>
14393              <p>
14394                <span class="red">4.56<br> (3592013ns)</span>
14395              </p>
14396            </td>
14397<td>
14398              <p>
14399                <span class="blue">1.51<br> (1186279ns)</span>
14400              </p>
14401            </td>
14402<td>
14403              <p>
14404                <span class="red">2.77<br> (2184586ns)</span>
14405              </p>
14406            </td>
14407<td>
14408              <p>
14409                <span class="blue">1.70<br> (1337848ns)</span>
14410              </p>
14411            </td>
14412</tr>
14413<tr>
14414<td>
14415              <p>
14416                gcd&lt;boost::multiprecision::uint256_t&gt; (uniform random numbers)
14417              </p>
14418            </td>
14419<td>
14420              <p>
14421                <span class="green">1.00<br> (5971862ns)</span>
14422              </p>
14423            </td>
14424<td>
14425              <p>
14426                <span class="red">2.75<br> (16440456ns)</span>
14427              </p>
14428            </td>
14429<td>
14430              <p>
14431                <span class="red">3.13<br> (18696806ns)</span>
14432              </p>
14433            </td>
14434<td>
14435              <p>
14436                <span class="red">2.48<br> (14818301ns)</span>
14437              </p>
14438            </td>
14439<td>
14440              <p>
14441                <span class="blue">1.65<br> (9829225ns)</span>
14442              </p>
14443            </td>
14444<td>
14445              <p>
14446                <span class="red">3.16<br> (18848609ns)</span>
14447              </p>
14448            </td>
14449</tr>
14450<tr>
14451<td>
14452              <p>
14453                gcd&lt;boost::multiprecision::uint512_t&gt; (Trivial cases)
14454              </p>
14455            </td>
14456<td>
14457              <p>
14458                <span class="green">1.00<br> (473ns)</span>
14459              </p>
14460            </td>
14461<td>
14462              <p>
14463                <span class="green">1.10<br> (522ns)</span>
14464              </p>
14465            </td>
14466<td>
14467              <p>
14468                <span class="red">2.35<br> (1113ns)</span>
14469              </p>
14470            </td>
14471<td>
14472              <p>
14473                <span class="red">2.54<br> (1201ns)</span>
14474              </p>
14475            </td>
14476<td>
14477              <p>
14478                <span class="blue">1.30<br> (617ns)</span>
14479              </p>
14480            </td>
14481<td>
14482              <p>
14483                <span class="green">1.05<br> (497ns)</span>
14484              </p>
14485            </td>
14486</tr>
14487<tr>
14488<td>
14489              <p>
14490                gcd&lt;boost::multiprecision::uint512_t&gt; (adjacent Fibonacci numbers)
14491              </p>
14492            </td>
14493<td>
14494              <p>
14495                <span class="green">1.00<br> (8919442ns)</span>
14496              </p>
14497            </td>
14498<td>
14499              <p>
14500                <span class="red">4.88<br> (43541675ns)</span>
14501              </p>
14502            </td>
14503<td>
14504              <p>
14505                <span class="red">4.74<br> (42250737ns)</span>
14506              </p>
14507            </td>
14508<td>
14509              <p>
14510                <span class="red">3.64<br> (32424337ns)</span>
14511              </p>
14512            </td>
14513<td>
14514              <p>
14515                <span class="blue">1.68<br> (14998360ns)</span>
14516              </p>
14517            </td>
14518<td>
14519              <p>
14520                <span class="red">4.90<br> (43720662ns)</span>
14521              </p>
14522            </td>
14523</tr>
14524<tr>
14525<td>
14526              <p>
14527                gcd&lt;boost::multiprecision::uint512_t&gt; (permutations of Fibonacci
14528                numbers)
14529              </p>
14530            </td>
14531<td>
14532              <p>
14533                <span class="green">1.00<br> (4874074099ns)</span>
14534              </p>
14535            </td>
14536<td>
14537              <p>
14538                <span class="blue">1.22<br> (5941210899ns)</span>
14539              </p>
14540            </td>
14541<td>
14542              <p>
14543                <span class="red">3.28<br> (15985377299ns)</span>
14544              </p>
14545            </td>
14546<td>
14547              <p>
14548                <span class="blue">1.50<br> (7304170300ns)</span>
14549              </p>
14550            </td>
14551<td>
14552              <p>
14553                <span class="blue">1.76<br> (8559919799ns)</span>
14554              </p>
14555            </td>
14556<td>
14557              <p>
14558                <span class="blue">1.23<br> (6002105200ns)</span>
14559              </p>
14560            </td>
14561</tr>
14562<tr>
14563<td>
14564              <p>
14565                gcd&lt;boost::multiprecision::uint512_t&gt; (random prime number
14566                products)
14567              </p>
14568            </td>
14569<td>
14570              <p>
14571                <span class="green">1.00<br> (829159ns)</span>
14572              </p>
14573            </td>
14574<td>
14575              <p>
14576                <span class="blue">1.59<br> (1318798ns)</span>
14577              </p>
14578            </td>
14579<td>
14580              <p>
14581                <span class="red">8.12<br> (6731670ns)</span>
14582              </p>
14583            </td>
14584<td>
14585              <p>
14586                <span class="blue">1.91<br> (1581731ns)</span>
14587              </p>
14588            </td>
14589<td>
14590              <p>
14591                <span class="red">3.08<br> (2551970ns)</span>
14592              </p>
14593            </td>
14594<td>
14595              <p>
14596                <span class="blue">1.58<br> (1308443ns)</span>
14597              </p>
14598            </td>
14599</tr>
14600<tr>
14601<td>
14602              <p>
14603                gcd&lt;boost::multiprecision::uint512_t&gt; (uniform random numbers)
14604              </p>
14605            </td>
14606<td>
14607              <p>
14608                <span class="green">1.00<br> (18120096ns)</span>
14609              </p>
14610            </td>
14611<td>
14612              <p>
14613                <span class="red">2.35<br> (42631487ns)</span>
14614              </p>
14615            </td>
14616<td>
14617              <p>
14618                <span class="red">3.97<br> (71846612ns)</span>
14619              </p>
14620            </td>
14621<td>
14622              <p>
14623                <span class="red">3.10<br> (56237574ns)</span>
14624              </p>
14625            </td>
14626<td>
14627              <p>
14628                <span class="blue">1.49<br> (27081093ns)</span>
14629              </p>
14630            </td>
14631<td>
14632              <p>
14633                <span class="red">2.66<br> (48247731ns)</span>
14634              </p>
14635            </td>
14636</tr>
14637<tr>
14638<td>
14639              <p>
14640                gcd&lt;unsigned long long&gt; (Trivial cases)
14641              </p>
14642            </td>
14643<td>
14644              <p>
14645                <span class="blue">1.85<br> (109ns)</span>
14646              </p>
14647            </td>
14648<td>
14649              <p>
14650                <span class="red">2.44<br> (144ns)</span>
14651              </p>
14652            </td>
14653<td>
14654              <p>
14655                <span class="green">1.00<br> (59ns)</span>
14656              </p>
14657            </td>
14658<td>
14659              <p>
14660                <span class="blue">1.88<br> (111ns)</span>
14661              </p>
14662            </td>
14663<td>
14664              <p>
14665                <span class="blue">1.68<br> (99ns)</span>
14666              </p>
14667            </td>
14668<td>
14669              <p>
14670                <span class="red">2.08<br> (123ns)</span>
14671              </p>
14672            </td>
14673</tr>
14674<tr>
14675<td>
14676              <p>
14677                gcd&lt;unsigned long long&gt; (adjacent Fibonacci numbers)
14678              </p>
14679            </td>
14680<td>
14681              <p>
14682                <span class="red">2.98<br> (17394ns)</span>
14683              </p>
14684            </td>
14685<td>
