1<html> 2<head> 3<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII"> 4<title>Special Function and Distribution Performance Report</title> 5<link rel="stylesheet" href="boostbook.css" type="text/css"> 6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> 7<link rel="home" href="index.html" title="Special Function and Distribution Performance Report"> 8</head> 9<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> 10<table cellpadding="2" width="100%"><tr> 11<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td> 12<td align="center"><a href="../../../../../index.html">Home</a></td> 13<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td> 14<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> 15<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> 16<td align="center"><a href="../../../../../more/index.htm">More</a></td> 17</tr></table> 18<hr> 19<div class="spirit-nav"></div> 20<div class="article"> 21<div class="titlepage"> 22<div> 23<div><h2 class="title"> 24<a name="special_function_and_distributio"></a>Special Function and Distribution Performance Report</h2></div> 25<div><div class="legalnotice"> 26<a name="special_function_and_distributio.legal"></a><p> 27 Distributed under the Boost Software License, Version 1.0. (See accompanying 28 file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>) 29 </p> 30</div></div> 31</div> 32<hr> 33</div> 34<div class="toc"> 35<p><b>Table of Contents</b></p> 36<dl class="toc"> 37<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64">Compiler 38 Comparison on Windows x64</a></span></dt> 39<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64">Compiler 40 Option Comparison on Windows x64</a></span></dt> 41<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64">Distribution 42 performance comparison for different performance options with GNU C++ version 43 9.2.0 on Windows x64</a></span></dt> 44<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Distribution 45 performance comparison for different performance options with Microsoft Visual 46 C++ version 14.2 on Windows x64</a></span></dt> 47<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Distribution 48 performance comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt> 49<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Distribution 50 performance comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt> 51<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Library 52 Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt> 53<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Library 54 Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt> 55<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_">Polynomial 56 Arithmetic (GNU C++ version 9.2.0, Windows x64)</a></span></dt> 57<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_">Polynomial 58 Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</a></span></dt> 59<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Polynomial 60 Method Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt> 61<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Polynomial 62 Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt> 63<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64">Rational 64 Method Comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt> 65<dt><span class="section"><a href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">Rational 66 Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt> 67<dt><span class="section"><a href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64">gcd 68 method comparison with GNU C++ version 9.2.0 on Windows x64</a></span></dt> 69<dt><span class="section"><a href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64">gcd 70 method comparison with Microsoft Visual C++ version 14.2 on Windows x64</a></span></dt> 71</dl> 72</div> 73<div class="section"> 74<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 75<a name="special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64" title="Compiler Comparison on Windows x64">Compiler 76 Comparison on Windows x64</a> 77</h2></div></div></div> 78<div class="table"> 79<a name="special_function_and_distributio.section_Compiler_Comparison_on_Windows_x64.table_Compiler_Comparison_on_Windows_x64"></a><p class="title"><b>Table 1. Compiler Comparison on Windows x64</b></p> 80<div class="table-contents"><table class="table" summary="Compiler Comparison on Windows x64"> 81<colgroup> 82<col> 83<col> 84<col> 85<col> 86</colgroup> 87<thead><tr> 88<th> 89 <p> 90 Function 91 </p> 92 </th> 93<th> 94 <p> 95 Microsoft Visual C++ version 14.2<br> boost 1.73 96 </p> 97 </th> 98<th> 99 <p> 100 GNU C++ version 9.2.0<br> boost 1.73 101 </p> 102 </th> 103<th> 104 <p> 105 GNU C++ version 9.2.0<br> boost 1.73<br> promote_double<false> 106 </p> 107 </th> 108</tr></thead> 109<tbody> 110<tr> 111<td> 112 <p> 113 assoc_laguerre 114 </p> 115 </td> 116<td> 117 <p> 118 <span class="blue">1.41<br> (179ns)</span> 119 </p> 120 </td> 121<td> 122 <p> 123 <span class="green">1.08<br> (137ns)</span> 124 </p> 125 </td> 126<td> 127 <p> 128 <span class="green">1.00<br> (127ns)</span> 129 </p> 130 </td> 131</tr> 132<tr> 133<td> 134 <p> 135 assoc_legendre 136 </p> 137 </td> 138<td> 139 <p> 140 <span class="blue">1.76<br> (248ns)</span> 141 </p> 142 </td> 143<td> 144 <p> 145 <span class="blue">1.36<br> (192ns)</span> 146 </p> 147 </td> 148<td> 149 <p> 150 <span class="green">1.00<br> (141ns)</span> 151 </p> 152 </td> 153</tr> 154<tr> 155<td> 156 <p> 157 beta 158 </p> 159 </td> 160<td> 161 <p> 162 <span class="green">1.00<br> (123ns)</span> 163 </p> 164 </td> 165<td> 166 <p> 167 <span class="red">2.62<br> (322ns)</span> 168 </p> 169 </td> 170<td> 171 <p> 172 <span class="blue">1.93<br> (237ns)</span> 173 </p> 174 </td> 175</tr> 176<tr> 177<td> 178 <p> 179 beta (incomplete) 180 </p> 181 </td> 182<td> 183 <p> 184 <span class="green">1.00<br> (470ns)</span> 185 </p> 186 </td> 187<td> 188 <p> 189 <span class="red">2.95<br> (1385ns)</span> 190 </p> 191 </td> 192<td> 193 <p> 194 <span class="blue">1.58<br> (741ns)</span> 195 </p> 196 </td> 197</tr> 198<tr> 199<td> 200 <p> 201 cbrt 202 </p> 203 </td> 204<td> 205 <p> 206 <span class="red">3.40<br> (51ns)</span> 207 </p> 208 </td> 209<td> 210 <p> 211 <span class="red">4.67<br> (70ns)</span> 212 </p> 213 </td> 214<td> 215 <p> 216 <span class="green">1.00<br> (15ns)</span> 217 </p> 218 </td> 219</tr> 220<tr> 221<td> 222 <p> 223 cyl_bessel_i 224 </p> 225 </td> 226<td> 227 <p> 228 <span class="green">1.00<br> (281ns)</span> 229 </p> 230 </td> 231<td> 232 <p> 233 <span class="red">3.38<br> (949ns)</span> 234 </p> 235 </td> 236<td> 237 <p> 238 <span class="blue">1.38<br> (387ns)</span> 239 </p> 240 </td> 241</tr> 242<tr> 243<td> 244 <p> 245 cyl_bessel_i (integer order) 246 </p> 247 </td> 248<td> 249 <p> 250 <span class="green">1.00<br> (195ns)</span> 251 </p> 252 </td> 253<td> 254 <p> 255 <span class="red">3.06<br> (597ns)</span> 256 </p> 257 </td> 258<td> 259 <p> 260 <span class="green">1.00<br> (195ns)</span> 261 </p> 262 </td> 263</tr> 264<tr> 265<td> 266 <p> 267 cyl_bessel_j 268 </p> 269 </td> 270<td> 271 <p> 272 <span class="green">1.00<br> (371ns)</span> 273 </p> 274 </td> 275<td> 276 <p> 277 <span class="red">2.39<br> (886ns)</span> 278 </p> 279 </td> 280<td> 281 <p> 282 <span class="blue">1.35<br> (499ns)</span> 283 </p> 284 </td> 285</tr> 286<tr> 287<td> 288 <p> 289 cyl_bessel_j (integer order) 290 </p> 291 </td> 292<td> 293 <p> 294 <span class="blue">1.28<br> (123ns)</span> 295 </p> 296 </td> 297<td> 298 <p> 299 <span class="blue">1.92<br> (184ns)</span> 300 </p> 301 </td> 302<td> 303 <p> 304 <span class="green">1.00<br> (96ns)</span> 305 </p> 306 </td> 307</tr> 308<tr> 309<td> 310 <p> 311 cyl_bessel_k 312 </p> 313 </td> 314<td> 315 <p> 316 <span class="green">1.11<br> (385ns)</span> 317 </p> 318 </td> 319<td> 320 <p> 321 <span class="red">19.68<br> (6847ns)</span> 322 </p> 323 </td> 324<td> 325 <p> 326 <span class="green">1.00<br> (348ns)</span> 327 </p> 328 </td> 329</tr> 330<tr> 331<td> 332 <p> 333 cyl_bessel_k (integer order) 334 </p> 335 </td> 336<td> 337 <p> 338 <span class="green">1.06<br> (217ns)</span> 339 </p> 340 </td> 341<td> 342 <p> 343 <span class="red">18.17<br> (3724ns)</span> 344 </p> 345 </td> 346<td> 347 <p> 348 <span class="green">1.00<br> (205ns)</span> 349 </p> 350 </td> 351</tr> 352<tr> 353<td> 354 <p> 355 cyl_neumann 356 </p> 357 </td> 358<td> 359 <p> 360 <span class="green">1.17<br> (6696ns)</span> 361 </p> 362 </td> 363<td> 364 <p> 365 <span class="blue">1.76<br> (10032ns)</span> 366 </p> 367 </td> 368<td> 369 <p> 370 <span class="green">1.00<br> (5715ns)</span> 371 </p> 372 </td> 373</tr> 374<tr> 375<td> 376 <p> 377 cyl_neumann (integer order) 378 </p> 379 </td> 380<td> 381 <p> 382 <span class="green">1.00<br> (158ns)</span> 383 </p> 384 </td> 385<td> 386 <p> 387 <span class="red">2.20<br> (348ns)</span> 388 </p> 389 </td> 390<td> 391 <p> 392 <span class="blue">1.59<br> (252ns)</span> 393 </p> 394 </td> 395</tr> 396<tr> 397<td> 398 <p> 399 digamma 400 </p> 401 </td> 402<td> 403 <p> 404 <span class="green">1.00<br> (20ns)</span> 405 </p> 406 </td> 407<td> 408 <p> 409 <span class="red">3.45<br> (69ns)</span> 410 </p> 411 </td> 412<td> 413 <p> 414 <span class="red">2.30<br> (46ns)</span> 415 </p> 416 </td> 417</tr> 418<tr> 419<td> 420 <p> 421 ellint_1 422 </p> 423 </td> 424<td> 425 <p> 426 <span class="blue">1.57<br> (390ns)</span> 427 </p> 428 </td> 429<td> 430 <p> 431 <span class="blue">1.41<br> (349ns)</span> 432 </p> 433 </td> 434<td> 435 <p> 436 <span class="green">1.00<br> (248ns)</span> 437 </p> 438 </td> 439</tr> 440<tr> 441<td> 442 <p> 443 ellint_1 (complete) 444 </p> 445 </td> 446<td> 447 <p> 448 <span class="blue">1.64<br> (77ns)</span> 449 </p> 450 </td> 451<td> 452 <p> 453 <span class="blue">1.64<br> (77ns)</span> 454 </p> 455 </td> 456<td> 457 <p> 458 <span class="green">1.00<br> (47ns)</span> 459 </p> 460 </td> 461</tr> 462<tr> 463<td> 464 <p> 465 ellint_2 466 </p> 467 </td> 468<td> 469 <p> 470 <span class="blue">1.81<br> (702ns)</span> 471 </p> 472 </td> 473<td> 474 <p> 475 <span class="blue">1.50<br> (583ns)</span> 476 </p> 477 </td> 478<td> 479 <p> 480 <span