14686              <p>
14687                <span class="red">14.61<br> (85221ns)</span>
14688              </p>
14689            </td>
14690<td>
14691              <p>
14692                <span class="green">1.00<br> (5832ns)</span>
14693              </p>
14694            </td>
14695<td>
14696              <p>
14697                <span class="red">2.98<br> (17351ns)</span>
14698              </p>
14699            </td>
14700<td>
14701              <p>
14702                <span class="red">2.20<br> (12805ns)</span>
14703              </p>
14704            </td>
14705<td>
14706              <p>
14707                <span class="red">14.60<br> (85125ns)</span>
14708              </p>
14709            </td>
14710</tr>
14711<tr>
14712<td>
14713              <p>
14714                gcd&lt;unsigned long long&gt; (permutations of Fibonacci numbers)
14715              </p>
14716            </td>
14717<td>
14718              <p>
14719                <span class="green">1.04<br> (1203049ns)</span>
14720              </p>
14721            </td>
14722<td>
14723              <p>
14724                <span class="blue">1.30<br> (1508607ns)</span>
14725              </p>
14726            </td>
14727<td>
14728              <p>
14729                <span class="green">1.13<br> (1307113ns)</span>
14730              </p>
14731            </td>
14732<td>
14733              <p>
14734                <span class="green">1.00<br> (1159442ns)</span>
14735              </p>
14736            </td>
14737<td>
14738              <p>
14739                <span class="red">2.23<br> (2585039ns)</span>
14740              </p>
14741            </td>
14742<td>
14743              <p>
14744                <span class="blue">1.26<br> (1455556ns)</span>
14745              </p>
14746            </td>
14747</tr>
14748<tr>
14749<td>
14750              <p>
14751                gcd&lt;unsigned long long&gt; (random prime number products)
14752              </p>
14753            </td>
14754<td>
14755              <p>
14756                <span class="green">1.14<br> (267158ns)</span>
14757              </p>
14758            </td>
14759<td>
14760              <p>
14761                <span class="blue">1.88<br> (441001ns)</span>
14762              </p>
14763            </td>
14764<td>
14765              <p>
14766                <span class="green">1.00<br> (234725ns)</span>
14767              </p>
14768            </td>
14769<td>
14770              <p>
14771                <span class="green">1.07<br> (249997ns)</span>
14772              </p>
14773            </td>
14774<td>
14775              <p>
14776                <span class="red">2.02<br> (473466ns)</span>
14777              </p>
14778            </td>
14779<td>
14780              <p>
14781                <span class="blue">1.78<br> (418669ns)</span>
14782              </p>
14783            </td>
14784</tr>
14785<tr>
14786<td>
14787              <p>
14788                gcd&lt;unsigned long long&gt; (uniform random numbers)
14789              </p>
14790            </td>
14791<td>
14792              <p>
14793                <span class="blue">1.39<br> (507147ns)</span>
14794              </p>
14795            </td>
14796<td>
14797              <p>
14798                <span class="red">2.14<br> (784228ns)</span>
14799              </p>
14800            </td>
14801<td>
14802              <p>
14803                <span class="green">1.00<br> (365889ns)</span>
14804              </p>
14805            </td>
14806<td>
14807              <p>
14808                <span class="blue">1.33<br> (488432ns)</span>
14809              </p>
14810            </td>
14811<td>
14812              <p>
14813                <span class="blue">1.75<br> (641184ns)</span>
14814              </p>
14815            </td>
14816<td>
14817              <p>
14818                <span class="red">2.08<br> (760185ns)</span>
14819              </p>
14820            </td>
14821</tr>
14822<tr>
14823<td>
14824              <p>
14825                gcd&lt;unsigned long&gt; (Trivial cases)
14826              </p>
14827            </td>
14828<td>
14829              <p>
14830                <span class="blue">1.23<br> (70ns)</span>
14831              </p>
14832            </td>
14833<td>
14834              <p>
14835                <span class="green">1.16<br> (66ns)</span>
14836              </p>
14837            </td>
14838<td>
14839              <p>
14840                <span class="green">1.00<br> (57ns)</span>
14841              </p>
14842            </td>
14843<td>
14844              <p>
14845                <span class="green">1.19<br> (68ns)</span>
14846              </p>
14847            </td>
14848<td>
14849              <p>
14850                <span class="blue">1.63<br> (93ns)</span>
14851              </p>
14852            </td>
14853<td>
14854              <p>
14855                <span class="green">1.12<br> (64ns)</span>
14856              </p>
14857            </td>
14858</tr>
14859<tr>
14860<td>
14861              <p>
14862                gcd&lt;unsigned long&gt; (adjacent Fibonacci numbers)
14863              </p>
14864            </td>
14865<td>
14866              <p>
14867                <span class="blue">1.79<br> (2678ns)</span>
14868              </p>
14869            </td>
14870<td>
14871              <p>
14872                <span class="red">10.20<br> (15231ns)</span>
14873              </p>
14874            </td>
14875<td>
14876              <p>
14877                <span class="green">1.00<br> (1493ns)</span>
14878              </p>
14879            </td>
14880<td>
14881              <p>
14882                <span class="blue">1.85<br> (2765ns)</span>
14883              </p>
14884            </td>
14885<td>
14886              <p>
14887                <span class="red">2.07<br> (3093ns)</span>
14888              </p>
14889            </td>
14890<td>
14891              <p>
14892                <span class="red">9.50<br> (14177ns)</span>
14893              </p>
14894            </td>
14895</tr>
14896<tr>
14897<td>
14898              <p>
14899                gcd&lt;unsigned long&gt; (permutations of Fibonacci numbers)
14900              </p>
14901            </td>
14902<td>
14903              <p>
14904                <span class="green">1.00<br> (130874ns)</span>
14905              </p>
14906            </td>
14907<td>
14908              <p>
14909                <span class="blue">1.43<br> (187180ns)</span>
14910              </p>
14911            </td>
14912<td>
14913              <p>
14914                <span class="blue">1.31<br> (171288ns)</span>
14915              </p>
14916            </td>
14917<td>
14918              <p>
14919                <span class="green">1.01<br> (132289ns)</span>
14920              </p>
14921            </td>
14922<td>
14923              <p>
14924                <span class="red">2.45<br> (321281ns)</span>
14925              </p>
14926            </td>
14927<td>
14928              <p>
14929                <span class="blue">1.30<br> (169852ns)</span>
14930              </p>
14931            </td>
14932</tr>
14933<tr>
14934<td>
14935              <p>
14936                gcd&lt;unsigned long&gt; (random prime number products)
14937              </p>
14938            </td>
14939<td>
14940              <p>
14941                <span class="green">1.02<br> (132073ns)</span>
14942              </p>
14943            </td>
14944<td>
14945              <p>
14946                <span class="blue">1.56<br> (202025ns)</span>
14947              </p>
14948            </td>
14949<td>
14950              <p>
14951                <span class="green">1.11<br> (143913ns)</span>
14952              </p>
14953            </td>
14954<td>
14955              <p>
14956                <span class="green">1.00<br> (129448ns)</span>
14957              </p>
14958            </td>
14959<td>
14960              <p>
14961                <span class="red">2.03<br> (263053ns)</span>
14962              </p>
14963            </td>
14964<td>
14965              <p>
14966                <span class="blue">1.40<br> (181659ns)</span>
14967              </p>
14968            </td>
14969</tr>
14970<tr>
14971<td>
14972              <p>
14973                gcd&lt;unsigned long&gt; (uniform random numbers)
14974              </p>
14975            </td>
14976<td>
14977              <p>
14978                <span class="green">1.14<br> (209599ns)</span>
14979              </p>
14980            </td>
14981<td>
14982              <p>