class="green">1.00<br> (388ns)</span> 481 </p> 482 </td> 483</tr> 484<tr> 485<td> 486 <p> 487 ellint_2 (complete) 488 </p> 489 </td> 490<td> 491 <p> 492 <span class="red">3.11<br> (84ns)</span> 493 </p> 494 </td> 495<td> 496 <p> 497 <span class="red">2.11<br> (57ns)</span> 498 </p> 499 </td> 500<td> 501 <p> 502 <span class="green">1.00<br> (27ns)</span> 503 </p> 504 </td> 505</tr> 506<tr> 507<td> 508 <p> 509 ellint_3 510 </p> 511 </td> 512<td> 513 <p> 514 <span class="red">3.47<br> (1381ns)</span> 515 </p> 516 </td> 517<td> 518 <p> 519 <span class="blue">1.68<br> (670ns)</span> 520 </p> 521 </td> 522<td> 523 <p> 524 <span class="green">1.00<br> (398ns)</span> 525 </p> 526 </td> 527</tr> 528<tr> 529<td> 530 <p> 531 ellint_3 (complete) 532 </p> 533 </td> 534<td> 535 <p> 536 <span class="red">inf<br> (802ns)</span> 537 </p> 538 </td> 539<td> 540 <p> 541 <span class="green">-nan(ind)<br> (0ns)</span> 542 </p> 543 </td> 544<td> 545 <p> 546 <span class="green">-nan(ind)<br> (0ns)</span> 547 </p> 548 </td> 549</tr> 550<tr> 551<td> 552 <p> 553 ellint_rc 554 </p> 555 </td> 556<td> 557 <p> 558 <span class="blue">1.55<br> (59ns)</span> 559 </p> 560 </td> 561<td> 562 <p> 563 <span class="red">2.21<br> (84ns)</span> 564 </p> 565 </td> 566<td> 567 <p> 568 <span class="green">1.00<br> (38ns)</span> 569 </p> 570 </td> 571</tr> 572<tr> 573<td> 574 <p> 575 ellint_rd 576 </p> 577 </td> 578<td> 579 <p> 580 <span class="blue">1.32<br> (271ns)</span> 581 </p> 582 </td> 583<td> 584 <p> 585 <span class="blue">1.26<br> (260ns)</span> 586 </p> 587 </td> 588<td> 589 <p> 590 <span class="green">1.00<br> (206ns)</span> 591 </p> 592 </td> 593</tr> 594<tr> 595<td> 596 <p> 597 ellint_rf 598 </p> 599 </td> 600<td> 601 <p> 602 <span class="blue">1.27<br> (62ns)</span> 603 </p> 604 </td> 605<td> 606 <p> 607 <span class="blue">1.94<br> (95ns)</span> 608 </p> 609 </td> 610<td> 611 <p> 612 <span class="green">1.00<br> (49ns)</span> 613 </p> 614 </td> 615</tr> 616<tr> 617<td> 618 <p> 619 ellint_rj 620 </p> 621 </td> 622<td> 623 <p> 624 <span class="blue">1.46<br> (264ns)</span> 625 </p> 626 </td> 627<td> 628 <p> 629 <span class="red">2.29<br> (414ns)</span> 630 </p> 631 </td> 632<td> 633 <p> 634 <span class="green">1.00<br> (181ns)</span> 635 </p> 636 </td> 637</tr> 638<tr> 639<td> 640 <p> 641 erf 642 </p> 643 </td> 644<td> 645 <p> 646 <span class="blue">1.30<br> (43ns)</span> 647 </p> 648 </td> 649<td> 650 <p> 651 <span class="blue">1.85<br> (61ns)</span> 652 </p> 653 </td> 654<td> 655 <p> 656 <span class="green">1.00<br> (33ns)</span> 657 </p> 658 </td> 659</tr> 660<tr> 661<td> 662 <p> 663 erfc 664 </p> 665 </td> 666<td> 667 <p> 668 <span class="green">1.06<br> (54ns)</span> 669 </p> 670 </td> 671<td> 672 <p> 673 <span class="blue">1.76<br> (90ns)</span> 674 </p> 675 </td> 676<td> 677 <p> 678 <span class="green">1.00<br> (51ns)</span> 679 </p> 680 </td> 681</tr> 682<tr> 683<td> 684 <p> 685 expint 686 </p> 687 </td> 688<td> 689 <p> 690 <span class="green">1.00<br> (27ns)</span> 691 </p> 692 </td> 693<td> 694 <p> 695 <span class="red">3.41<br> (92ns)</span> 696 </p> 697 </td> 698<td> 699 <p> 700 <span class="red">2.22<br> (60ns)</span> 701 </p> 702 </td> 703</tr> 704<tr> 705<td> 706 <p> 707 expint (En) 708 </p> 709 </td> 710<td> 711 <p> 712 <span class="green">1.00<br> (106ns)</span> 713 </p> 714 </td> 715<td> 716 <p> 717 <span class="blue">1.94<br> (206ns)</span> 718 </p> 719 </td> 720<td> 721 <p> 722 <span class="blue">1.29<br> (137ns)</span> 723 </p> 724 </td> 725</tr> 726<tr> 727<td> 728 <p> 729 expm1 730 </p> 731 </td> 732<td> 733 <p> 734 <span class="green">1.00<br> (11ns)</span> 735 </p> 736 </td> 737<td> 738 <p> 739 <span class="red">3.00<br> (33ns)</span> 740 </p> 741 </td> 742<td> 743 <p> 744 <span class="red">2.36<br> (26ns)</span> 745 </p> 746 </td> 747</tr> 748<tr> 749<td> 750 <p> 751 gamma_p 752 </p> 753 </td> 754<td> 755 <p> 756 <span class="green">1.00<br> (303ns)</span> 757 </p> 758 </td> 759<td> 760 <p> 761 <span class="blue">2.00<br> (605ns)</span> 762 </p> 763 </td> 764<td> 765 <p> 766 <span class="green">1.17<br> (355ns)</span> 767 </p> 768 </td> 769</tr> 770<tr> 771<td> 772 <p> 773 gamma_p_inv 774 </p> 775 </td> 776<td> 777 <p> 778 <span class="green">1.00<br> (1266ns)</span> 779 </p> 780 </td> 781<td> 782 <p> 783 <span class="blue">1.85<br> (2341ns)</span> 784 </p> 785 </td> 786<td> 787 <p> 788 <span class="green">1.15<br> (1460ns)</span> 789 </p> 790 </td> 791</tr> 792<tr> 793<td> 794 <p> 795 gamma_q 796 </p> 797 </td> 798<td> 799 <p> 800 <span class="green">1.00<br> (294ns)</span> 801 </p> 802 </td> 803<td> 804 <p> 805 <span class="red">2.10<br> (618ns)</span> 806 </p> 807 </td> 808<td> 809 <p> 810 <span class="blue">1.21<br> (356ns)</span> 811 </p> 812 </td> 813</tr> 814<tr> 815<td> 816 <p> 817 gamma_q_inv 818 </p> 819 </td> 820<td> 821 <p> 822 <span class="green">1.00<br> (1194ns)</span> 823 </p> 824 </td> 825<td> 826 <p> 827 <span class="blue">1.66<br> (1987ns)</span> 828 </p> 829 </td> 830<td> 831 <p> 832 <span class="green">1.14<br> (1357ns)</span> 833 </p> 834 </td> 835</tr> 836<tr> 837<td> 838 <p> 839 ibeta 840 </p> 841 </td> 842<td> 843 <p> 844 <span class="green">1.00<br> (512ns)</span> 845 </p> 846 </td> 847<td> 848 <p> 849 <span class="red">2.63<br> (1344ns)</span> 850 </p> 851 </td> 852<td> 853 <p> 854 <span class="blue">1.31<br> (673ns)</span> 855 </p> 856 </td> 857</tr> 858<tr> 859<td> 860 <p> 861 ibeta_inv 862 </p> 863 </td> 864<td> 865 <p> 866 <span class="green">1.00<br> (1910ns)</span> 867 </p> 868 </td> 869<td> 870 <p> 871 <span class="red">2.49<br> (4751ns)</span> 872 </p> 873 </td> 874<td> 875 <p> 876 <span class="blue">1.48<br> (2822ns)</span> 877 </p> 878 </td> 879</tr> 880<tr> 881<td> 882 <p> 883 ibetac 884 </p> 885 </td> 886<td> 887 <p> 888 <span class="green">1.00<br> (525ns)</span> 889 </p> 890 </td> 891<td> 892 <p> 893 <span class="red">2.60<br> (1365ns)</span> 894 </p> 895 </td> 896<td> 897 <p> 898 <span class="blue">1.27<br> (668ns)</span> 899 </p> 900 </td> 901</tr> 902<tr> 903<td> 904 <p> 905 ibetac_inv 906 </p> 907 </td> 908<td> 909 <p> 910 <span class="green">1.00<br> (1676ns)</span> 911 </p> 912 </td> 913<td> 914 <p> 915 <span class="red">2.85<br> (4778ns)</span> 916 </p> 917 </td> 918<td> 919 <p> 920 <span class="blue">1.74<br> (2910ns)</span> 921 </p> 922 </td> 923</tr> 924<tr> 925<td> 926 <p> 927 jacobi_cn 928 </p> 929 </td> 930<td> 931 <p> 932 <span class="green">1.00<br> (181ns)</span> 933 </p> 934 </td> 935<td> 936 <p> 937 <span class="red">3.10<br> (561ns)</span> 938 </p> 939 </td> 940<td> 941 <p> 942 <span class="blue">2.00<br> (362ns)</span> 943 </p> 944 </td> 945</tr> 946<tr> 947<td> 948 <p> 949 jacobi_dn 950 </p> 951 </td> 952<td> 953 <p> 954 <span class="green">1.00<br> (203ns)</span> 955 </p> 956 </td> 957<td> 958 <p> 959 <span class="red">3.03<br> (616ns)</span> 960 </p> 961 </td> 962<td> 963 <p> 964 <span class="blue">1.93<br> (392ns)</span> 965 </p> 966 </td> 967</tr> 968<tr> 969<td> 970 <p> 971 jacobi_sn 972 </p> 973 </td> 974<td> 975 <p> 976 <span class="green">1.00<br> (202ns)</span> 977 </p> 978 </td> 979<td> 980 <p> 981 <span class="red">2.81<br> (568ns)</span> 982 </p> 983 </td> 984<td> 985 <p> 986 <span class="blue">1.73<br> (350ns)</span> 987 </p> 988 </td> 989</tr> 990<tr> 991<td> 992 <p> 993 laguerre 994 </p> 995 </td> 996<td> 997 <p> 998 <span class="green">1.02<br> (107ns)</span> 999 </p> 1000 </td> 1001<td> 1002 <p> 1003 <span class="green">1.07<br> (112ns)</span> 1004 </p> 1005 </td> 1006<td> 1007 <p> 1008 <span class="green">1.00<br> (105ns)</span> 1009 </p> 1010 </td> 1011</tr> 1012<tr> 1013<td> 1014 <p> 1015 legendre 1016 </p> 1017 </td> 1018<td> 1019 <p> 1020 <span class="green">1.11<br> (283ns)</span> 1021 </p> 1022 </td> 1023<td> 1024 <p> 1025 <span class="blue">1.25<br> (320ns)</span> 1026 </p> 1027 </td> 1028<td> 1029 <p> 1030 <span class="green">1.00<br> (255ns)</span> 1031 </p> 1032 </td> 1033</tr> 1034<tr> 1035<td> 1036 <p> 1037 legendre Q 1038 </p> 1039 </td> 1040<td> 1041 <p> 1042 <span class="green">1.00<br> (309ns)</span> 1043 </p> 1044 </td> 1045<td> 1046 <p> 1047 <span class="blue">1.51<br> (466ns)</span> 1048 </p> 1049 </td> 1050<td> 1051 <p> 1052 <span class="green">1.15<br> (354ns)</span> 1053 </p> 1054 </td> 1055</tr> 1056<tr> 1057<td> 1058 <p> 1059 lgamma 1060 </p> 1061 </td> 1062<td> 1063 <p> 1064 <span class="green">1.00<br> (80ns)</span> 1065 </p> 1066 </td> 1067<td> 1068 <p> 1069 <span class="red">2.67<br> (214ns)</span> 1070 </p> 1071 </td> 1072<td> 1073 <p> 1074 <span class="blue">2.00<br> (160ns)</span> 1075 </p> 1076 </td> 1077</tr> 1078<tr> 1079<td> 1080 <p> 1081 log1p 1082 </p> 1083 </td> 1084<td> 1085 <p> 1086 <span class="green">1.00<br> (14ns)</span> 1087 </p> 1088 </td> 1089<td> 1090 <p> 1091 <span class="red">2.07<br> (29ns)</span> 1092 </p> 1093 </td> 1094<td> 1095 <p> 1096 <span class="blue">1.21<br> (17ns)</span> 1097 </p> 1098 </td> 1099</tr> 1100<tr> 1101<td> 1102 <p> 1103 polygamma 1104 </p> 1105 </td> 1106<td> 1107 <p> 1108 <span class="green">1.00<br> (4193ns)</span> 1109 </p> 1110 </td> 1111<td> 1112 <p> 1113 <span class="blue">1.85<br> (7743ns)</span> 1114 </p> 1115 </td> 1116<td> 1117 <p> 1118 <span class="blue">1.91<br> (8018ns)</span> 1119 </p> 1120 </td> 1121</tr> 1122<tr> 1123<td> 1124 <p> 1125 sph_bessel 1126 </p> 1127 </td> 1128<td> 1129 <p> 1130 <span class="green">1.01<br> (668ns)</span> 1131 </p> 1132 </td> 1133<td> 1134 <p> 1135 <span class="blue">1.48<br> (975ns)</span> 1136 </p> 1137 </td> 1138<td> 1139 <p> 1140 <span class="green">1.00<br> (661ns)</span> 1141 </p> 1142 </td> 1143</tr> 1144<tr> 1145<td> 1146 <p> 1147 sph_neumann 1148 </p> 1149 </td> 1150<td> 1151 <p> 1152 <span class="green">1.07<br> (1138ns)</span> 1153 </p> 1154 </td> 1155<td> 1156 <p> 1157 <span class="red">2.96<br> (3153ns)</span> 1158 </p> 1159 </td> 1160<td> 1161 <p> 1162 <span class="green">1.00<br> (1064ns)</span> 1163 </p> 1164 </td> 1165</tr> 1166<tr> 1167<td> 1168 <p> 1169 tgamma 1170 </p> 1171 </td> 1172<td> 1173 <p> 1174 <span class="green">1.00<br> (74ns)</span> 1175 </p> 1176 </td> 1177<td> 1178 <p> 1179 <span class="red">3.50<br> (259ns)</span> 1180 </p> 1181 </td> 1182<td> 1183 <p> 1184 <span