14983                <span class="blue">1.61<br> (296090ns)</span>
14984              </p>
14985            </td>
14986<td>
14987              <p>
14988                <span class="green">1.00<br> (183672ns)</span>
14989              </p>
14990            </td>
14991<td>
14992              <p>
14993                <span class="green">1.17<br> (214530ns)</span>
14994              </p>
14995            </td>
14996<td>
14997              <p>
14998                <span class="blue">1.76<br> (322600ns)</span>
14999              </p>
15000            </td>
15001<td>
15002              <p>
15003                <span class="blue">1.55<br> (284838ns)</span>
15004              </p>
15005            </td>
15006</tr>
15007<tr>
15008<td>
15009              <p>
15010                gcd&lt;unsigned short&gt; (Trivial cases)
15011              </p>
15012            </td>
15013<td>
15014              <p>
15015                <span class="green">1.19<br> (74ns)</span>
15016              </p>
15017            </td>
15018<td>
15019              <p>
15020                <span class="green">1.05<br> (65ns)</span>
15021              </p>
15022            </td>
15023<td>
15024              <p>
15025                <span class="green">1.00<br> (62ns)</span>
15026              </p>
15027            </td>
15028<td>
15029              <p>
15030                <span class="blue">1.29<br> (80ns)</span>
15031              </p>
15032            </td>
15033<td>
15034              <p>
15035                <span class="blue">1.53<br> (95ns)</span>
15036              </p>
15037            </td>
15038<td>
15039              <p>
15040                <span class="green">1.08<br> (67ns)</span>
15041              </p>
15042            </td>
15043</tr>
15044<tr>
15045<td>
15046              <p>
15047                gcd&lt;unsigned short&gt; (adjacent Fibonacci numbers)
15048              </p>
15049            </td>
15050<td>
15051              <p>
15052                <span class="blue">1.55<br> (694ns)</span>
15053              </p>
15054            </td>
15055<td>
15056              <p>
15057                <span class="red">6.51<br> (2915ns)</span>
15058              </p>
15059            </td>
15060<td>
15061              <p>
15062                <span class="green">1.00<br> (448ns)</span>
15063              </p>
15064            </td>
15065<td>
15066              <p>
15067                <span class="blue">1.65<br> (737ns)</span>
15068              </p>
15069            </td>
15070<td>
15071              <p>
15072                <span class="blue">1.42<br> (634ns)</span>
15073              </p>
15074            </td>
15075<td>
15076              <p>
15077                <span class="red">6.06<br> (2716ns)</span>
15078              </p>
15079            </td>
15080</tr>
15081<tr>
15082<td>
15083              <p>
15084                gcd&lt;unsigned short&gt; (permutations of Fibonacci numbers)
15085              </p>
15086            </td>
15087<td>
15088              <p>
15089                <span class="blue">1.31<br> (10776ns)</span>
15090              </p>
15091            </td>
15092<td>
15093              <p>
15094                <span class="red">2.35<br> (19287ns)</span>
15095              </p>
15096            </td>
15097<td>
15098              <p>
15099                <span class="green">1.00<br> (8206ns)</span>
15100              </p>
15101            </td>
15102<td>
15103              <p>
15104                <span class="blue">1.41<br> (11598ns)</span>
15105              </p>
15106            </td>
15107<td>
15108              <p>
15109                <span class="blue">1.63<br> (13337ns)</span>
15110              </p>
15111            </td>
15112<td>
15113              <p>
15114                <span class="red">2.21<br> (18163ns)</span>
15115              </p>
15116            </td>
15117</tr>
15118<tr>
15119<td>
15120              <p>
15121                gcd&lt;unsigned short&gt; (random prime number products)
15122              </p>
15123            </td>
15124<td>
15125              <p>
15126                <span class="green">1.04<br> (48625ns)</span>
15127              </p>
15128            </td>
15129<td>
15130              <p>
15131                <span class="blue">1.82<br> (84692ns)</span>
15132              </p>
15133            </td>
15134<td>
15135              <p>
15136                <span class="green">1.03<br> (47933ns)</span>
15137              </p>
15138            </td>
15139<td>
15140              <p>
15141                <span class="green">1.00<br> (46539ns)</span>
15142              </p>
15143            </td>
15144<td>
15145              <p>
15146                <span class="red">2.94<br> (136663ns)</span>
15147              </p>
15148            </td>
15149<td>
15150              <p>
15151                <span class="blue">1.68<br> (78386ns)</span>
15152              </p>
15153            </td>
15154</tr>
15155<tr>
15156<td>
15157              <p>
15158                gcd&lt;unsigned short&gt; (uniform random numbers)
15159              </p>
15160            </td>
15161<td>
15162              <p>
15163                <span class="green">1.05<br> (73231ns)</span>
15164              </p>
15165            </td>
15166<td>
15167              <p>
15168                <span class="blue">1.72<br> (120140ns)</span>
15169              </p>
15170            </td>
15171<td>
15172              <p>
15173                <span class="green">1.00<br> (69680ns)</span>
15174              </p>
15175            </td>
15176<td>
15177              <p>
15178                <span class="green">1.04<br> (72636ns)</span>
15179              </p>
15180            </td>
15181<td>
15182              <p>
15183                <span class="red">2.51<br> (175204ns)</span>
15184              </p>
15185            </td>
15186<td>
15187              <p>
15188                <span class="blue">1.70<br> (118679ns)</span>
15189              </p>
15190            </td>
15191</tr>
15192<tr>
15193<td>
15194              <p>
15195                gcd&lt;unsigned&gt; (Trivial cases)
15196              </p>
15197            </td>
15198<td>
15199              <p>
15200                <span class="blue">1.30<br> (73ns)</span>
15201              </p>
15202            </td>
15203<td>
15204              <p>
15205                <span class="green">1.14<br> (64ns)</span>
15206              </p>
15207            </td>
15208<td>
15209              <p>
15210                <span class="green">1.00<br> (56ns)</span>
15211              </p>
15212            </td>
15213<td>
15214              <p>
15215                <span class="blue">1.23<br> (69ns)</span>
15216              </p>
15217            </td>
15218<td>
15219              <p>
15220                <span class="blue">1.62<br> (91ns)</span>
15221              </p>
15222            </td>
15223<td>
15224              <p>
15225                <span class="green">1.14<br> (64ns)</span>
15226              </p>
15227            </td>
15228</tr>
15229<tr>
15230<td>
15231              <p>
15232                gcd&lt;unsigned&gt; (adjacent Fibonacci numbers)
15233              </p>
15234            </td>
15235<td>
15236              <p>
15237                <span class="blue">1.81<br> (2689ns)</span>
15238              </p>
15239            </td>
15240<td>
15241              <p>
15242                <span class="red">10.14<br> (15051ns)</span>
15243              </p>
15244            </td>
15245<td>
15246              <p>
15247                <span class="green">1.00<br> (1485ns)</span>
15248              </p>
15249            </td>
15250<td>
15251              <p>
15252                <span class="blue">1.92<br> (2845ns)</span>
15253              </p>
15254            </td>
15255<td>
15256              <p>
15257                <span class="red">2.10<br> (3117ns)</span>
15258              </p>
15259            </td>
15260<td>
15261              <p>
15262                <span class="red">9.74<br> (14464ns)</span>
15263              </p>
15264            </td>
15265</tr>
15266<tr>
15267<td>
15268              <p>
15269                gcd&lt;unsigned&gt; (permutations of Fibonacci numbers)
15270              </p>
15271            </td>
15272<td>
15273              <p>
15274                <span class="green">1.00<br> (125228ns)</span>
15275              </p>
15276            </td>
15277<td>
15278              <p>
15279                <span class="blue">1.45<br> (182101ns)</span>
15280              </p>
15281            </td>
15282<td>
15283              <p>
15284                <span class="blue">1.36<br> (169753ns)</span>
15285              </p>
15286            </td>
15287<td>
15288              <p>
15289                <span class="green">1.04<br> (130303ns)</span>
15290              </p>
15291            </td>
15292<td>
15293              <p>
15294                <span class="red">2.50<br> (312889ns)</span>
15295              </p>
15296            </td>
15297<td>
15298              <p>
15299                <span class="blue">1.41<br> (176940ns)</span>
15300              </p>
15301            </td>
15302</tr>
15303<tr>
15304<td>
15305              <p>
15306                gcd&lt;unsigned&gt; (random prime number products)
15307              </p>
15308            </td>
15309<td>
15310              <p>
15311                <span class="green">1.04<br> (133297ns)</span>
15312              </p>
15313            </td>
15314<td>
15315              <p>
15316                <span class="blue">1.55<br> (199022ns)</span>
15317              </p>
15318            </td>
15319<td>
15320              <p>
15321                <span class="green">1.05<br> (134178ns)</span>
15322              </p>
15323            </td>
15324<td>
15325              <p>
15326                <span class="green">1.00<br> (128319ns)</span>
15327              </p>
15328            </td>
15329<td>
15330              <p>
15331                <span class="red">2.03<br> (260550ns)</span>
15332              </p>
15333            </td>
15334<td>
15335              <p>
15336                <span class="blue">1.53<br> (196665ns)</span>
15337              </p>
15338            </td>
15339</tr>
15340<tr>
15341<td>
15342              <p>
15343                gcd&lt;unsigned&gt; (uniform random numbers)
15344              </p>
15345            </td>
15346<td>
15347              <p>
15348                <span class="green">1.15<br> (212670ns)</span>
15349              </p>
15350            </td>
15351<td>
15352              <p>
15353                <span class="blue">1.61<br> (298254ns)</span>
15354              </p>
15355            </td>
15356<td>
15357              <p>
15358                <span class="green">1.00<br> (184955ns)</span>
15359              </p>
15360            </td>
15361<td>
15362              <p>
15363                <span class="green">1.17<br> (216091ns)</span>
15364              </p>
15365            </td>
15366<td>
15367              <p>
15368                <span class="blue">1.80<br> (332689ns)</span>
15369              </p>
15370            </td>
15371<td>
15372              <p>
15373                <span class="blue">1.62<br> (299958ns)</span>
15374              </p>
15375            </td>
15376</tr>
15377</tbody>
15378</table></div>
15379</div>
15380<br class="table-break">
15381</div>
15382<div class="section">
15383<div class="titlepage"><div><div><h2 class="title" style="clear: both">
15384<a name="special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="gcd method comparison with Microsoft Visual C++ version 14.2 on Windows x64">gcd
15385    method comparison with Microsoft Visual C++ version 14.2 on Windows x64</a>
15386</h2></div></div></div>
15387<div class="table">
15388<a name="special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table&#160;16.&#160;gcd method comparison with Microsoft Visual C++ version 14.2 on Windows
15389      x64</b></p>
15390<div class="table-contents"><table class="table" summary="gcd method comparison with Microsoft Visual C++ version 14.2 on Windows
15391      x64">
15392<colgroup>
15393<col>
15394<col>
15395<col>
15396<col>
15397<col>
15398<col>
15399<col>
15400</colgroup>
15401<thead><tr>
15402<th>
15403              <p>
15404                Function
15405              </p>
15406            </th>
15407<th>
15408              <p>
15409                gcd boost 1.73
15410              </p>
15411            </th>
15412<th>
15413              <p>
15414                Euclid_gcd boost 1.73
15415              </p>
15416            </th>
15417<th>
15418              <p>
15419                Stein_gcd boost 1.73
15420              </p>
15421            </th>
15422<th>
15423              <p>
15424                mixed_binary_gcd boost 1.73
15425              </p>
15426            </th>
15427<th>
15428              <p>
15429                Stein_gcd_textbook boost 1.73
15430              </p>
15431            </th>
15432<th>
15433              <p>
15434                gcd_euclid_textbook boost 1.73
15435              </p>
15436            </th>
15437</tr></thead>
15438<tbody>
15439<tr>
15440<td>
15441              <p>
15442                gcd&lt;boost::multiprecision::uint1024_t&gt; (Trivial cases)
15443              </p>
15444            </td>
15445<td>
15446              <p>
15447                <span class="green">1.01<br> (811ns)</span>
15448              </p>
15449            </td>
15450<td>
15451              <p>
15452                <span class="green">1.00<br> (806ns)</span>
15453              </p>
15454            </td>
15455<td>
15456              <p>
15457                <span class="red">4.49<br> (3619ns)</span>
15458              </p>
15459            </td>
15460<td>
15461              <p>
15462                <span class="red">4.37<br> (3524ns)</span>
15463              </p>
15464            </td>
15465<td>
15466              <p>
15467                <span class="blue">1.54<br> (1240ns)</span>
15468              </p>
15469            </td>
15470<td>
15471              <p>
15472                <span class="green">1.17<br> (947ns)</span>
15473              </p>
15474            </td>
15475</tr>
15476<tr>
15477<td>
15478              <p>
15479                gcd&lt;boost::multiprecision::uint1024_t&gt; (adjacent Fibonacci
15480                numbers)
15481              </p>
15482            </td>
15483<td>
15484              <p>
15485                <span class="green">1.00<br> (17221009ns)</span>
15486              </p>
15487            </td>
15488<td>
15489              <p>
15490                <span class="red">3.10<br> (53378856ns)</span>
15491              </p>
15492            </td>
15493<td>
15494              <p>
15495                <span class="red">3.49<br> (60085356ns)</span>
15496              </p>
15497            </td>
15498<td>
15499              <p>
15500                <span class="red">2.71<br> (46662362ns)</span>
15501              </p>
15502            </td>
15503<td>
15504              <p>
15505                <span class="blue">1.43<br> (24687809ns)</span>
15506              </p>
15507            </td>
15508<td>
15509              <p>
15510                <span class="red">3.60<br> (62017387ns)</span>
15511              </p>
15512            </td>
15513</tr>
15514<tr>
15515<td>
15516              <p>
15517                gcd&lt;boost::multiprecision::uint1024_t&gt; (permutations of Fibonacci
15518                numbers)
15519              </p>
15520            </td>
15521<td>
15522              <p>
15523                <span class="red">4.79<br> (8947276300ns)</span>
15524              </p>
15525            </td>
15526<td>
15527              <p>
15528                <span class="green">1.00<br> (1869827499ns)</span>
15529              </p>
15530            </td>
15531<td>
15532              <p>
15533                <span class="red">16.49<br> (30836050300ns)</span>
15534              </p>
15535            </td>
15536<td>
15537              <p>
15538                <span class="red">2.95<br> (5512590399ns)</span>
15539              </p>
15540            </td>
15541<td>
15542              <p>
15543                <span class="red">9.35<br> (17476759399ns)</span>
15544              </p>
15545            </td>
15546<td>
15547              <p>
15548                <span class="blue">1.59<br> (2969003299ns)</span>
15549              </p>
15550            </td>
15551</tr>
15552<tr>
15553<td>
15554              <p>
15555                gcd&lt;boost::multiprecision::uint1024_t&gt; (random prime number
15556                products)
15557              </p>
15558            </td>
15559<td>
15560              <p>
15561                <span class="green">1.15<br> (1366950ns)</span>
15562              </p>
15563            </td>
15564<td>
15565              <p>
15566                <span class="green">1.00<br> (1184715ns)</span>
15567              </p>
15568            </td>
15569<td>
15570              <p>
15571                <span class="red">6.07<br> (7192390ns)</span>
15572              </p>
15573            </td>