class="red">2.14<br> (158ns)</span> 1185 </p> 1186 </td> 1187</tr> 1188<tr> 1189<td> 1190 <p> 1191 tgamma (incomplete) 1192 </p> 1193 </td> 1194<td> 1195 <p> 1196 <span class="green">1.00<br> (208ns)</span> 1197 </p> 1198 </td> 1199<td> 1200 <p> 1201 <span class="red">2.30<br> (478ns)</span> 1202 </p> 1203 </td> 1204<td> 1205 <p> 1206 <span class="blue">1.64<br> (342ns)</span> 1207 </p> 1208 </td> 1209</tr> 1210<tr> 1211<td> 1212 <p> 1213 trigamma 1214 </p> 1215 </td> 1216<td> 1217 <p> 1218 <span class="green">1.00<br> (12ns)</span> 1219 </p> 1220 </td> 1221<td> 1222 <p> 1223 <span class="red">2.83<br> (34ns)</span> 1224 </p> 1225 </td> 1226<td> 1227 <p> 1228 <span class="green">1.17<br> (14ns)</span> 1229 </p> 1230 </td> 1231</tr> 1232<tr> 1233<td> 1234 <p> 1235 zeta 1236 </p> 1237 </td> 1238<td> 1239 <p> 1240 <span class="green">1.00<br> (117ns)</span> 1241 </p> 1242 </td> 1243<td> 1244 <p> 1245 <span class="red">2.65<br> (310ns)</span> 1246 </p> 1247 </td> 1248<td> 1249 <p> 1250 <span class="blue">1.89<br> (221ns)</span> 1251 </p> 1252 </td> 1253</tr> 1254</tbody> 1255</table></div> 1256</div> 1257<br class="table-break"> 1258</div> 1259<div class="section"> 1260<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 1261<a name="special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64" title="Compiler Option Comparison on Windows x64">Compiler 1262 Option Comparison on Windows x64</a> 1263</h2></div></div></div> 1264<div class="table"> 1265<a name="special_function_and_distributio.section_Compiler_Option_Comparison_on_Windows_x64.table_Compiler_Option_Comparison_on_Windows_x64"></a><p class="title"><b>Table 2. Compiler Option Comparison on Windows x64</b></p> 1266<div class="table-contents"><table class="table" summary="Compiler Option Comparison on Windows x64"> 1267<colgroup> 1268<col> 1269<col> 1270<col> 1271<col> 1272</colgroup> 1273<thead><tr> 1274<th> 1275 <p> 1276 Function 1277 </p> 1278 </th> 1279<th> 1280 <p> 1281 cl /Od (x86 build) 1282 </p> 1283 </th> 1284<th> 1285 <p> 1286 cl /arch:sse2 /Ox (x86 build) 1287 </p> 1288 </th> 1289<th> 1290 <p> 1291 cl /Ox (x64 build) 1292 </p> 1293 </th> 1294</tr></thead> 1295<tbody> 1296<tr> 1297<td> 1298 <p> 1299 boost::math::cbrt 1300 </p> 1301 </td> 1302<td> 1303 <p> 1304 <span class="red">5.05<br> (202ns)</span> 1305 </p> 1306 </td> 1307<td> 1308 <p> 1309 <span class="green">1.20<br> (48ns)</span> 1310 </p> 1311 </td> 1312<td> 1313 <p> 1314 <span class="green">1.00<br> (40ns)</span> 1315 </p> 1316 </td> 1317</tr> 1318<tr> 1319<td> 1320 <p> 1321 boost::math::cyl_bessel_j (integer orders) 1322 </p> 1323 </td> 1324<td> 1325 <p> 1326 <span class="red">4.38<br> (530ns)</span> 1327 </p> 1328 </td> 1329<td> 1330 <p> 1331 <span class="green">1.00<br> (121ns)</span> 1332 </p> 1333 </td> 1334<td> 1335 <p> 1336 <span class="green">1.02<br> (124ns)</span> 1337 </p> 1338 </td> 1339</tr> 1340<tr> 1341<td> 1342 <p> 1343 boost::math::ibeta_inv 1344 </p> 1345 </td> 1346<td> 1347 <p> 1348 <span class="red">4.52<br> (8277ns)</span> 1349 </p> 1350 </td> 1351<td> 1352 <p> 1353 <span class="green">1.11<br> (2042ns)</span> 1354 </p> 1355 </td> 1356<td> 1357 <p> 1358 <span class="green">1.00<br> (1833ns)</span> 1359 </p> 1360 </td> 1361</tr> 1362</tbody> 1363</table></div> 1364</div> 1365<br class="table-break"> 1366</div> 1367<div class="section"> 1368<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 1369<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64" title="Distribution performance comparison for different performance options with GNU C++ version 9.2.0 on Windows x64">Distribution 1370 performance comparison for different performance options with GNU C++ version 1371 9.2.0 on Windows x64</a> 1372</h2></div></div></div> 1373<div class="table"> 1374<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64.table_Distribution_performance_comparison_for_different_performance_options_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 3. Distribution performance comparison for different performance options 1375 with GNU C++ version 9.2.0 on Windows x64</b></p> 1376<div class="table-contents"><table class="table" summary="Distribution performance comparison for different performance options 1377 with GNU C++ version 9.2.0 on Windows x64"> 1378<colgroup> 1379<col> 1380<col> 1381<col> 1382<col> 1383<col> 1384</colgroup> 1385<thead><tr> 1386<th> 1387 <p> 1388 Function 1389 </p> 1390 </th> 1391<th> 1392 <p> 1393 boost 1.73 1394 </p> 1395 </th> 1396<th> 1397 <p> 1398 Boost<br> promote_double<false> 1399 </p> 1400 </th> 1401<th> 1402 <p> 1403 Boost<br> promote_double<false><br> digits10<10> 1404 </p> 1405 </th> 1406<th> 1407 <p> 1408 Boost<br> float<br> promote_float<false> 1409 </p> 1410 </th> 1411</tr></thead> 1412<tbody> 1413<tr> 1414<td> 1415 <p> 1416 ArcSine (CDF) 1417 </p> 1418 </td> 1419<td> 1420 <p> 1421 <span class="green">1.10<br> (22ns)</span> 1422 </p> 1423 </td> 1424<td> 1425 <p> 1426 <span class="blue">1.30<br> (26ns)</span> 1427 </p> 1428 </td> 1429<td> 1430 <p> 1431 <span class="green">1.00<br> (20ns)</span> 1432 </p> 1433 </td> 1434<td> 1435 <p> 1436 <span class="red">3.20<br> (64ns)</span> 1437 </p> 1438 </td> 1439</tr> 1440<tr> 1441<td> 1442 <p> 1443 ArcSine (PDF) 1444 </p> 1445 </td> 1446<td> 1447 <p> 1448 <span class="green">1.00<br> (5ns)</span> 1449 </p> 1450 </td> 1451<td> 1452 <p> 1453 <span class="green">1.00<br> (5ns)</span> 1454 </p> 1455 </td> 1456<td> 1457 <p> 1458 <span class="green">1.00<br> (5ns)</span> 1459 </p> 1460 </td> 1461<td> 1462 <p> 1463 <span class="blue">1.60<br> (8ns)</span> 1464 </p> 1465 </td> 1466</tr> 1467<tr> 1468<td> 1469 <p> 1470 ArcSine (quantile) 1471 </p> 1472 </td> 1473<td> 1474 <p> 1475 <span class="green">1.00<br> (53ns)</span> 1476 </p> 1477 </td> 1478<td> 1479 <p> 1480 <span class="green">1.00<br> (53ns)</span> 1481 </p> 1482 </td> 1483<td> 1484 <p> 1485 <span class="green">1.02<br> (54ns)</span> 1486 </p> 1487 </td> 1488<td> 1489 <p> 1490 <span class="green">1.04<br> (55ns)</span> 1491 </p> 1492 </td> 1493</tr> 1494<tr> 1495<td> 1496 <p> 1497 Beta (CDF) 1498 </p> 1499 </td> 1500<td> 1501 <p> 1502 <span class="red">2.32<br> (362ns)</span> 1503 </p> 1504 </td> 1505<td> 1506 <p> 1507 <span class="blue">1.31<br> (205ns)</span> 1508 </p> 1509 </td> 1510<td> 1511 <p> 1512 <span class="green">1.17<br> (183ns)</span> 1513 </p> 1514 </td> 1515<td> 1516 <p> 1517 <span class="green">1.00<br> (156ns)</span> 1518 </p> 1519 </td> 1520</tr> 1521<tr> 1522<td> 1523 <p> 1524 Beta (PDF) 1525 </p> 1526 </td> 1527<td> 1528 <p> 1529 <span class="red">2.44<br> (302ns)</span> 1530 </p> 1531 </td> 1532<td> 1533 <p> 1534 <span class="green">1.12<br> (139ns)</span> 1535 </p> 1536 </td> 1537<td> 1538 <p> 1539 <span class="green">1.13<br> (140ns)</span> 1540 </p> 1541 </td> 1542<td> 1543 <p> 1544 <span class="green">1.00<br> (124ns)</span> 1545 </p> 1546 </td> 1547</tr> 1548<tr> 1549<td> 1550 <p> 1551 Beta (quantile) 1552 </p> 1553 </td> 1554<td> 1555 <p> 1556 <span class="blue">1.76<br> (1968ns)</span> 1557 </p> 1558 </td> 1559<td> 1560 <p> 1561 <span class="blue">1.24<br> (1383ns)</span> 1562 </p> 1563 </td> 1564<td> 1565 <p> 1566 <span class="green">1.00<br> (1118ns)</span> 1567 </p> 1568 </td> 1569<td> 1570 <p> 1571 <span class="green">1.03<br> (1155ns)</span> 1572 </p> 1573 </td> 1574</tr> 1575<tr> 1576<td> 1577 <p> 1578 Binomial (CDF) 1579 </p> 1580 </td> 1581<td> 1582 <p> 1583 <span class="red">3.57<br> (959ns)</span> 1584 </p> 1585 </td> 1586<td> 1587 <p> 1588 <span class="blue">1.30<br> (350ns)</span> 1589 </p> 1590 </td> 1591<td> 1592 <p> 1593 <span class="blue">1.27<br> (341ns)</span> 1594 </p> 1595 </td> 1596<td> 1597 <p> 1598 <span class="green">1.00<br> (269ns)</span> 1599 </p> 1600 </td> 1601</tr> 1602<tr> 1603<td> 1604 <p> 1605 Binomial (PDF) 1606 </p> 1607 </td> 1608<td> 1609 <p> 1610 <span class="red">2.39<br> (339ns)</span> 1611 </p> 1612 </td> 1613<td> 1614 <p> 1615 <span class="green">1.00<br> (142ns)</span> 1616 </p> 1617 </td> 1618<td> 1619 <p> 1620 <span class="blue">1.20<br> (171ns)</span> 1621 </p> 1622 </td> 1623<td> 1624 <p> 1625 <span class="green">1.04<br> (148ns)</span> 1626 </p> 1627 </td> 1628</tr> 1629<tr> 1630<td> 1631 <p> 1632 Binomial (quantile) 1633 </p> 1634 </td> 1635<td> 1636 <p> 1637 <span class="red">3.20<br> (4255ns)</span> 1638 </p> 1639 </td> 1640<td> 1641 <p> 1642 <span class="blue">1.42<br> (1884ns)</span> 1643 </p> 1644 </td> 1645<td> 1646 <p> 1647 <span class="green">1.19<br> (1582ns)</span> 1648 </p> 1649 </td> 1650<td> 1651 <p> 1652 <span class="green">1.00<br> (1328ns)</span> 1653 </p> 1654 </td> 1655</tr> 1656<tr> 1657<td> 1658 <p> 1659 Cauchy (CDF) 1660 </p> 1661 </td> 1662<td> 1663 <p> 1664 <span class="green">1.12<br> (19ns)</span> 1665 </p> 1666 </td> 1667<td> 1668 <p> 1669 <span class="green">1.18<br> (20ns)</span> 1670 </p> 1671 </td> 1672<td> 1673 <p> 1674 <span class="green">1.00<br> (17ns)</span> 1675 </p> 1676 </td> 1677<td> 1678 <p> 1679 <span class="red">3.18<br> (54ns)</span> 1680 </p> 1681 </td> 1682</tr> 1683<tr> 1684<td> 1685 <p> 1686 Cauchy (PDF) 1687 </p> 1688 </td> 1689<td> 1690 <p> 1691 <span class="blue">1.33<br> (4ns)</span> 1692 </p> 1693 </td> 1694<td> 1695 <p> 1696 <span class="blue">1.67<br> (5ns)</span> 1697 </p> 1698 </td> 1699<td> 1700 <p> 1701 <span class="green">1.00<br> (3ns)</span> 1702 </p> 1703 </td> 1704<td> 1705 <p> 1706 <span class="blue">1.33<br> (4ns)</span> 1707 </p> 1708 </td> 1709</tr> 1710<tr> 1711<td> 1712 <p> 1713 Cauchy (quantile) 1714 </p> 1715 </td> 1716<td> 1717 <p> 1718 <span class="blue">1.32<br> (25ns)</span> 1719 </p> 1720 </td> 1721<td> 1722 <p> 1723 <span class="blue">1.21<br> (23ns)</span> 1724 </p> 1725 </td> 1726<td> 1727 <p> 1728 <span class="green">1.00<br> (19ns)</span> 1729 </p> 1730 </td> 1731<td> 1732 <p> 1733 <span class="blue">1.21<br> (23ns)</span> 1734 </p> 1735 </td> 1736</tr> 1737<tr> 1738<td> 1739 <p> 1740 ChiSquared (CDF) 1741 </p> 1742 </td> 1743<td> 1744 <p> 1745 <span class="red">2.79<br> (953ns)</span> 1746 </p> 1747 </td> 1748<td> 1749 <p> 1750 <span class="blue">1.55<br> (529ns)</span> 1751 </p> 1752 </td> 1753<td> 1754 <p> 1755 <span class="blue">1.27<br> (434ns)</span> 1756 </p> 1757 </td> 1758<td> 