15574<td>
15575              <p>
15576                <span class="blue">1.69<br> (2004764ns)</span>
15577              </p>
15578            </td>
15579<td>
15580              <p>
15581                <span class="red">2.88<br> (3414226ns)</span>
15582              </p>
15583            </td>
15584<td>
15585              <p>
15586                <span class="green">1.03<br> (1223450ns)</span>
15587              </p>
15588            </td>
15589</tr>
15590<tr>
15591<td>
15592              <p>
15593                gcd&lt;boost::multiprecision::uint1024_t&gt; (uniform random numbers)
15594              </p>
15595            </td>
15596<td>
15597              <p>
15598                <span class="green">1.13<br> (94422587ns)</span>
15599              </p>
15600            </td>
15601<td>
15602              <p>
15603                <span class="green">1.10<br> (91927462ns)</span>
15604              </p>
15605            </td>
15606<td>
15607              <p>
15608                <span class="red">2.46<br> (205656225ns)</span>
15609              </p>
15610            </td>
15611<td>
15612              <p>
15613                <span class="blue">1.79<br> (150321950ns)</span>
15614              </p>
15615            </td>
15616<td>
15617              <p>
15618                <span class="blue">1.26<br> (105849675ns)</span>
15619              </p>
15620            </td>
15621<td>
15622              <p>
15623                <span class="green">1.00<br> (83747287ns)</span>
15624              </p>
15625            </td>
15626</tr>
15627<tr>
15628<td>
15629              <p>
15630                gcd&lt;boost::multiprecision::uint256_t&gt; (Trivial cases)
15631              </p>
15632            </td>
15633<td>
15634              <p>
15635                <span class="green">1.12<br> (529ns)</span>
15636              </p>
15637            </td>
15638<td>
15639              <p>
15640                <span class="blue">1.22<br> (578ns)</span>
15641              </p>
15642            </td>
15643<td>
15644              <p>
15645                <span class="red">5.71<br> (2706ns)</span>
15646              </p>
15647            </td>
15648<td>
15649              <p>
15650                <span class="red">5.01<br> (2376ns)</span>
15651              </p>
15652            </td>
15653<td>
15654              <p>
15655                <span class="blue">1.62<br> (768ns)</span>
15656              </p>
15657            </td>
15658<td>
15659              <p>
15660                <span class="green">1.00<br> (474ns)</span>
15661              </p>
15662            </td>
15663</tr>
15664<tr>
15665<td>
15666              <p>
15667                gcd&lt;boost::multiprecision::uint256_t&gt; (adjacent Fibonacci numbers)
15668              </p>
15669            </td>
15670<td>
15671              <p>
15672                <span class="green">1.00<br> (6910946ns)</span>
15673              </p>
15674            </td>
15675<td>
15676              <p>
15677                <span class="red">2.03<br> (14038607ns)</span>
15678              </p>
15679            </td>
15680<td>
15681              <p>
15682                <span class="red">4.15<br> (28656946ns)</span>
15683              </p>
15684            </td>
15685<td>
15686              <p>
15687                <span class="red">2.36<br> (16280003ns)</span>
15688              </p>
15689            </td>
15690<td>
15691              <p>
15692                <span class="blue">1.83<br> (12632765ns)</span>
15693              </p>
15694            </td>
15695<td>
15696              <p>
15697                <span class="blue">1.79<br> (12358175ns)</span>
15698              </p>
15699            </td>
15700</tr>
15701<tr>
15702<td>
15703              <p>
15704                gcd&lt;boost::multiprecision::uint256_t&gt; (permutations of Fibonacci
15705                numbers)
15706              </p>
15707            </td>
15708<td>
15709              <p>
15710                <span class="green">1.00<br> (3546690299ns)</span>
15711              </p>
15712            </td>
15713<td>
15714              <p>
15715                <span class="blue">1.24<br> (4410071600ns)</span>
15716              </p>
15717            </td>
15718<td>
15719              <p>
15720                <span class="red">4.54<br> (16088449000ns)</span>
15721              </p>
15722            </td>
15723<td>
15724              <p>
15725                <span class="red">2.08<br> (7376147399ns)</span>
15726              </p>
15727            </td>
15728<td>
15729              <p>
15730                <span class="blue">1.87<br> (6630678299ns)</span>
15731              </p>
15732            </td>
15733<td>
15734              <p>
15735                <span class="green">1.11<br> (3921678899ns)</span>
15736              </p>
15737            </td>
15738</tr>
15739<tr>
15740<td>
15741              <p>
15742                gcd&lt;boost::multiprecision::uint256_t&gt; (random prime number
15743                products)
15744              </p>
15745            </td>
15746<td>
15747              <p>
15748                <span class="blue">1.24<br> (1402017ns)</span>
15749              </p>
15750            </td>
15751<td>
15752              <p>
15753                <span class="green">1.19<br> (1342771ns)</span>
15754              </p>
15755            </td>
15756<td>
15757              <p>
15758                <span class="red">10.57<br> (11937009ns)</span>
15759              </p>
15760            </td>
15761<td>
15762              <p>
15763                <span class="red">2.30<br> (2592407ns)</span>
15764              </p>
15765            </td>
15766<td>
15767              <p>
15768                <span class="red">3.17<br> (3578886ns)</span>
15769              </p>
15770            </td>
15771<td>
15772              <p>
15773                <span class="green">1.00<br> (1129228ns)</span>
15774              </p>
15775            </td>
15776</tr>
15777<tr>
15778<td>
15779              <p>
15780                gcd&lt;boost::multiprecision::uint256_t&gt; (uniform random numbers)
15781              </p>
15782            </td>
15783<td>
15784              <p>
15785                <span class="green">1.00<br> (9555357ns)</span>
15786              </p>
15787            </td>
15788<td>
15789              <p>
15790                <span class="blue">1.38<br> (13230160ns)</span>
15791              </p>
15792            </td>
15793<td>
15794              <p>
15795                <span class="red">3.58<br> (34160918ns)</span>
15796              </p>
15797            </td>
15798<td>
15799              <p>
15800                <span class="red">2.17<br> (20739521ns)</span>
15801              </p>
15802            </td>
15803<td>
15804              <p>
15805                <span class="blue">1.66<br> (15830168ns)</span>
15806              </p>
15807            </td>
15808<td>
15809              <p>
15810                <span class="blue">1.25<br> (11919907ns)</span>
15811              </p>
15812            </td>
15813</tr>
15814<tr>
15815<td>
15816              <p>
15817                gcd&lt;boost::multiprecision::uint512_t&gt; (Trivial cases)
15818              </p>
15819            </td>
15820<td>
15821              <p>
15822                <span class="green">1.09<br> (610ns)</span>
15823              </p>
15824            </td>
15825<td>
15826              <p>
15827                <span class="green">1.05<br> (586ns)</span>
15828              </p>
15829            </td>
15830<td>
15831              <p>
15832                <span class="red">4.52<br> (2524ns)</span>
15833              </p>
15834            </td>
15835<td>
15836              <p>
15837                <span class="red">5.42<br> (3032ns)</span>
15838              </p>
15839            </td>
15840<td>
15841              <p>
15842                <span class="blue">1.53<br> (858ns)</span>
15843              </p>
15844            </td>
15845<td>
15846              <p>
15847                <span class="green">1.00<br> (559ns)</span>
15848              </p>
15849            </td>
15850</tr>
15851<tr>
15852<td>
15853              <p>
15854                gcd&lt;boost::multiprecision::uint512_t&gt; (adjacent Fibonacci numbers)
15855              </p>
15856            </td>
15857<td>
15858              <p>
15859                <span class="green">1.00<br> (15008157ns)</span>
15860              </p>
15861            </td>
15862<td>
15863              <p>
15864                <span class="red">2.19<br> (32823187ns)</span>
15865              </p>
15866            </td>
15867<td>
15868              <p>
15869                <span class="red">3.54<br> (53103662ns)</span>
15870              </p>
15871            </td>
15872<td>
15873              <p>
15874                <span class="red">2.51<br> (37681662ns)</span>
15875              </p>
15876            </td>
15877<td>
15878              <p>
15879                <span class="blue">1.67<br> (25128434ns)</span>
15880              </p>
15881            </td>
15882<td>
15883              <p>
15884                <span class="red">2.06<br> (30897006ns)</span>
15885              </p>
15886            </td>
15887</tr>
15888<tr>
15889<td>
15890              <p>
15891                gcd&lt;boost::multiprecision::uint512_t&gt; (permutations of Fibonacci
15892                numbers)
15893              </p>
15894            </td>
15895<td>
15896              <p>
15897                <span class="blue">1.70<br> (7824618799ns)</span>
15898              </p>
15899            </td>
15900<td>
15901              <p>
15902                <span class="green">1.06<br> (4905917200ns)</span>
15903              </p>
15904            </td>
15905<td>
15906              <p>
15907                <span class="red">6.42<br> (29578499900ns)</span>
15908              </p>
15909            </td>
15910<td>
15911              <p>
15912                <span class="blue">1.96<br> (9014054500ns)</span>
15913              </p>
15914            </td>
15915<td>
15916              <p>
15917                <span class="red">2.82<br> (12972133700ns)</span>
15918              </p>
15919            </td>
15920<td>
15921              <p>
15922                <span class="green">1.00<br> (4607798200ns)</span>
15923              </p>
15924            </td>
15925</tr>
15926<tr>
15927<td>
15928              <p>
15929                gcd&lt;boost::multiprecision::uint512_t&gt; (random prime number
15930                products)
15931              </p>
15932            </td>
15933<td>
15934              <p>
15935                <span class="green">1.20<br> (1429033ns)</span>
15936              </p>
15937            </td>
15938<td>
15939              <p>
15940                <span class="green">1.00<br> (1192363ns)</span>
15941              </p>
15942            </td>
15943<td>
15944              <p>
15945                <span class="red">6.71<br> (8006331ns)</span>
15946              </p>
15947            </td>
15948<td>
15949              <p>
15950                <span class="blue">1.66<br> (1983967ns)</span>
15951              </p>
15952            </td>
15953<td>
15954              <p>
15955                <span class="red">3.05<br> (3641579ns)</span>
15956              </p>
15957            </td>
15958<td>
15959              <p>
15960                <span class="green">1.00<br> (1193514ns)</span>
15961              </p>
15962            </td>
15963</tr>
15964<tr>
15965<td>
15966              <p>
15967                gcd&lt;boost::multiprecision::uint512_t&gt; (uniform random numbers)
15968              </p>
15969            </td>
15970<td>
15971              <p>
15972                <span class="green">1.00<br> (28993946ns)</span>
15973              </p>
15974            </td>
15975<td>
15976              <p>
15977                <span class="green">1.13<br> (32874618ns)</span>
15978              </p>
15979            </td>
15980<td>
15981              <p>
15982                <span class="red">3.71<br> (107613600ns)</span>
15983              </p>
15984            </td>
15985<td>
15986              <p>
15987                <span class="red">2.24<br> (64869562ns)</span>
15988              </p>
15989            </td>
15990<td>
15991              <p>
15992                <span class="blue">1.39<br> (40246987ns)</span>
15993              </p>
15994            </td>
15995<td>
15996              <p>
15997                <span class="blue">1.26<br> (36427993ns)</span>
15998              </p>
15999            </td>
16000</tr>
16001<tr>
16002<td>
16003              <p>
16004                gcd&lt;unsigned long long&gt; (Trivial cases)
16005              </p>
16006            </td>
16007<td>
16008              <p>
16009                <span class="blue">1.61<br> (143ns)</span>
16010              </p>
16011            </td>
16012<td>
16013              <p>
16014                <span class="blue">1.88<br> (167ns)</span>
16015              </p>
16016            </td>
16017<td>
16018              <p>
16019                <span class="green">1.09<br> (97ns)</span>
16020              </p>
16021            </td>
16022<td>
16023              <p>
16024                <span class="blue">1.66<br> (148ns)</span>
16025              </p>
16026            </td>
16027<td>
16028              <p>
16029                <span class="green">1.00<br> (89ns)</span>
16030              </p>
16031            </td>
16032<td>
16033              <p>
16034                <span class="blue">1.25<br> (111ns)</span>
16035              </p>
16036            </td>
16037</tr>
16038<tr>
16039<td>
16040              <p>
16041                gcd&lt;unsigned long long&gt; (adjacent Fibonacci numbers)
16042              </p>
16043            </td>
16044<td>
16045              <p>
16046                <span class="blue">1.65<br> (18657ns)</span>
16047              </p>
16048            </td>
16049<td>
16050              <p>
16051                <span class="red">9.12<br> (102852ns)</span>
16052              </p>
16053            </td>
16054<td>
16055              <p>
16056                <span class="green">1.00<br> (11278ns)</span>
16057              </p>
16058            </td>
16059<td>
16060              <p>
16061                <span class="blue">1.65<br> (18642ns)</span>
16062              </p>
16063            </td>
16064<td>
16065              <p>
16066                <span class="blue">1.36<br> (15386ns)</span>
16067              </p>
16068            </td>
16069<td>
16070              <p>
16071                <span class="red">7.61<br> (85867ns)</span>
16072              </p>
16073            </td>
16074</tr>
16075<tr>
16076<td>
16077              <p>
16078                gcd&lt;unsigned long long&gt; (permutations of Fibonacci numbers)
16079              </p>
16080            </td>
16081<td>
16082              <p>
16083                <span class="green">1.18<br> (1759315ns)</span>
16084              </p>
16085            </td>
16086<td>
16087              <p>
16088                <span class="blue">1.23<br> (1829739ns)</span>
16089              </p>
16090            </td>
16091<td>
16092              <p>
16093                <span class="red">2.48<br> (3696867ns)</span>
16094              </p>
16095            </td>
16096<td>
16097              <p>
16098                <span class="green">1.20<br> (1792095ns)</span>
16099              </p>
16100            </td>
16101<td>
16102              <p>
16103                <span class="blue">1.92<br> (2869829ns)</span>
16104              </p>
16105            </td>
16106<td>
16107              <p>
16108                <span class="green">1.00<br> (1493466ns)</span>
16109              </p>
16110            </td>
16111</tr>
16112<tr>
16113<td>
16114              <p>
16115                gcd&lt;unsigned long long&gt; (random prime number products)
16116              </p>
16117            </td>
16118<td>
16119              <p>
16120                <span class="green">1.03<br> (419624ns)</span>
16121              </p>
16122            </td>
16123<td>
16124              <p>
16125                <span class="blue">1.26<br> (513559ns)</span>
16126              </p>
16127            </td>
16128<td>
16129              <p>
16130                <span class="blue">1.66<br> (677592ns)</span>
16131              </p>
16132            </td>
16133<td>
16134              <p>
16135                <span class="green">1.00<br> (407357ns)</span>
16136              </p>
16137            </td>
16138<td>
16139              <p>
16140                <span class="blue">1.24<br> (505557ns)</span>
16141              </p>
16142            </td>
16143<td>
16144              <p>
16145                <span class="green">1.05<br> (426446ns)</span>
16146              </p>
16147            </td>
16148</tr>
16149<tr>
16150<td>
16151              <p>
16152                gcd&lt;unsigned long long&gt; (uniform random numbers)
16153              </p>
16154            </td>
16155<td>
16156              <p>
16157                <span class="green">1.15<br> (802062ns)</span>