1759 <p> 1760 <span class="green">1.00<br> (341ns)</span> 1761 </p> 1762 </td> 1763</tr> 1764<tr> 1765<td> 1766 <p> 1767 ChiSquared (PDF) 1768 </p> 1769 </td> 1770<td> 1771 <p> 1772 <span class="blue">1.82<br> (189ns)</span> 1773 </p> 1774 </td> 1775<td> 1776 <p> 1777 <span class="green">1.00<br> (104ns)</span> 1778 </p> 1779 </td> 1780<td> 1781 <p> 1782 <span class="green">1.01<br> (105ns)</span> 1783 </p> 1784 </td> 1785<td> 1786 <p> 1787 <span class="green">1.02<br> (106ns)</span> 1788 </p> 1789 </td> 1790</tr> 1791<tr> 1792<td> 1793 <p> 1794 ChiSquared (quantile) 1795 </p> 1796 </td> 1797<td> 1798 <p> 1799 <span class="red">2.40<br> (1452ns)</span> 1800 </p> 1801 </td> 1802<td> 1803 <p> 1804 <span class="blue">1.49<br> (901ns)</span> 1805 </p> 1806 </td> 1807<td> 1808 <p> 1809 <span class="green">1.19<br> (717ns)</span> 1810 </p> 1811 </td> 1812<td> 1813 <p> 1814 <span class="green">1.00<br> (605ns)</span> 1815 </p> 1816 </td> 1817</tr> 1818<tr> 1819<td> 1820 <p> 1821 Exponential (CDF) 1822 </p> 1823 </td> 1824<td> 1825 <p> 1826 <span class="green">1.14<br> (33ns)</span> 1827 </p> 1828 </td> 1829<td> 1830 <p> 1831 <span class="green">1.00<br> (29ns)</span> 1832 </p> 1833 </td> 1834<td> 1835 <p> 1836 <span class="green">1.03<br> (30ns)</span> 1837 </p> 1838 </td> 1839<td> 1840 <p> 1841 <span class="green">1.00<br> (29ns)</span> 1842 </p> 1843 </td> 1844</tr> 1845<tr> 1846<td> 1847 <p> 1848 Exponential (PDF) 1849 </p> 1850 </td> 1851<td> 1852 <p> 1853 <span class="green">1.08<br> (54ns)</span> 1854 </p> 1855 </td> 1856<td> 1857 <p> 1858 <span class="green">1.02<br> (51ns)</span> 1859 </p> 1860 </td> 1861<td> 1862 <p> 1863 <span class="green">1.00<br> (50ns)</span> 1864 </p> 1865 </td> 1866<td> 1867 <p> 1868 <span class="green">1.04<br> (52ns)</span> 1869 </p> 1870 </td> 1871</tr> 1872<tr> 1873<td> 1874 <p> 1875 Exponential (quantile) 1876 </p> 1877 </td> 1878<td> 1879 <p> 1880 <span class="blue">1.89<br> (36ns)</span> 1881 </p> 1882 </td> 1883<td> 1884 <p> 1885 <span class="green">1.00<br> (19ns)</span> 1886 </p> 1887 </td> 1888<td> 1889 <p> 1890 <span class="green">1.05<br> (20ns)</span> 1891 </p> 1892 </td> 1893<td> 1894 <p> 1895 <span class="blue">1.21<br> (23ns)</span> 1896 </p> 1897 </td> 1898</tr> 1899<tr> 1900<td> 1901 <p> 1902 ExtremeValue (CDF) 1903 </p> 1904 </td> 1905<td> 1906 <p> 1907 <span class="green">1.05<br> (104ns)</span> 1908 </p> 1909 </td> 1910<td> 1911 <p> 1912 <span class="green">1.02<br> (101ns)</span> 1913 </p> 1914 </td> 1915<td> 1916 <p> 1917 <span class="green">1.00<br> (99ns)</span> 1918 </p> 1919 </td> 1920<td> 1921 <p> 1922 <span class="green">1.04<br> (103ns)</span> 1923 </p> 1924 </td> 1925</tr> 1926<tr> 1927<td> 1928 <p> 1929 ExtremeValue (PDF) 1930 </p> 1931 </td> 1932<td> 1933 <p> 1934 <span class="green">1.04<br> (144ns)</span> 1935 </p> 1936 </td> 1937<td> 1938 <p> 1939 <span class="green">1.04<br> (144ns)</span> 1940 </p> 1941 </td> 1942<td> 1943 <p> 1944 <span class="green">1.00<br> (138ns)</span> 1945 </p> 1946 </td> 1947<td> 1948 <p> 1949 <span class="green">1.03<br> (142ns)</span> 1950 </p> 1951 </td> 1952</tr> 1953<tr> 1954<td> 1955 <p> 1956 ExtremeValue (quantile) 1957 </p> 1958 </td> 1959<td> 1960 <p> 1961 <span class="green">1.07<br> (64ns)</span> 1962 </p> 1963 </td> 1964<td> 1965 <p> 1966 <span class="green">1.02<br> (61ns)</span> 1967 </p> 1968 </td> 1969<td> 1970 <p> 1971 <span class="green">1.00<br> (60ns)</span> 1972 </p> 1973 </td> 1974<td> 1975 <p> 1976 <span class="green">1.13<br> (68ns)</span> 1977 </p> 1978 </td> 1979</tr> 1980<tr> 1981<td> 1982 <p> 1983 F (CDF) 1984 </p> 1985 </td> 1986<td> 1987 <p> 1988 <span class="red">3.55<br> (668ns)</span> 1989 </p> 1990 </td> 1991<td> 1992 <p> 1993 <span class="blue">1.58<br> (297ns)</span> 1994 </p> 1995 </td> 1996<td> 1997 <p> 1998 <span class="blue">1.23<br> (232ns)</span> 1999 </p> 2000 </td> 2001<td> 2002 <p> 2003 <span class="green">1.00<br> (188ns)</span> 2004 </p> 2005 </td> 2006</tr> 2007<tr> 2008<td> 2009 <p> 2010 F (PDF) 2011 </p> 2012 </td> 2013<td> 2014 <p> 2015 <span class="red">2.29<br> (291ns)</span> 2016 </p> 2017 </td> 2018<td> 2019 <p> 2020 <span class="green">1.06<br> (135ns)</span> 2021 </p> 2022 </td> 2023<td> 2024 <p> 2025 <span class="green">1.02<br> (129ns)</span> 2026 </p> 2027 </td> 2028<td> 2029 <p> 2030 <span class="green">1.00<br> (127ns)</span> 2031 </p> 2032 </td> 2033</tr> 2034<tr> 2035<td> 2036 <p> 2037 F (quantile) 2038 </p> 2039 </td> 2040<td> 2041 <p> 2042 <span class="red">2.17<br> (2215ns)</span> 2043 </p> 2044 </td> 2045<td> 2046 <p> 2047 <span class="green">1.14<br> (1163ns)</span> 2048 </p> 2049 </td> 2050<td> 2051 <p> 2052 <span class="green">1.00<br> (1023ns)</span> 2053 </p> 2054 </td> 2055<td> 2056 <p> 2057 <span class="green">1.07<br> (1090ns)</span> 2058 </p> 2059 </td> 2060</tr> 2061<tr> 2062<td> 2063 <p> 2064 Gamma (CDF) 2065 </p> 2066 </td> 2067<td> 2068 <p> 2069 <span class="blue">1.94<br> (492ns)</span> 2070 </p> 2071 </td> 2072<td> 2073 <p> 2074 <span class="green">1.19<br> (301ns)</span> 2075 </p> 2076 </td> 2077<td> 2078 <p> 2079 <span class="green">1.10<br> (280ns)</span> 2080 </p> 2081 </td> 2082<td> 2083 <p> 2084 <span class="green">1.00<br> (254ns)</span> 2085 </p> 2086 </td> 2087</tr> 2088<tr> 2089<td> 2090 <p> 2091 Gamma (PDF) 2092 </p> 2093 </td> 2094<td> 2095 <p> 2096 <span class="blue">1.55<br> (236ns)</span> 2097 </p> 2098 </td> 2099<td> 2100 <p> 2101 <span class="green">1.00<br> (152ns)</span> 2102 </p> 2103 </td> 2104<td> 2105 <p> 2106 <span class="green">1.00<br> (152ns)</span> 2107 </p> 2108 </td> 2109<td> 2110 <p> 2111 <span class="green">1.01<br> (153ns)</span> 2112 </p> 2113 </td> 2114</tr> 2115<tr> 2116<td> 2117 <p> 2118 Gamma (quantile) 2119 </p> 2120 </td> 2121<td> 2122 <p> 2123 <span class="blue">1.95<br> (1204ns)</span> 2124 </p> 2125 </td> 2126<td> 2127 <p> 2128 <span class="blue">1.35<br> (837ns)</span> 2129 </p> 2130 </td> 2131<td> 2132 <p> 2133 <span class="green">1.00<br> (619ns)</span> 2134 </p> 2135 </td> 2136<td> 2137 <p> 2138 <span class="green">1.04<br> (644ns)</span> 2139 </p> 2140 </td> 2141</tr> 2142<tr> 2143<td> 2144 <p> 2145 Geometric (CDF) 2146 </p> 2147 </td> 2148<td> 2149 <p> 2150 <span class="blue">1.38<br> (40ns)</span> 2151 </p> 2152 </td> 2153<td> 2154 <p> 2155 <span class="green">1.00<br> (29ns)</span> 2156 </p> 2157 </td> 2158<td> 2159 <p> 2160 <span class="green">1.00<br> (29ns)</span> 2161 </p> 2162 </td> 2163<td> 2164 <p> 2165 <span class="green">1.07<br> (31ns)</span> 2166 </p> 2167 </td> 2168</tr> 2169<tr> 2170<td> 2171 <p> 2172 Geometric (PDF) 2173 </p> 2174 </td> 2175<td> 2176 <p> 2177 <span class="green">1.00<br> (46ns)</span> 2178 </p> 2179 </td> 2180<td> 2181 <p> 2182 <span class="green">1.00<br> (46ns)</span> 2183 </p> 2184 </td> 2185<td> 2186 <p> 2187 <span class="green">1.00<br> (46ns)</span> 2188 </p> 2189 </td> 2190<td> 2191 <p> 2192 <span class="green">1.02<br> (47ns)</span> 2193 </p> 2194 </td> 2195</tr> 2196<tr> 2197<td> 2198 <p> 2199 Geometric (quantile) 2200 </p> 2201 </td> 2202<td> 2203 <p> 2204 <span class="blue">1.64<br> (36ns)</span> 2205 </p> 2206 </td> 2207<td> 2208 <p> 2209 <span class="green">1.00<br> (22ns)</span> 2210 </p> 2211 </td> 2212<td> 2213 <p> 2214 <span class="green">1.00<br> (22ns)</span> 2215 </p> 2216 </td> 2217<td> 2218 <p> 2219 <span class="green">1.09<br> (24ns)</span> 2220 </p> 2221 </td> 2222</tr> 2223<tr> 2224<td> 2225 <p> 2226 Hypergeometric (CDF) 2227 </p> 2228 </td> 2229<td> 2230 <p> 2231 <span class="green">1.11<br> (49938ns)</span> 2232 </p> 2233 </td> 2234<td> 2235 <p> 2236 <span class="green">1.00<br> (45127ns)</span> 2237 </p> 2238 </td> 2239<td> 2240 <p> 2241 <span class="green">1.01<br> (45445ns)</span> 2242 </p> 2243 </td> 2244<td> 2245 <p> 2246 <span class="green">1.12<br> (50682ns)</span> 2247 </p> 2248 </td> 2249</tr> 2250<tr> 2251<td> 2252 <p> 2253 Hypergeometric (PDF) 2254 </p> 2255 </td> 2256<td> 2257 <p> 2258 <span class="green">1.13<br> (53353ns)</span> 2259 </p> 2260 </td> 2261<td> 2262 <p> 2263 <span class="green">1.04<br> (49364ns)</span> 2264 </p> 2265 </td> 2266<td> 2267 <p> 2268 <span class="green">1.00<br> (47376ns)</span> 2269 </p> 2270 </td> 2271<td> 2272 <p> 2273 <span class="blue">1.20<br> (57034ns)</span> 2274 </p> 2275 </td> 2276</tr> 2277<tr> 2278<td> 2279 <p> 2280 Hypergeometric (quantile) 2281 </p> 2282 </td> 2283<td> 2284 <p> 2285 <span class="green">1.00<br> (105555ns)</span> 2286 </p> 2287 </td> 2288<td> 2289 <p> 2290 <span class="blue">1.25<br> (132253ns)</span> 2291 </p> 2292 </td> 2293<td> 2294 <p> 2295 <span class="blue">1.36<br> (143254ns)</span> 2296 </p> 2297 </td> 2298<td> 2299 <p> 2300 <span class="blue">1.70<br> (179941ns)</span> 2301 </p> 2302 </td> 2303</tr> 2304<tr> 2305<td> 2306 <p> 2307 InverseChiSquared (CDF) 2308 </p> 2309 </td> 2310<td> 2311 <p> 2312 <span class="red">3.48<br> (1326ns)</span> 2313 </p> 2314 </td> 2315<td> 2316 <p> 2317 <span class="blue">1.70<br> (647ns)</span> 2318 </p> 2319 </td> 2320<td> 2321 <p> 2322 <span class="blue">1.33<br> (508ns)</span> 2323 </p> 2324 </td> 2325<td> 2326 <p> 2327 <span class="green">1.00<br> (381ns)</span> 2328 </p> 2329 </td> 2330</tr> 2331<tr> 2332<td> 2333 <p> 2334 InverseChiSquared (PDF) 2335 </p> 2336 </td> 2337<td> 2338 <p> 2339 <span class="blue">1.87<br> (217ns)</span> 2340 </p> 2341 </td> 2342<td> 2343 <p> 2344 <span class="green">1.09<br> (126ns)</span> 2345 </p> 2346 </td> 2347<td> 2348 <p> 2349 <span class="green">1.00<br> (116ns)</span> 2350 </p> 2351 </td> 2352<td> 2353 <p> 2354 <span class="green">1.01<br> (117ns)</span> 2355 </p> 2356 </td> 2357</tr> 2358<tr> 2359<td> 2360 <p> 2361 InverseChiSquared (quantile) 2362 </p> 2363 </td> 2364<td> 2365 <p> 2366 <span class="red">2.81<br> (1852ns)</span> 2367 </p> 2368 </td> 2369<td> 2370 <p> 2371 <span class="blue">1.57<br> (1035ns)</span> 2372 </p> 2373 </td> 2374<td> 2375 <p> 2376 <span class="blue">1.22<br> (800ns)</span> 2377 </p> 2378 </td> 2379<td> 2380 <p> 2381 <span class="green">1.00<br> (658ns)</span> 2382 </p> 2383 </td> 2384</tr> 2385<tr> 2386<td> 2387 <p> 2388 InverseGamma (CDF) 2389 </p> 2390 </td> 2391<td> 2392 <p> 2393 <span class="blue">1.95<br> (516ns)</span> 2394 </p> 2395 </td> 2396<td> 2397 <p> 2398 <span class="blue">1.21<br> (320ns)</span> 2399 </p> 2400 </td> 2401<td> 2402 <p> 2403 <span class="green">1.09<br> (289ns)</span> 2404 </p> 2405 </td> 2406<td> 2407 <p> 2408 <span class="green">1.00<br> (264ns)</span> 2409 </p> 2410 </td> 2411</tr> 2412<tr> 2413<td> 2414 <p> 2415 InverseGamma (PDF) 2416 </p> 2417 </td> 2418<td> 2419 <p> 2420 <span class="blue">1.67<br> (256ns)</span> 2421 </p> 2422 </td> 2423<td> 2424 <p> 2425 <span class="green">1.09<br> (167ns)</span> 2426 </p> 2427 </td> 2428<td> 2429 <p> 2430 <span class="green">1.05<br> (161ns)</span> 2431 </p> 2432 </td> 2433<td> 2434 <p> 2435 <span class="green">1.00<br> (153ns)</span> 2436 </p> 2437 </td> 2438</tr> 2439<tr> 2440<td> 2441 <p> 2442 InverseGamma (quantile) 2443 </p> 2444 </td> 2445<td> 2446 <p> 2447 <span class="blue">1.94<br> (1268ns)</span> 2448 </p> 2449 </td> 2450<td> 2451 <p> 2452 <span class="blue">1.36<br> (884ns)</span> 2453 </p> 2454 </td> 2455<td> 2456 <p> 2457 <span class="green">1.00<br> (652ns)</span> 2458 </p> 2459 </td> 2460<td> 2461 <p> 2462 <span class="green">1.02<br> (666ns)</span> 2463 </p> 2464 </td> 2465</tr> 2466<tr> 2467<td> 2468 <p> 2469 InverseGaussian (CDF) 2470 </p> 2471 </td> 2472<td> 2473 <p> 2474 <span class="blue">1.83<br> (172ns)</span> 2475 </p> 2476 </td> 2477<td> 2478 <p> 2479 <span class="blue">1.83<br> (172ns)</span> 2480 </p> 2481 </td> 2482<td> 2483 <p> 2484 <span class="blue">1.82<br> (171ns)</span> 2485 </p> 2486 </td> 2487<td> 2488 <p> 2489 <span class="green">1.00<br> (94ns)</span> 2490 </p> 2491 </td> 2492</tr> 2493<tr> 2494<td> 2495 <p> 2496 InverseGaussian (PDF) 2497 </p> 2498 </td> 2499<td> 2500 <p> 2501 <span class="green">1.00<br> (28ns)</span> 2502 </p> 2503 </td> 2504<td> 2505 <p> 2506 <span class="green">1.14<br> (32ns)</span> 2507 </p> 2508 </td> 2509<td> 2510 <p> 2511 <span class="green">1.00<br> (28ns)</span> 2512 </p> 2513 </td> 2514<td> 2515 <p> 2516 <span class="green">1.07<br> (30ns)</span> 2517 </p> 2518 </td> 2519</tr> 2520<tr> 2521<td> 2522 <p> 2523 InverseGaussian (quantile) 2524 </p> 2525 </td> 2526<td> 2527 <p> 2528 <span class="blue">1.94<br> (2657ns)</span> 2529 </p> 2530 </td> 2531<td> 2532 <p> 2533 <span class="blue">1.93<br> (2635ns)</span> 2534 </p> 2535 </td> 2536<td> 2537 <p> 2538 <span class="blue">1.72<br> (2359ns)</span> 2539 </p> 2540 </td> 2541<td> 2542 <p> 2543 <span class="green">1.00<br> (1368ns)</span> 2544 </p> 2545 </td> 2546</tr> 2547<tr> 2548<td> 2549 <p> 2550 Laplace (CDF) 2551 </p> 2552 </td> 2553<td> 2554 <p> 2555 <span class="green">1.02<br> (50ns)</span> 2556 </p> 2557 </td> 2558<td> 2559 <p> 2560 <span class="green">1.00<br> (49ns)</span> 2561 </p> 2562 </td> 2563<td> 2564 <p> 2565 <span class="green">1.00<br> (49ns)</span> 2566 </p> 2567 </td> 2568<td> 2569 <p> 2570 <span class="green">1.08<br> (53ns)</span> 2571 </p> 2572 </td> 2573</tr> 2574<tr> 2575<td> 2576 <p> 2577 Laplace (PDF) 2578 </p> 2579 </td> 2580<td> 2581 <p> 2582 <span class="green">1.00<br> (49ns)</span> 2583 </p> 2584 </td> 2585<td> 2586 <p> 2587 <span class="green">1.02<br> (50ns)</span> 2588 </p> 2589 </td> 2590<td> 2591 <p> 2592 <span class="green">1.00<br> (49ns)</span> 2593 </p> 2594 </td> 2595<td> 2596 <p> 2597 <span class="green">1.04<br> (51ns)</span> 2598 </p> 2599 </td> 2600</tr> 2601<tr> 2602<td> 2603 <p> 2604 Laplace (quantile) 2605 </p> 2606 </td> 2607<td> 2608 <p> 2609 <span class="green">1.03<br> (33ns)</span> 2610 </p> 2611 </td> 2612<td> 2613 <p> 2614 <span class="green">1.03<br> (33ns)</span> 2615 </p> 2616 </td> 2617<td> 2618 <p> 2619 <span class="green">1.00<br> (32ns)</span> 2620 </p> 2621 </td> 2622<td> 2623 <p> 2624 <span class="green">1.16<br> (37ns)</span> 2625 </p> 2626 </td> 2627</tr> 2628<tr> 2629<td> 2630 <p> 2631 LogNormal (CDF) 2632 </p> 2633 </td> 2634<td> 2635 <p> 2636 <span class="blue">1.73<br> (176ns)</span> 2637 </p> 2638 </td> 2639<td> 2640 <p> 2641 <span class="blue">1.25<br> (127ns)</span> 2642 </p> 2643 </td> 2644<td> 2645 <p> 2646 <span class="blue">1.28<br> (131ns)</span> 2647 </p> 2648 </td> 2649<td> 2650 <p> 2651 <span class="green">1.00<br> (102ns)</span> 2652 </p> 2653 </td> 2654</tr> 2655<tr> 2656<td> 2657 <p> 2658 LogNormal (PDF) 2659 </p> 2660 </td> 2661<td> 2662 <p> 2663 <span class="green">1.04<br> (87ns)</span> 2664 </p> 2665 </td> 2666<td> 2667 <p> 2668 <span class="green">1.02<br> (86ns)</span> 2669 </p> 2670 </td> 2671<td> 2672 <p> 2673 <span class="green">1.00<br> (84ns)</span> 2674 </p> 2675 </td> 2676<td> 2677 <p> 2678 <span class="green">1.07<br> (90ns)</span> 2679 </p> 2680 </td> 2681</tr> 2682<tr> 2683<td> 2684 <p> 2685 LogNormal (quantile) 2686 </p> 2687 </td> 2688<td> 2689 <p> 2690 <span class="blue">1.23<br> (116ns)</span> 2691 </p> 2692 </td> 2693<td> 2694 <p> 2695 <span class="green">1.00<br> (94ns)</span> 2696 </p> 2697 </td> 2698<td> 2699 <p> 2700 <span class="green">1.01<br> (95ns)</span> 2701 </p> 2702 </td> 2703<td> 2704 <p> 2705 <span class="green">1.06<br> (100ns)</span> 2706 </p> 2707 </td> 2708</tr> 2709<tr> 2710<td> 2711 <p> 2712 Logistic (CDF) 2713 </p> 2714 </td> 2715<td> 2716 <p> 2717 <span class="green">1.00<br> (46ns)</span> 2718 </p> 2719 </td> 2720<td> 2721 <p> 2722 <span class="green">1.02<br> (47ns)</span> 2723 </p> 2724 </td> 2725<td> 2726 <p> 2727 <span class="green">1.00<br> (46ns)</span> 2728 </p> 2729 </td> 2730<td> 2731 <p> 2732 <span class="green">1.02<br> (47ns)</span> 2733 </p> 2734 </td> 2735</tr> 2736<tr> 2737<td> 2738 <p> 2739 Logistic (PDF) 2740 </p> 2741 </td> 2742<td> 2743 <p> 2744 <span class="green">1.00<br> (46ns)</span> 2745 </p> 2746 </td> 2747<td> 2748 <p> 2749 <span class="green">1.02<br> (47ns)</span> 2750 </p> 2751 </td> 2752<td> 2753 <p> 2754 <span class="green">1.02<br> (47ns)</span> 2755 </p> 2756 </td> 2757<td> 2758 <p> 2759 <span class="green">1.07<br> (49ns)</span> 2760 </p> 2761 </td> 2762</tr> 2763<tr> 2764<td> 2765 <p> 2766 Logistic (quantile) 2767 </p> 2768 </td> 2769<td> 2770 <p> 2771 <span class="green">1.00<br> (33ns)</span> 2772 </p> 2773 </td> 2774<td> 2775 <p> 2776 <span class="green">1.03<br> (34ns)</span> 2777 </p> 2778 </td> 2779<td> 2780 <p> 2781 <span class="green">1.00<br> (33ns)</span> 2782 </p> 2783 </td> 2784<td> 2785 <p> 2786 <span class="green">1.15<br> (38ns)</span> 2787 </p> 2788 </td> 2789</tr> 2790<tr> 2791<td> 2792 <p> 2793 NegativeBinomial (CDF) 2794 </p> 2795 </td> 2796<td> 2797 <p> 2798 <span class="red">3.95<br> (1158ns)</span> 2799 </p> 2800 </td> 2801<td> 2802 <p> 2803 <span class="blue">1.66<br> (485ns)</span> 2804 </p> 2805 </td> 2806<td> 2807 <p> 2808 <span class="blue">1.32<br> (386ns)</span> 2809 </p> 2810 </td> 2811<td> 2812 <p> 2813 <span class="green">1.00<br> (293ns)</span> 2814 </p> 2815 </td> 2816</tr> 2817<tr> 2818<td> 2819 <p> 2820 NegativeBinomial (PDF) 2821 </p> 2822 </td> 2823<td> 2824 <p> 2825 <span class="red">2.29<br> (307ns)</span> 2826 </p> 2827 </td> 2828<td> 2829 <p> 2830 <span class="green">1.01<br> (135ns)</span> 2831 </p> 2832 </td> 2833<td> 2834 <p> 2835 <span class="green">1.00<br> (134ns)</span> 2836 </p> 2837 </td> 2838<td> 2839 <p> 2840 <span class="green">1.01<br> (136ns)</span> 2841 </p> 2842 </td> 2843</tr> 2844<tr> 2845<td> 2846 <p> 2847 NegativeBinomial (quantile) 2848 </p> 2849 </td> 2850<td> 2851 <p> 2852 <span class="red">2.81<br> (6154ns)</span> 2853 </p> 2854 </td> 2855<td> 2856 <p> 2857 <span class="green">1.19<br> (2608ns)</span> 2858 </p> 2859 </td> 2860<td> 2861 <p> 2862 <span class="green">1.00<br> (2190ns)</span> 2863 </p> 2864 </td> 2865<td> 2866 <p> 2867 <span class="blue">1.26<br> (2752ns)</span> 2868 </p> 2869 </td> 2870</tr> 2871<tr> 2872<td> 2873 <p> 2874 NonCentralBeta (CDF) 2875 </p> 2876 </td> 2877<td> 2878 <p> 2879 <span class="red">2.62<br> (1450ns)</span> 2880 </p> 2881 </td> 2882<td> 2883 <p> 2884 <span class="blue">1.46<br> (806ns)</span> 2885 </p> 2886 </td> 2887<td> 2888 <p> 2889 <span class="blue">1.28<br> (708ns)</span> 2890 </p> 2891 </td> 2892<td> 2893 <p> 2894 <span class="green">1.00<br> (553ns)</span> 2895 </p> 2896 </td> 2897</tr> 2898<tr> 2899<td> 2900 <p> 2901 NonCentralBeta (PDF) 2902 </p> 2903 </td> 2904<td> 2905 <p> 2906 <span class="red">2.58<br> (969ns)</span> 2907 </p> 2908 </td> 2909<td> 2910 <p> 2911 <span class="blue">1.31<br> (490ns)</span> 2912 </p> 2913 </td> 2914<td> 2915 <p> 2916 <span class="green">1.15<br> (433ns)</span> 2917 </p> 2918 </td> 2919<td> 2920 <p> 2921 <span class="green">1.00<br> (375ns)</span> 2922 </p> 2923 </td> 2924</tr> 2925<tr> 2926<td> 2927 <p> 2928 NonCentralBeta (quantile) 2929 </p> 2930 </td> 2931<td> 2932 <p> 2933 <span class="red">3.69<br> (37583ns)</span> 2934 </p> 2935 </td> 2936<td> 2937 <p> 2938 <span class="blue">2.00<br> (20369ns)</span> 2939 </p> 2940 </td> 2941<td> 2942 <p> 2943 <span class="blue">1.81<br> (18498ns)</span> 2944 </p> 2945 </td> 2946<td> 2947 <p> 2948 <span class="green">1.00<br> (10193ns)</span> 2949 </p> 2950 </td> 2951</tr> 2952<tr> 2953<td> 2954 <p> 2955 NonCentralChiSquared (CDF) 2956 </p> 2957 </td> 2958<td> 2959 <p> 2960 <span class="red">2.22<br> (4037ns)</span> 2961 </p> 2962 </td> 2963<td> 2964 <p> 2965 <span class="blue">1.79<br> (3256ns)</span> 2966 </p> 2967 </td> 2968<td> 2969 <p> 2970 <span class="blue">1.28<br> (2332ns)</span> 2971 </p> 2972 </td> 2973<td> 2974 <p> 2975 <span class="green">1.00<br> (1819ns)</span> 2976 </p> 2977 </td> 2978</tr> 2979<tr> 2980<td> 2981 <p> 2982 NonCentralChiSquared (PDF) 2983 </p> 2984 </td> 2985<td> 2986 <p> 2987 <span class="blue">1.58<br> (630ns)</span> 2988 </p> 2989 </td> 2990<td> 2991 <p> 2992 <span class="blue">1.29<br> (514ns)</span> 2993 </p> 2994 </td> 2995<td> 2996 <p> 2997 <span class="green">1.00<br> (399ns)</span> 2998 </p> 2999 </td> 3000<td> 3001 <p> 3002 <span class="green">1.03<br> (409ns)</span> 3003 </p> 3004 </td> 3005</tr> 3006<tr> 3007<td> 3008 <p> 3009 NonCentralChiSquared (quantile) 3010 </p> 3011 </td> 3012<td> 3013 <p> 3014 <span class="red">3.14<br> (33255ns)</span> 3015 </p> 3016 </td> 3017<td> 3018 <p> 3019 <span class="blue">1.94<br> (20620ns)</span> 3020 </p> 3021 </td> 3022<td> 3023 <p> 3024 <span class="blue">1.26<br> (13388ns)</span> 3025 </p> 3026 </td> 3027<td> 