16158              </p>
16159            </td>
16160<td>
16161              <p>
16162                <span class="blue">1.29<br> (895731ns)</span>
16163              </p>
16164            </td>
16165<td>
16166              <p>
16167                <span class="blue">1.38<br> (959675ns)</span>
16168              </p>
16169            </td>
16170<td>
16171              <p>
16172                <span class="green">1.16<br> (810488ns)</span>
16173              </p>
16174            </td>
16175<td>
16176              <p>
16177                <span class="green">1.00<br> (696259ns)</span>
16178              </p>
16179            </td>
16180<td>
16181              <p>
16182                <span class="green">1.10<br> (768043ns)</span>
16183              </p>
16184            </td>
16185</tr>
16186<tr>
16187<td>
16188              <p>
16189                gcd&lt;unsigned long&gt; (Trivial cases)
16190              </p>
16191            </td>
16192<td>
16193              <p>
16194                <span class="red">2.05<br> (115ns)</span>
16195              </p>
16196            </td>
16197<td>
16198              <p>
16199                <span class="blue">1.61<br> (90ns)</span>
16200              </p>
16201            </td>
16202<td>
16203              <p>
16204                <span class="blue">1.80<br> (101ns)</span>
16205              </p>
16206            </td>
16207<td>
16208              <p>
16209                <span class="blue">1.98<br> (111ns)</span>
16210              </p>
16211            </td>
16212<td>
16213              <p>
16214                <span class="blue">1.55<br> (87ns)</span>
16215              </p>
16216            </td>
16217<td>
16218              <p>
16219                <span class="green">1.00<br> (56ns)</span>
16220              </p>
16221            </td>
16222</tr>
16223<tr>
16224<td>
16225              <p>
16226                gcd&lt;unsigned long&gt; (adjacent Fibonacci numbers)
16227              </p>
16228            </td>
16229<td>
16230              <p>
16231                <span class="blue">1.26<br> (3438ns)</span>
16232              </p>
16233            </td>
16234<td>
16235              <p>
16236                <span class="red">8.19<br> (22429ns)</span>
16237              </p>
16238            </td>
16239<td>
16240              <p>
16241                <span class="green">1.00<br> (2739ns)</span>
16242              </p>
16243            </td>
16244<td>
16245              <p>
16246                <span class="blue">1.30<br> (3567ns)</span>
16247              </p>
16248            </td>
16249<td>
16250              <p>
16251                <span class="green">1.15<br> (3146ns)</span>
16252              </p>
16253            </td>
16254<td>
16255              <p>
16256                <span class="red">5.44<br> (14903ns)</span>
16257              </p>
16258            </td>
16259</tr>
16260<tr>
16261<td>
16262              <p>
16263                gcd&lt;unsigned long&gt; (permutations of Fibonacci numbers)
16264              </p>
16265            </td>
16266<td>
16267              <p>
16268                <span class="green">1.17<br> (205858ns)</span>
16269              </p>
16270            </td>
16271<td>
16272              <p>
16273                <span class="blue">1.52<br> (268100ns)</span>
16274              </p>
16275            </td>
16276<td>
16277              <p>
16278                <span class="red">2.43<br> (427978ns)</span>
16279              </p>
16280            </td>
16281<td>
16282              <p>
16283                <span class="green">1.13<br> (198590ns)</span>
16284              </p>
16285            </td>
16286<td>
16287              <p>
16288                <span class="red">2.02<br> (356193ns)</span>
16289              </p>
16290            </td>
16291<td>
16292              <p>
16293                <span class="green">1.00<br> (175939ns)</span>
16294              </p>
16295            </td>
16296</tr>
16297<tr>
16298<td>
16299              <p>
16300                gcd&lt;unsigned long&gt; (random prime number products)
16301              </p>
16302            </td>
16303<td>
16304              <p>
16305                <span class="green">1.01<br> (214230ns)</span>
16306              </p>
16307            </td>
16308<td>
16309              <p>
16310                <span class="blue">1.32<br> (278903ns)</span>
16311              </p>
16312            </td>
16313<td>
16314              <p>
16315                <span class="blue">1.93<br> (406951ns)</span>
16316              </p>
16317            </td>
16318<td>
16319              <p>
16320                <span class="green">1.12<br> (237142ns)</span>
16321              </p>
16322            </td>
16323<td>
16324              <p>
16325                <span class="blue">1.70<br> (358996ns)</span>
16326              </p>
16327            </td>
16328<td>
16329              <p>
16330                <span class="green">1.00<br> (211247ns)</span>
16331              </p>
16332            </td>
16333</tr>
16334<tr>
16335<td>
16336              <p>
16337                gcd&lt;unsigned long&gt; (uniform random numbers)
16338              </p>
16339            </td>
16340<td>
16341              <p>
16342                <span class="blue">1.29<br> (382560ns)</span>
16343              </p>
16344            </td>
16345<td>
16346              <p>
16347                <span class="blue">1.46<br> (431960ns)</span>
16348              </p>
16349            </td>
16350<td>
16351              <p>
16352                <span class="blue">1.77<br> (524430ns)</span>
16353              </p>
16354            </td>
16355<td>
16356              <p>
16357                <span class="blue">1.26<br> (373023ns)</span>
16358              </p>
16359            </td>
16360<td>
16361              <p>
16362                <span class="blue">1.27<br> (377903ns)</span>
16363              </p>
16364            </td>
16365<td>
16366              <p>
16367                <span class="green">1.00<br> (296476ns)</span>
16368              </p>
16369            </td>
16370</tr>
16371<tr>
16372<td>
16373              <p>
16374                gcd&lt;unsigned short&gt; (Trivial cases)
16375              </p>
16376            </td>
16377<td>
16378              <p>
16379                <span class="blue">1.79<br> (118ns)</span>
16380              </p>
16381            </td>
16382<td>
16383              <p>
16384                <span class="blue">1.41<br> (93ns)</span>
16385              </p>
16386            </td>
16387<td>
16388              <p>
16389                <span class="blue">1.47<br> (97ns)</span>
16390              </p>
16391            </td>
16392<td>
16393              <p>
16394                <span class="blue">1.73<br> (114ns)</span>
16395              </p>
16396            </td>
16397<td>
16398              <p>
16399                <span class="blue">1.42<br> (94ns)</span>
16400              </p>
16401            </td>
16402<td>
16403              <p>
16404                <span class="green">1.00<br> (66ns)</span>
16405              </p>
16406            </td>
16407</tr>
16408<tr>
16409<td>
16410              <p>
16411                gcd&lt;unsigned short&gt; (adjacent Fibonacci numbers)
16412              </p>
16413            </td>
16414<td>
16415              <p>
16416                <span class="green">1.16<br> (821ns)</span>
16417              </p>
16418            </td>
16419<td>
16420              <p>
16421                <span class="red">7.62<br> (5377ns)</span>
16422              </p>
16423            </td>
16424<td>
16425              <p>
16426                <span class="green">1.00<br> (706ns)</span>
16427              </p>
16428            </td>
16429<td>
16430              <p>
16431                <span class="green">1.17<br> (823ns)</span>
16432              </p>
16433            </td>
16434<td>
16435              <p>
16436                <span class="green">1.15<br> (810ns)</span>
16437              </p>
16438            </td>
16439<td>
16440              <p>
16441                <span class="red">5.04<br> (3557ns)</span>
16442              </p>
16443            </td>
16444</tr>
16445<tr>
16446<td>
16447              <p>
16448                gcd&lt;unsigned short&gt; (permutations of Fibonacci numbers)
16449              </p>
16450            </td>
16451<td>
16452              <p>
16453                <span class="green">1.00<br> (11485ns)</span>
16454              </p>
16455            </td>
16456<td>
16457              <p>