3028 <p> 3029 <span class="green">1.00<br> (10603ns)</span> 3030 </p> 3031 </td> 3032</tr> 3033<tr> 3034<td> 3035 <p> 3036 NonCentralF (CDF) 3037 </p> 3038 </td> 3039<td> 3040 <p> 3041 <span class="red">2.48<br> (1426ns)</span> 3042 </p> 3043 </td> 3044<td> 3045 <p> 3046 <span class="blue">1.32<br> (762ns)</span> 3047 </p> 3048 </td> 3049<td> 3050 <p> 3051 <span class="green">1.13<br> (652ns)</span> 3052 </p> 3053 </td> 3054<td> 3055 <p> 3056 <span class="green">1.00<br> (576ns)</span> 3057 </p> 3058 </td> 3059</tr> 3060<tr> 3061<td> 3062 <p> 3063 NonCentralF (PDF) 3064 </p> 3065 </td> 3066<td> 3067 <p> 3068 <span class="red">2.74<br> (1306ns)</span> 3069 </p> 3070 </td> 3071<td> 3072 <p> 3073 <span class="blue">1.37<br> (652ns)</span> 3074 </p> 3075 </td> 3076<td> 3077 <p> 3078 <span class="green">1.15<br> (548ns)</span> 3079 </p> 3080 </td> 3081<td> 3082 <p> 3083 <span class="green">1.00<br> (477ns)</span> 3084 </p> 3085 </td> 3086</tr> 3087<tr> 3088<td> 3089 <p> 3090 NonCentralF (quantile) 3091 </p> 3092 </td> 3093<td> 3094 <p> 3095 <span class="red">2.64<br> (22025ns)</span> 3096 </p> 3097 </td> 3098<td> 3099 <p> 3100 <span class="blue">1.38<br> (11560ns)</span> 3101 </p> 3102 </td> 3103<td> 3104 <p> 3105 <span class="green">1.12<br> (9319ns)</span> 3106 </p> 3107 </td> 3108<td> 3109 <p> 3110 <span class="green">1.00<br> (8356ns)</span> 3111 </p> 3112 </td> 3113</tr> 3114<tr> 3115<td> 3116 <p> 3117 NonCentralT (CDF) 3118 </p> 3119 </td> 3120<td> 3121 <p> 3122 <span class="red">3.75<br> (6473ns)</span> 3123 </p> 3124 </td> 3125<td> 3126 <p> 3127 <span class="blue">1.83<br> (3155ns)</span> 3128 </p> 3129 </td> 3130<td> 3131 <p> 3132 <span class="blue">1.63<br> (2819ns)</span> 3133 </p> 3134 </td> 3135<td> 3136 <p> 3137 <span class="green">1.00<br> (1727ns)</span> 3138 </p> 3139 </td> 3140</tr> 3141<tr> 3142<td> 3143 <p> 3144 NonCentralT (PDF) 3145 </p> 3146 </td> 3147<td> 3148 <p> 3149 <span class="red">2.81<br> (4098ns)</span> 3150 </p> 3151 </td> 3152<td> 3153 <p> 3154 <span class="blue">1.40<br> (2040ns)</span> 3155 </p> 3156 </td> 3157<td> 3158 <p> 3159 <span class="blue">1.42<br> (2066ns)</span> 3160 </p> 3161 </td> 3162<td> 3163 <p> 3164 <span class="green">1.00<br> (1456ns)</span> 3165 </p> 3166 </td> 3167</tr> 3168<tr> 3169<td> 3170 <p> 3171 NonCentralT (quantile) 3172 </p> 3173 </td> 3174<td> 3175 <p> 3176 <span class="red">3.80<br> (65926ns)</span> 3177 </p> 3178 </td> 3179<td> 3180 <p> 3181 <span class="blue">1.87<br> (32431ns)</span> 3182 </p> 3183 </td> 3184<td> 3185 <p> 3186 <span class="blue">1.37<br> (23756ns)</span> 3187 </p> 3188 </td> 3189<td> 3190 <p> 3191 <span class="green">1.00<br> (17331ns)</span> 3192 </p> 3193 </td> 3194</tr> 3195<tr> 3196<td> 3197 <p> 3198 Normal (CDF) 3199 </p> 3200 </td> 3201<td> 3202 <p> 3203 <span class="blue">1.78<br> (135ns)</span> 3204 </p> 3205 </td> 3206<td> 3207 <p> 3208 <span class="blue">1.53<br> (116ns)</span> 3209 </p> 3210 </td> 3211<td> 3212 <p> 3213 <span class="blue">1.22<br> (93ns)</span> 3214 </p> 3215 </td> 3216<td> 3217 <p> 3218 <span class="green">1.00<br> (76ns)</span> 3219 </p> 3220 </td> 3221</tr> 3222<tr> 3223<td> 3224 <p> 3225 Normal (PDF) 3226 </p> 3227 </td> 3228<td> 3229 <p> 3230 <span class="green">1.00<br> (48ns)</span> 3231 </p> 3232 </td> 3233<td> 3234 <p> 3235 <span class="blue">1.23<br> (59ns)</span> 3236 </p> 3237 </td> 3238<td> 3239 <p> 3240 <span class="green">1.19<br> (57ns)</span> 3241 </p> 3242 </td> 3243<td> 3244 <p> 3245 <span class="blue">1.33<br> (64ns)</span> 3246 </p> 3247 </td> 3248</tr> 3249<tr> 3250<td> 3251 <p> 3252 Normal (quantile) 3253 </p> 3254 </td> 3255<td> 3256 <p> 3257 <span class="blue">1.45<br> (80ns)</span> 3258 </p> 3259 </td> 3260<td> 3261 <p> 3262 <span class="green">1.00<br> (55ns)</span> 3263 </p> 3264 </td> 3265<td> 3266 <p> 3267 <span class="green">1.00<br> (55ns)</span> 3268 </p> 3269 </td> 3270<td> 3271 <p> 3272 <span class="green">1.02<br> (56ns)</span> 3273 </p> 3274 </td> 3275</tr> 3276<tr> 3277<td> 3278 <p> 3279 Pareto (CDF) 3280 </p> 3281 </td> 3282<td> 3283 <p> 3284 <span class="green">1.13<br> (59ns)</span> 3285 </p> 3286 </td> 3287<td> 3288 <p> 3289 <span class="green">1.00<br> (52ns)</span> 3290 </p> 3291 </td> 3292<td> 3293 <p> 3294 <span class="green">1.15<br> (60ns)</span> 3295 </p> 3296 </td> 3297<td> 3298 <p> 3299 <span class="green">1.06<br> (55ns)</span> 3300 </p> 3301 </td> 3302</tr> 3303<tr> 3304<td> 3305 <p> 3306 Pareto (PDF) 3307 </p> 3308 </td> 3309<td> 3310 <p> 3311 <span class="green">1.07<br> (96ns)</span> 3312 </p> 3313 </td> 3314<td> 3315 <p> 3316 <span class="green">1.02<br> (92ns)</span> 3317 </p> 3318 </td> 3319<td> 3320 <p> 3321 <span class="green">1.08<br> (97ns)</span> 3322 </p> 3323 </td> 3324<td> 3325 <p> 3326 <span class="green">1.00<br> (90ns)</span> 3327 </p> 3328 </td> 3329</tr> 3330<tr> 3331<td> 3332 <p> 3333 Pareto (quantile) 3334 </p> 3335 </td> 3336<td> 3337 <p> 3338 <span class="green">1.00<br> (82ns)</span> 3339 </p> 3340 </td> 3341<td> 3342 <p> 3343 <span class="green">1.02<br> (84ns)</span> 3344 </p> 3345 </td> 3346<td> 3347 <p> 3348 <span class="green">1.00<br> (82ns)</span> 3349 </p> 3350 </td> 3351<td> 3352 <p> 3353 <span class="green">1.04<br> (85ns)</span> 3354 </p> 3355 </td> 3356</tr> 3357<tr> 3358<td> 3359 <p> 3360 Poisson (CDF) 3361 </p> 3362 </td> 3363<td> 3364 <p> 3365 <span class="blue">1.97<br> (254ns)</span> 3366 </p> 3367 </td> 3368<td> 3369 <p> 3370 <span class="green">1.04<br> (134ns)</span> 3371 </p> 3372 </td> 3373<td> 3374 <p> 3375 <span class="green">1.16<br> (150ns)</span> 3376 </p> 3377 </td> 3378<td> 3379 <p> 3380 <span class="green">1.00<br> (129ns)</span> 3381 </p> 3382 </td> 3383</tr> 3384<tr> 3385<td> 3386 <p> 3387 Poisson (PDF) 3388 </p> 3389 </td> 3390<td> 3391 <p> 3392 <span class="blue">1.61<br> (171ns)</span> 3393 </p> 3394 </td> 3395<td> 3396 <p> 3397 <span class="green">1.06<br> (112ns)</span> 3398 </p> 3399 </td> 3400<td> 3401 <p> 3402 <span class="green">1.00<br> (106ns)</span> 3403 </p> 3404 </td> 3405<td> 3406 <p> 3407 <span class="green">1.05<br> (111ns)</span> 3408 </p> 3409 </td> 3410</tr> 3411<tr> 3412<td> 3413 <p> 3414 Poisson (quantile) 3415 </p> 3416 </td> 3417<td> 3418 <p> 3419 <span class="red">2.16<br> (1128ns)</span> 3420 </p> 3421 </td> 3422<td> 3423 <p> 3424 <span class="blue">1.23<br> (641ns)</span> 3425 </p> 3426 </td> 3427<td> 3428 <p> 3429 <span class="blue">1.26<br> (657ns)</span> 3430 </p> 3431 </td> 3432<td> 3433 <p> 3434 <span class="green">1.00<br> (523ns)</span> 3435 </p> 3436 </td> 3437</tr> 3438<tr> 3439<td> 3440 <p> 3441 Rayleigh (CDF) 3442 </p> 3443 </td> 3444<td> 3445 <p> 3446 <span class="blue">1.24<br> (47ns)</span> 3447 </p> 3448 </td> 3449<td> 3450 <p> 3451 <span class="green">1.00<br> (38ns)</span> 3452 </p> 3453 </td> 3454<td> 3455 <p> 3456 <span class="green">1.03<br> (39ns)</span> 3457 </p> 3458 </td> 3459<td> 3460 <p> 3461 <span class="green">1.08<br> (41ns)</span> 3462 </p> 3463 </td> 3464</tr> 3465<tr> 3466<td> 3467 <p> 3468 Rayleigh (PDF) 3469 </p> 3470 </td> 3471<td> 3472 <p> 3473 <span class="green">1.00<br> (64ns)</span> 3474 </p> 3475 </td> 3476<td> 3477 <p> 3478 <span class="green">1.09<br> (70ns)</span> 3479 </p> 3480 </td> 3481<td> 3482 <p> 3483 <span class="green">1.03<br> (66ns)</span> 3484 </p> 3485 </td> 3486<td> 3487 <p> 3488 <span class="green">1.09<br> (70ns)</span> 3489 </p> 3490 </td> 3491</tr> 3492<tr> 3493<td> 3494 <p> 3495 Rayleigh (quantile) 3496 </p> 3497 </td> 3498<td> 3499 <p> 3500 <span class="blue">2.00<br> (48ns)</span> 3501 </p> 3502 </td> 3503<td> 3504 <p> 3505 <span class="green">1.00<br> (24ns)</span> 3506 </p> 3507 </td> 3508<td> 3509 <p> 3510 <span class="green">1.08<br> (26ns)</span> 3511 </p> 3512 </td> 3513<td> 3514 <p> 3515 <span class="blue">1.29<br> (31ns)</span> 3516 </p> 3517 </td> 3518</tr> 3519<tr> 3520<td> 3521 <p> 3522 SkewNormal (CDF) 3523 </p> 3524 </td> 3525<td> 3526 <p> 3527 <span class="blue">1.40<br> (669ns)</span> 3528 </p> 3529 </td> 3530<td> 3531 <p> 3532 <span class="blue">1.32<br> (632ns)</span> 3533 </p> 3534 </td> 3535<td> 3536 <p> 3537 <span class="green">1.15<br> (549ns)</span> 3538 </p> 3539 </td> 3540<td> 3541 <p> 3542 <span class="green">1.00<br> (479ns)</span> 3543 </p> 3544 </td> 3545</tr> 3546<tr> 3547<td> 3548 <p> 3549 SkewNormal (PDF) 3550 </p> 3551 </td> 3552<td> 3553 <p> 3554 <span class="blue">1.27<br> (173ns)</span> 3555 </p> 3556 </td> 3557<td> 3558 <p> 3559 <span class="green">1.17<br> (159ns)</span> 3560 </p> 3561 </td> 3562<td> 3563 <p> 3564 <span class="green">1.15<br> (156ns)</span> 3565 </p> 3566 </td> 3567<td> 3568 <p> 3569 <span class="green">1.00<br> (136ns)</span> 3570 </p> 3571 </td> 3572</tr> 3573<tr> 3574<td> 3575 <p> 3576 SkewNormal (quantile) 3577 </p> 3578 </td> 3579<td> 3580 <p> 3581 <span class="red">2.15<br> (6968ns)</span> 3582 </p> 3583 </td> 3584<td> 3585 <p> 3586 <span class="blue">1.82<br> (5903ns)</span> 3587 </p> 3588 </td> 3589<td> 3590 <p> 3591 <span class="blue">1.32<br> (4287ns)</span> 3592 </p> 3593 </td> 3594<td> 3595 <p> 3596 <span class="green">1.00<br> (3237ns)</span> 3597 </p> 3598 </td> 3599</tr> 3600<tr> 3601<td> 3602 <p> 3603 StudentsT (CDF) 3604 </p> 3605 </td> 3606<td> 3607 <p> 3608 <span class="red">3.15<br> (1151ns)</span> 3609 </p> 3610 </td> 3611<td> 3612 <p> 3613 <span class="blue">1.98<br> (721ns)</span> 3614 </p> 3615 </td> 3616<td> 3617 <p> 3618 <span class="red">2.03<br> (741ns)</span> 3619 </p> 3620 </td> 3621<td> 3622 <p> 3623 <span class="green">1.00<br> (365ns)</span> 3624 </p> 3625 </td> 3626</tr> 3627<tr> 3628<td> 3629 <p> 3630 StudentsT (PDF) 3631 </p> 3632 </td> 3633<td> 3634 <p> 3635 <span class="red">2.12<br> (360ns)</span> 3636 </p> 3637 </td> 3638<td> 3639 <p> 3640 <span class="green">1.09<br> (186ns)</span> 3641 </p> 3642 </td> 3643<td> 3644 <p> 3645 <span class="green">1.11<br> (188ns)</span> 3646 </p> 3647 </td> 3648<td> 3649 <p> 3650 <span class="green">1.00<br> (170ns)</span> 3651 </p> 3652 </td> 3653</tr> 3654<tr> 3655<td> 3656 <p> 3657 StudentsT (quantile) 3658 </p> 3659 </td> 3660<td> 3661 <p> 3662 <span class="blue">1.70<br> (1461ns)</span> 3663 </p> 3664 </td> 3665<td> 3666 <p> 3667 <span class="blue">1.35<br> (1161ns)</span> 3668 </p> 3669 </td> 3670<td> 3671 <p> 3672 <span class="blue">1.28<br> (1099ns)</span> 3673 </p> 3674 </td> 3675<td> 3676 <p> 3677 <span class="green">1.00<br> (859ns)</span> 3678 </p> 3679 </td> 3680</tr> 3681<tr> 3682<td> 3683 <p> 3684 Weibull (CDF) 3685 </p> 3686 </td> 3687<td> 3688 <p> 3689 <span class="blue">1.30<br> (96ns)</span> 3690 </p> 3691 </td> 3692<td> 3693 <p> 3694 <span class="green">1.04<br> (77ns)</span> 3695 </p> 3696 </td> 3697<td> 3698 <p> 3699 <span class="green">1.15<br> (85ns)</span> 3700 </p> 3701 </td> 3702<td> 3703 <p> 3704 <span class="green">1.00<br> (74ns)</span> 3705 </p> 3706 </td> 3707</tr> 3708<tr> 3709<td> 3710 <p> 3711 Weibull (PDF) 3712 </p> 3713 </td> 3714<td> 3715 <p> 3716 <span class="green">1.18<br> (164ns)</span> 3717 </p> 3718 </td> 3719<td> 3720 <p> 3721 <span class="green">1.00<br> (139ns)</span> 3722 </p> 3723 </td> 3724<td> 3725 <p> 3726 <span class="green">1.15<br> (160ns)</span> 3727 </p> 3728 </td> 3729<td> 3730 <p> 3731 <span class="green">1.06<br> (148ns)</span> 3732 </p> 3733 </td> 3734</tr> 3735<tr> 3736<td> 3737 <p> 3738 Weibull (quantile) 3739 </p> 3740 </td> 3741<td> 3742 <p> 3743 <span class="green">1.12<br> (133ns)</span> 3744 </p> 3745 </td> 3746<td> 3747 <p> 3748 <span class="green">1.13<br> (134ns)</span> 3749 </p> 3750 </td> 3751<td> 3752 <p> 3753 <span class="green">1.00<br> (119ns)</span> 3754 </p> 3755 </td> 3756<td> 3757 <p> 3758 <span class="green">1.03<br> (123ns)</span> 3759 </p> 3760 </td> 3761</tr> 3762</tbody> 3763</table></div> 3764</div> 3765<br class="table-break"> 3766</div> 3767<div class="section"> 3768<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 3769<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Distribution performance comparison for different performance options with Microsoft Visual C++ version 14.2 on Windows x64">Distribution 3770 performance comparison for different performance options with Microsoft Visual 3771 C++ version 14.2 on Windows x64</a> 3772</h2></div></div></div> 3773<div class="table"> 3774<a name="special_function_and_distributio.section_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Distribution_performance_comparison_for_different_performance_options_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 4. Distribution performance comparison for different performance options 3775 with Microsoft Visual C++ version 14.2 on Windows x64</b></p> 3776<div class="table-contents"><table class="table" summary="Distribution performance comparison for different performance options 3777 with Microsoft Visual C++ version 14.2 on Windows x64"> 3778<colgroup> 3779<col> 3780<col> 3781<col> 3782<col> 3783</colgroup> 3784<thead><tr> 3785<th> 3786 <p> 3787 Function 3788 </p> 3789 </th> 3790<th> 3791 <p> 3792 boost 1.73 3793 </p> 3794 </th> 3795<th> 3796 <p> 3797 Boost<br> promote_double<false><br> digits10<10> 3798 </p> 3799 </th> 3800<th> 3801 <p> 3802 Boost<br> float<br> promote_float<false> 3803 </p> 3804 </th> 3805</tr></thead> 3806<tbody> 3807<tr> 3808<td> 3809 <p> 3810 ArcSine (CDF) 3811 </p> 3812 </td> 3813<td> 3814 <p> 3815 <span class="blue">1.30<br> (43ns)</span> 3816 </p> 3817 </td> 3818<td> 3819 <p> 3820 <span class="green">1.00<br> (33ns)</span> 3821 </p> 3822 </td> 3823<td> 3824 <p> 3825 <span class="green">1.00<br> (33ns)</span> 3826 </p> 3827 </td> 3828</tr> 3829<tr> 3830<td> 3831 <p> 3832 ArcSine (PDF) 3833 </p> 3834 </td> 3835<td> 3836 <p> 3837 <span class="green">1.00<br> (17ns)</span> 3838 </p> 3839 </td> 3840<td> 3841 <p> 3842 <span class="green">1.06<br> (18ns)</span> 3843 </p> 3844 </td> 3845<td> 3846 <p> 3847 <span class="green">1.00<br> (17ns)</span> 3848 </p> 3849 </td> 3850</tr> 3851<tr> 3852<td> 3853 <p> 3854 ArcSine (quantile) 3855 </p> 3856 </td> 3857<td> 3858 <p> 3859 <span class="green">1.20<br> (30ns)</span> 3860 </p> 3861 </td> 3862<td> 3863 <p> 3864 <span class="green">1.00<br> (25ns)</span> 3865 </p> 3866 </td> 3867<td> 3868 <p> 3869 <span class="green">1.20<br> (30ns)</span> 3870 </p> 3871 </td> 3872</tr> 3873<tr> 3874<td> 3875 <p> 3876 Beta (CDF) 3877 </p> 3878 </td> 3879<td> 3880 <p> 3881 <span class="blue">1.37<br> (158ns)</span> 3882 </p> 3883 </td> 3884<td> 3885 <p> 3886 <span class="blue">1.22<br> (140ns)</span> 3887 </p> 3888 </td> 3889<td> 3890 <p> 3891 <span class="green">1.00<br> (115ns)</span> 3892 </p> 3893 </td> 3894</tr> 3895<tr> 3896<td> 3897 <p> 3898 Beta (PDF) 3899 </p> 3900 </td> 3901<td> 3902 <p> 3903 <span class="green">1.08<br> (104ns)</span> 3904 </p> 3905 </td> 3906<td> 3907 <p> 3908 <span class="green">1.14<br> (109ns)</span> 3909 </p> 3910 </td> 3911<td> 3912 <p> 3913 <span class="green">1.00<br> (96ns)</span> 3914 </p> 3915 </td> 3916</tr> 3917<tr> 3918<td> 3919 <p> 3920 Beta (quantile) 3921 </p> 3922 </td> 3923<td> 3924 <p> 3925 <span class="green">1.07<br> (806ns)</span> 3926 </p> 3927 </td> 3928<td> 3929 <p> 3930 <span class="green">1.11<br> (833ns)</span> 3931 </p> 3932 </td> 3933<td> 3934 <p> 3935 <span class="green">1.00<br> (753ns)</span> 3936 </p> 3937 </td> 3938</tr> 3939<tr> 3940<td> 3941 <p> 3942 Binomial (CDF) 3943 </p> 3944 </td> 3945<td> 3946 <p> 3947 <span class="blue">1.80<br> (413ns)</span> 3948 </p> 3949 </td> 3950<td> 3951 <p> 3952 <span class="blue">1.50<br> (344ns)</span> 3953 </p> 3954 </td> 3955<td> 3956 <p> 3957 <span class="green">1.00<br> (230ns)</span> 3958 </p> 3959 </td> 3960</tr> 3961<tr> 3962<td> 3963 <p> 3964 Binomial (PDF) 3965 </p> 3966 </td> 3967<td> 3968 <p> 3969 <span class="green">1.01<br> (127ns)</span> 3970 </p> 3971 </td> 3972<td> 3973 <p> 3974 <span class="blue">1.41<br> (178ns)</span> 3975 </p> 3976 </td> 3977<td> 3978 <p> 3979 <span class="green">1.00<br> (126ns)</span> 3980 </p> 3981 </td> 3982</tr> 3983<tr> 3984<td> 3985 <p> 3986 Binomial (quantile) 3987 </p> 3988 </td> 3989<td> 3990 <p> 3991 <span class="blue">1.38<br> (2024ns)</span> 3992 </p> 3993 </td> 3994<td> 3995 <p> 3996 <span class="green">1.18<br> (1727ns)</span> 3997 </p> 3998 </td> 3999<td> 4000 <p> 4001 <span class="green">1.00<br> (1466ns)</span> 4002 </p> 4003 </td> 4004</tr> 4005<tr> 4006<td> 4007 <p> 4008 Cauchy (CDF) 4009 </p> 4010 </td> 4011<td> 4012 <p> 4013 <span class="green">1.00<br> (26ns)</span> 4014 </p> 4015 </td> 4016<td> 4017 <p> 4018 <span class="green">1.04<br> (27ns)</span> 4019 </p> 4020 </td> 4021<td> 4022 <p> 4023 <span class="blue">1.23<br> (32ns)</span> 4024 </p> 4025 </td> 4026</tr> 4027<tr> 4028<td> 4029 <p> 4030 Cauchy (PDF) 4031 </p> 4032 </td> 4033<td> 4034 <p> 4035 <span class="green">1.00<br> (8ns)</span> 4036 </p> 4037 </td> 4038<td> 4039 <p> 4040 <span class="blue">1.38<br> (11ns)</span> 4041 </p> 4042 </td> 4043<td> 4044 <p> 4045 <span class="green">1.13<br> (9ns)</span> 4046 </p> 4047 </td> 4048</tr> 4049<tr> 4050<td> 4051 <p> 4052 Cauchy (quantile) 4053 </p> 4054 </td> 4055<td> 4056 <p> 4057 <span class="blue">1.37<br> (26ns)</span> 4058 </p> 4059 </td> 4060<td> 4061 <p> 4062 <span class="green">1.00<br> (19ns)</span> 4063 </p> 4064 </td> 4065<td> 4066 <p> 4067 <span class="blue">1.37<br> (26ns)</span> 4068 </p> 4069 </td> 4070</tr> 4071<tr> 4072<td> 4073 <p> 4074 ChiSquared (CDF) 4075 </p> 4076 </td> 4077<td> 4078 <p> 4079 <span class="blue">1.35<br> (676ns)</span> 4080 </p> 4081 </td> 4082<td> 4083 <p> 4084 <span class="blue">1.59<br> (798ns)</span> 4085 </p> 4086 </td> 4087<td> 4088 <p> 4089 <span class="green">1.00<br> (501ns)</span> 4090 </p> 4091 </td> 4092</tr> 4093<tr> 4094<td> 4095 <p> 4096 ChiSquared (PDF) 4097 </p> 4098 </td> 4099<td> 4100 <p> 4101 <span class="green">1.00<br> (93ns)</span> 4102 </p> 4103 </td> 4104<td> 4105 <p> 4106 <span class="blue">1.27<br> (118ns)</span> 4107 </p> 4108 </td> 4109<td> 4110 <p> 4111 <span class="blue">1.22<br> (113ns)</span> 4112 </p> 4113 </td> 4114</tr> 4115<tr> 4116<td> 4117 <p> 4118 ChiSquared (quantile) 4119 </p> 4120 </td> 4121<td> 4122 <p> 4123 <span class="blue">1.62<br> (1073ns)</span> 4124 </p> 4125 </td> 4126<td> 4127 <p> 4128 <span class="blue">1.83<br> (1211ns)</span> 4129 </p> 4130 </td> 4131<td> 4132 <p> 4133 <span class="green">1.00<br> (662ns)</span> 4134 </p> 4135 </td> 4136</tr> 4137<tr> 4138<td> 4139 <p> 4140 Exponential (CDF) 4141 </p> 4142 </td> 4143<td> 4144 <p> 4145 <span class="blue">1.70<br> (17ns)</span> 4146 </p> 4147 </td> 4148<td> 4149 <p> 4150 <span class="green">1.10<br> (11ns)</span> 4151 </p> 4152 </td> 4153<td> 4154 <p> 4155 <span class="green">1.00<br> (10ns)</span> 4156 </p> 4157 </td> 4158</tr> 4159<tr> 4160<td> 4161 <p> 4162 Exponential (PDF) 4163 </p> 4164 </td> 4165<td> 4166 <p> 4167 <span class="blue">1.50<br> (15ns)</span> 4168 </p> 4169 </td> 4170<td> 4171 <p> 4172 <span class="blue">1.70<br> (17ns)</span> 4173 </p> 4174 </td> 4175<td> 4176 <p> 4177 <span class="green">1.00<br> (10ns)</span> 4178 </p> 4179 </td> 4180</tr> 4181<tr> 4182<td> 4183 <p> 4184 Exponential (quantile) 4185 </p> 4186 </td> 4187<td> 4188 <p> 4189 <span class="green">1.18<br> (20ns)</span> 4190 </p> 4191 </td> 4192<td> 4193 <p> 4194 <span class="green">1.00<br> (17ns)</span> 4195 </p> 4196 </td> 4197<td> 4198 <p> 4199 <span class="green">1.00<br> (17ns)</span> 4200 </p> 4201 </td> 4202</tr> 4203<tr> 4204<td> 4205 <p> 4206 ExtremeValue (CDF) 4207 </p> 4208 </td> 4209<td> 4210 <p> 4211 <span class="green">1.18<br> (26ns)</span> 4212 </p> 4213 </td> 4214<td> 4215 <p> 4216 <span class="green">1.18<br> (26ns)</span> 4217 </p> 4218 </td> 4219<td> 4220 <p> 4221 <span class="green">1.00<br> (22ns)</span> 4222 </p> 4223 </td> 4224</tr> 4225<tr> 4226<td> 4227 <p> 4228 ExtremeValue (PDF) 4229 </p> 4230 </td> 4231<td> 4232 <p> 4233 <span class="green">1.08<br> (27ns)</span> 4234 </p> 4235 </td> 4236<td> 4237 <p> 4238 <span class="green">1.04<br> (26ns)</span> 4239 </p> 4240 </td> 4241<td> 4242 <p> 4243 <span class="green">1.00<br> (25ns)</span> 4244 </p> 4245 </td> 4246</tr> 4247<tr> 4248<td> 4249 <p> 4250 ExtremeValue (quantile) 4251 </p> 4252 </td> 4253<td> 4254 <p> 4255 <span class="blue">1.48<br> (34ns)</span> 4256 </p> 4257 </td> 4258<td> 4259 <p> 4260 <span class="green">1.09<br> (25ns)</span> 4261 </p> 4262 </td> 4263<td> 4264 <p> 4265 <span class="green">1.00<br> (23ns)</span> 4266 </p> 4267 </td> 4268</tr> 