16458                <span class="red">3.82<br> (43640ns)</span>
16459              </p>
16460            </td>
16461<td>
16462              <p>
16463                <span class="green">1.16<br> (13294ns)</span>
16464              </p>
16465            </td>
16466<td>
16467              <p>
16468                <span class="green">1.00<br> (11428ns)</span>
16469              </p>
16470            </td>
16471<td>
16472              <p>
16473                <span class="red">2.19<br> (25029ns)</span>
16474              </p>
16475            </td>
16476<td>
16477              <p>
16478                <span class="red">2.11<br> (24145ns)</span>
16479              </p>
16480            </td>
16481</tr>
16482<tr>
16483<td>
16484              <p>
16485                gcd&lt;unsigned short&gt; (random prime number products)
16486              </p>
16487            </td>
16488<td>
16489              <p>
16490                <span class="blue">1.26<br> (123821ns)</span>
16491              </p>
16492            </td>
16493<td>
16494              <p>
16495                <span class="blue">1.92<br> (188438ns)</span>
16496              </p>
16497            </td>
16498<td>
16499              <p>
16500                <span class="red">2.21<br> (216289ns)</span>
16501              </p>
16502            </td>
16503<td>
16504              <p>
16505                <span class="green">1.12<br> (109274ns)</span>
16506              </p>
16507            </td>
16508<td>
16509              <p>
16510                <span class="blue">1.67<br> (163434ns)</span>
16511              </p>
16512            </td>
16513<td>
16514              <p>
16515                <span class="green">1.00<br> (97914ns)</span>
16516              </p>
16517            </td>
16518</tr>
16519<tr>
16520<td>
16521              <p>
16522                gcd&lt;unsigned short&gt; (uniform random numbers)
16523              </p>
16524            </td>
16525<td>
16526              <p>
16527                <span class="green">1.16<br> (169639ns)</span>
16528              </p>
16529            </td>
16530<td>
16531              <p>
16532                <span class="blue">1.44<br> (212132ns)</span>
16533              </p>
16534            </td>
16535<td>
16536              <p>
16537                <span class="blue">1.62<br> (237308ns)</span>
16538              </p>
16539            </td>
16540<td>
16541              <p>
16542                <span class="green">1.16<br> (170196ns)</span>
16543              </p>
16544            </td>
16545<td>
16546              <p>
16547                <span class="blue">1.30<br> (191524ns)</span>
16548              </p>
16549            </td>
16550<td>
16551              <p>
16552                <span class="green">1.00<br> (146827ns)</span>
16553              </p>
16554            </td>
16555</tr>
16556<tr>
16557<td>
16558              <p>
16559                gcd&lt;unsigned&gt; (Trivial cases)
16560              </p>
16561            </td>
16562<td>
16563              <p>
16564                <span class="blue">1.98<br> (117ns)</span>
16565              </p>
16566            </td>
16567<td>
16568              <p>
16569                <span class="blue">1.61<br> (95ns)</span>
16570              </p>
16571            </td>
16572<td>
16573              <p>
16574                <span class="blue">1.90<br> (112ns)</span>
16575              </p>
16576            </td>
16577<td>
16578              <p>
16579                <span class="blue">2.00<br> (118ns)</span>
16580              </p>
16581            </td>
16582<td>
16583              <p>
16584                <span class="blue">1.61<br> (95ns)</span>
16585              </p>
16586            </td>
16587<td>
16588              <p>
16589                <span class="green">1.00<br> (59ns)</span>
16590              </p>
16591            </td>
16592</tr>
16593<tr>
16594<td>
16595              <p>
16596                gcd&lt;unsigned&gt; (adjacent Fibonacci numbers)
16597              </p>
16598            </td>
16599<td>
16600              <p>
16601                <span class="blue">1.28<br> (3381ns)</span>
16602              </p>
16603            </td>
16604<td>
16605              <p>
16606                <span class="red">8.39<br> (22209ns)</span>
16607              </p>
16608            </td>
16609<td>
16610              <p>
16611                <span class="green">1.00<br> (2648ns)</span>
16612              </p>
16613            </td>
16614<td>
16615              <p>
16616                <span class="blue">1.30<br> (3436ns)</span>
16617              </p>
16618            </td>
16619<td>
16620              <p>
16621                <span class="blue">1.34<br> (3540ns)</span>
16622              </p>
16623            </td>
16624<td>
16625              <p>
16626                <span class="red">5.64<br> (14937ns)</span>
16627              </p>
16628            </td>
16629</tr>
16630<tr>
16631<td>
16632              <p>
16633                gcd&lt;unsigned&gt; (permutations of Fibonacci numbers)
16634              </p>
16635            </td>
16636<td>
16637              <p>
16638                <span class="green">1.08<br> (197785ns)</span>
16639              </p>
16640            </td>
16641<td>
16642              <p>
16643                <span class="blue">1.47<br> (269176ns)</span>
16644              </p>
16645            </td>
16646<td>
16647              <p>
16648                <span class="red">2.37<br> (435412ns)</span>
16649              </p>
16650            </td>
16651<td>
16652              <p>
16653                <span class="green">1.12<br> (205095ns)</span>
16654              </p>
16655            </td>
16656<td>
16657              <p>
16658                <span class="red">2.08<br> (382592ns)</span>
16659              </p>
16660            </td>
16661<td>
16662              <p>
16663                <span class="green">1.00<br> (183636ns)</span>
16664              </p>
16665            </td>
16666</tr>
16667<tr>
16668<td>
16669              <p>
16670                gcd&lt;unsigned&gt; (random prime number products)
16671              </p>
16672            </td>
16673<td>
16674              <p>
16675                <span class="green">1.09<br> (214890ns)</span>
16676              </p>
16677            </td>
16678<td>
16679              <p>
16680                <span class="blue">1.42<br> (279881ns)</span>
16681              </p>
16682            </td>
16683<td>
16684              <p>
16685                <span class="blue">1.99<br> (392760ns)</span>
16686              </p>
16687            </td>
16688<td>
16689              <p>
16690                <span class="green">1.05<br> (206420ns)</span>
16691              </p>
16692            </td>
16693<td>
16694              <p>
16695                <span class="blue">1.61<br> (317337ns)</span>
16696              </p>
16697            </td>
16698<td>
16699              <p>
16700                <span class="green">1.00<br> (197431ns)</span>
16701              </p>
16702            </td>
16703</tr>
16704<tr>
16705<td>
16706              <p>
16707                gcd&lt;unsigned&gt; (uniform random numbers)
16708              </p>
16709            </td>
16710<td>
16711              <p>
16712                <span class="blue">1.26<br> (385229ns)</span>
16713              </p>
16714            </td>
16715<td>
16716              <p>
16717                <span class="blue">1.35<br> (411167ns)</span>
16718              </p>
16719            </td>
16720<td>
16721              <p>
16722                <span class="blue">1.68<br> (512335ns)</span>
16723              </p>
16724            </td>
16725<td>
16726              <p>
16727                <span class="blue">1.23<br> (375323ns)</span>
16728              </p>
16729            </td>
16730<td>
16731              <p>
16732                <span class="blue">1.32<br> (402786ns)</span>
16733              </p>
16734            </td>
16735<td>
16736              <p>
16737                <span class="green">1.00<br> (305574ns)</span>
16738              </p>
16739            </td>
16740</tr>
16741</tbody>
16742</table></div>
16743</div>
16744<br class="table-break">
16745</div>
16746</div>
16747<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
16748<td align="left"><p><small>Last revised: April 03, 2020 at 11:57:28 GMT</small></p></td>
16749<td align="right"><div class="copyright-footer"></div></td>
16750</tr></table>
16751<hr>
16752<div class="spirit-nav"></div>
16753</body>
16754</html>
16755