4269<tr> 4270<td> 4271 <p> 4272 F (CDF) 4273 </p> 4274 </td> 4275<td> 4276 <p> 4277 <span class="blue">1.56<br> (277ns)</span> 4278 </p> 4279 </td> 4280<td> 4281 <p> 4282 <span class="blue">1.28<br> (228ns)</span> 4283 </p> 4284 </td> 4285<td> 4286 <p> 4287 <span class="green">1.00<br> (178ns)</span> 4288 </p> 4289 </td> 4290</tr> 4291<tr> 4292<td> 4293 <p> 4294 F (PDF) 4295 </p> 4296 </td> 4297<td> 4298 <p> 4299 <span class="green">1.07<br> (97ns)</span> 4300 </p> 4301 </td> 4302<td> 4303 <p> 4304 <span class="green">1.13<br> (103ns)</span> 4305 </p> 4306 </td> 4307<td> 4308 <p> 4309 <span class="green">1.00<br> (91ns)</span> 4310 </p> 4311 </td> 4312</tr> 4313<tr> 4314<td> 4315 <p> 4316 F (quantile) 4317 </p> 4318 </td> 4319<td> 4320 <p> 4321 <span class="green">1.17<br> (901ns)</span> 4322 </p> 4323 </td> 4324<td> 4325 <p> 4326 <span class="green">1.00<br> (770ns)</span> 4327 </p> 4328 </td> 4329<td> 4330 <p> 4331 <span class="green">1.08<br> (833ns)</span> 4332 </p> 4333 </td> 4334</tr> 4335<tr> 4336<td> 4337 <p> 4338 Gamma (CDF) 4339 </p> 4340 </td> 4341<td> 4342 <p> 4343 <span class="blue">1.30<br> (234ns)</span> 4344 </p> 4345 </td> 4346<td> 4347 <p> 4348 <span class="blue">1.29<br> (233ns)</span> 4349 </p> 4350 </td> 4351<td> 4352 <p> 4353 <span class="green">1.00<br> (180ns)</span> 4354 </p> 4355 </td> 4356</tr> 4357<tr> 4358<td> 4359 <p> 4360 Gamma (PDF) 4361 </p> 4362 </td> 4363<td> 4364 <p> 4365 <span class="blue">1.25<br> (85ns)</span> 4366 </p> 4367 </td> 4368<td> 4369 <p> 4370 <span class="blue">1.25<br> (85ns)</span> 4371 </p> 4372 </td> 4373<td> 4374 <p> 4375 <span class="green">1.00<br> (68ns)</span> 4376 </p> 4377 </td> 4378</tr> 4379<tr> 4380<td> 4381 <p> 4382 Gamma (quantile) 4383 </p> 4384 </td> 4385<td> 4386 <p> 4387 <span class="blue">1.64<br> (640ns)</span> 4388 </p> 4389 </td> 4390<td> 4391 <p> 4392 <span class="blue">1.28<br> (501ns)</span> 4393 </p> 4394 </td> 4395<td> 4396 <p> 4397 <span class="green">1.00<br> (390ns)</span> 4398 </p> 4399 </td> 4400</tr> 4401<tr> 4402<td> 4403 <p> 4404 Geometric (CDF) 4405 </p> 4406 </td> 4407<td> 4408 <p> 4409 <span class="green">1.13<br> (18ns)</span> 4410 </p> 4411 </td> 4412<td> 4413 <p> 4414 <span class="green">1.00<br> (16ns)</span> 4415 </p> 4416 </td> 4417<td> 4418 <p> 4419 <span class="green">1.19<br> (19ns)</span> 4420 </p> 4421 </td> 4422</tr> 4423<tr> 4424<td> 4425 <p> 4426 Geometric (PDF) 4427 </p> 4428 </td> 4429<td> 4430 <p> 4431 <span class="blue">1.85<br> (24ns)</span> 4432 </p> 4433 </td> 4434<td> 4435 <p> 4436 <span class="blue">1.54<br> (20ns)</span> 4437 </p> 4438 </td> 4439<td> 4440 <p> 4441 <span class="green">1.00<br> (13ns)</span> 4442 </p> 4443 </td> 4444</tr> 4445<tr> 4446<td> 4447 <p> 4448 Geometric (quantile) 4449 </p> 4450 </td> 4451<td> 4452 <p> 4453 <span class="green">1.18<br> (20ns)</span> 4454 </p> 4455 </td> 4456<td> 4457 <p> 4458 <span class="green">1.00<br> (17ns)</span> 4459 </p> 4460 </td> 4461<td> 4462 <p> 4463 <span class="green">1.00<br> (17ns)</span> 4464 </p> 4465 </td> 4466</tr> 4467<tr> 4468<td> 4469 <p> 4470 Hypergeometric (CDF) 4471 </p> 4472 </td> 4473<td> 4474 <p> 4475 <span class="green">1.00<br> (244196ns)</span> 4476 </p> 4477 </td> 4478<td> 4479 <p> 4480 <span class="green">1.07<br> (260490ns)</span> 4481 </p> 4482 </td> 4483<td> 4484 <p> 4485 <span class="green">1.11<br> (271879ns)</span> 4486 </p> 4487 </td> 4488</tr> 4489<tr> 4490<td> 4491 <p> 4492 Hypergeometric (PDF) 4493 </p> 4494 </td> 4495<td> 4496 <p> 4497 <span class="green">1.00<br> (272497ns)</span> 4498 </p> 4499 </td> 4500<td> 4501 <p> 4502 <span class="green">1.04<br> (282183ns)</span> 4503 </p> 4504 </td> 4505<td> 4506 <p> 4507 <span class="green">1.09<br> (296020ns)</span> 4508 </p> 4509 </td> 4510</tr> 4511<tr> 4512<td> 4513 <p> 4514 Hypergeometric (quantile) 4515 </p> 4516 </td> 4517<td> 4518 <p> 4519 <span class="green">1.00<br> (308077ns)</span> 4520 </p> 4521 </td> 4522<td> 4523 <p> 4524 <span class="green">1.00<br> (307365ns)</span> 4525 </p> 4526 </td> 4527<td> 4528 <p> 4529 <span class="green">1.06<br> (326617ns)</span> 4530 </p> 4531 </td> 4532</tr> 4533<tr> 4534<td> 4535 <p> 4536 InverseChiSquared (CDF) 4537 </p> 4538 </td> 4539<td> 4540 <p> 4541 <span class="blue">1.65<br> (584ns)</span> 4542 </p> 4543 </td> 4544<td> 4545 <p> 4546 <span class="blue">1.30<br> (459ns)</span> 4547 </p> 4548 </td> 4549<td> 4550 <p> 4551 <span class="green">1.00<br> (353ns)</span> 4552 </p> 4553 </td> 4554</tr> 4555<tr> 4556<td> 4557 <p> 4558 InverseChiSquared (PDF) 4559 </p> 4560 </td> 4561<td> 4562 <p> 4563 <span class="blue">1.37<br> (78ns)</span> 4564 </p> 4565 </td> 4566<td> 4567 <p> 4568 <span class="blue">1.32<br> (75ns)</span> 4569 </p> 4570 </td> 4571<td> 4572 <p> 4573 <span class="green">1.00<br> (57ns)</span> 4574 </p> 4575 </td> 4576</tr> 4577<tr> 4578<td> 4579 <p> 4580 InverseChiSquared (quantile) 4581 </p> 4582 </td> 4583<td> 4584 <p> 4585 <span class="blue">1.68<br> (884ns)</span> 4586 </p> 4587 </td> 4588<td> 4589 <p> 4590 <span class="blue">1.30<br> (684ns)</span> 4591 </p> 4592 </td> 4593<td> 4594 <p> 4595 <span class="green">1.00<br> (527ns)</span> 4596 </p> 4597 </td> 4598</tr> 4599<tr> 4600<td> 4601 <p> 4602 InverseGamma (CDF) 4603 </p> 4604 </td> 4605<td> 4606 <p> 4607 <span class="blue">1.36<br> (244ns)</span> 4608 </p> 4609 </td> 4610<td> 4611 <p> 4612 <span class="green">1.17<br> (210ns)</span> 4613 </p> 4614 </td> 4615<td> 4616 <p> 4617 <span class="green">1.00<br> (179ns)</span> 4618 </p> 4619 </td> 4620</tr> 4621<tr> 4622<td> 4623 <p> 4624 InverseGamma (PDF) 4625 </p> 4626 </td> 4627<td> 4628 <p> 4629 <span class="blue">1.36<br> (91ns)</span> 4630 </p> 4631 </td> 4632<td> 4633 <p> 4634 <span class="blue">1.39<br> (93ns)</span> 4635 </p> 4636 </td> 4637<td> 4638 <p> 4639 <span class="green">1.00<br> (67ns)</span> 4640 </p> 4641 </td> 4642</tr> 4643<tr> 4644<td> 4645 <p> 4646 InverseGamma (quantile) 4647 </p> 4648 </td> 4649<td> 4650 <p> 4651 <span class="blue">1.58<br> (638ns)</span> 4652 </p> 4653 </td> 4654<td> 4655 <p> 4656 <span class="green">1.12<br> (452ns)</span> 4657 </p> 4658 </td> 4659<td> 4660 <p> 4661 <span class="green">1.00<br> (403ns)</span> 4662 </p> 4663 </td> 4664</tr> 4665<tr> 4666<td> 4667 <p> 4668 InverseGaussian (CDF) 4669 </p> 4670 </td> 4671<td> 4672 <p> 4673 <span class="blue">1.28<br> (109ns)</span> 4674 </p> 4675 </td> 4676<td> 4677 <p> 4678 <span class="blue">1.32<br> (112ns)</span> 4679 </p> 4680 </td> 4681<td> 4682 <p> 4683 <span class="green">1.00<br> (85ns)</span> 4684 </p> 4685 </td> 4686</tr> 4687<tr> 4688<td> 4689 <p> 4690 InverseGaussian (PDF) 4691 </p> 4692 </td> 4693<td> 4694 <p> 4695 <span class="green">1.09<br> (12ns)</span> 4696 </p> 4697 </td> 4698<td> 4699 <p> 4700 <span class="green">1.18<br> (13ns)</span> 4701 </p> 4702 </td> 4703<td> 4704 <p> 4705 <span class="green">1.00<br> (11ns)</span> 4706 </p> 4707 </td> 4708</tr> 4709<tr> 4710<td> 4711 <p> 4712 InverseGaussian (quantile) 4713 </p> 4714 </td> 4715<td> 4716 <p> 4717 <span class="blue">1.58<br> (1651ns)</span> 4718 </p> 4719 </td> 4720<td> 4721 <p> 4722 <span class="green">1.15<br> (1209ns)</span> 4723 </p> 4724 </td> 4725<td> 4726 <p> 4727 <span class="green">1.00<br> (1048ns)</span> 4728 </p> 4729 </td> 4730</tr> 4731<tr> 4732<td> 4733 <p> 4734 Laplace (CDF) 4735 </p> 4736 </td> 4737<td> 4738 <p> 4739 <span class="green">1.00<br> (13ns)</span> 4740 </p> 4741 </td> 4742<td> 4743 <p> 4744 <span class="green">1.00<br> (13ns)</span> 4745 </p> 4746 </td> 4747<td> 4748 <p> 4749 <span class="green">1.00<br> (13ns)</span> 4750 </p> 4751 </td> 4752</tr> 4753<tr> 4754<td> 4755 <p> 4756 Laplace (PDF) 4757 </p> 4758 </td> 4759<td> 4760 <p> 4761 <span class="green">1.08<br> (14ns)</span> 4762 </p> 4763 </td> 4764<td> 4765 <p> 4766 <span class="blue">1.46<br> (19ns)</span> 4767 </p> 4768 </td> 4769<td> 4770 <p> 4771 <span class="green">1.00<br> (13ns)</span> 4772 </p> 4773 </td> 4774</tr> 4775<tr> 4776<td> 4777 <p> 4778 Laplace (quantile) 4779 </p> 4780 </td> 4781<td> 4782 <p> 4783 <span class="green">1.08<br> (14ns)</span> 4784 </p> 4785 </td> 4786<td> 4787 <p> 4788 <span class="green">1.00<br> (13ns)</span> 4789 </p> 4790 </td> 4791<td> 4792 <p> 4793 <span class="green">1.00<br> (13ns)</span> 4794 </p> 4795 </td> 4796</tr> 4797<tr> 4798<td> 4799 <p> 4800 LogNormal (CDF) 4801 </p> 4802 </td> 4803<td> 4804 <p> 4805 <span class="green">1.04<br> (79ns)</span> 4806 </p> 4807 </td> 4808<td> 4809 <p> 4810 <span class="green">1.00<br> (76ns)</span> 4811 </p> 4812 </td> 4813<td> 4814 <p> 4815 <span class="green">1.08<br> (82ns)</span> 4816 </p> 4817 </td> 4818</tr> 4819<tr> 4820<td> 4821 <p> 4822 LogNormal (PDF) 4823 </p> 4824 </td> 4825<td> 4826 <p> 4827 <span class="blue">1.25<br> (35ns)</span> 4828 </p> 4829 </td> 4830<td> 4831 <p> 4832 <span class="green">1.07<br> (30ns)</span> 4833 </p> 4834 </td> 4835<td> 4836 <p> 4837 <span class="green">1.00<br> (28ns)</span> 4838 </p> 4839 </td> 4840</tr> 4841<tr> 4842<td> 4843 <p> 4844 LogNormal (quantile) 4845 </p> 4846 </td> 4847<td> 4848 <p> 4849 <span class="green">1.13<br> (61ns)</span> 4850 </p> 4851 </td> 4852<td> 4853 <p> 4854 <span class="green">1.09<br> (59ns)</span> 4855 </p> 4856 </td> 4857<td> 4858 <p> 4859 <span class="green">1.00<br> (54ns)</span> 4860 </p> 4861 </td> 4862</tr> 4863<tr> 4864<td> 4865 <p> 4866 Logistic (CDF) 4867 </p> 4868 </td> 4869<td> 4870 <p> 4871 <span class="green">1.00<br> (14ns)</span> 4872 </p> 4873 </td> 4874<td> 4875 <p> 4876 <span class="green">1.07<br> (15ns)</span> 4877 </p> 4878 </td> 4879<td> 4880 <p> 4881 <span class="blue">1.36<br> (19ns)</span> 4882 </p> 4883 </td> 4884</tr> 4885<tr> 4886<td> 4887 <p> 4888 Logistic (PDF) 4889 </p> 4890 </td> 4891<td> 4892 <p> 4893 <span class="green">1.06<br> (18ns)</span> 4894 </p> 4895 </td> 4896<td> 4897 <p> 4898 <span class="green">1.00<br> (17ns)</span> 4899 </p> 4900 </td> 4901<td> 4902 <p> 4903 <span class="blue">1.29<br> (22ns)</span> 4904 </p> 4905 </td> 4906</tr> 4907<tr> 4908<td> 4909 <p> 4910 Logistic (quantile) 4911 </p> 4912 </td> 4913<td> 4914 <p> 4915 <span class="green">1.00<br> (15ns)</span> 4916 </p> 4917 </td> 4918<td> 4919 <p> 4920 <span class="blue">1.33<br> (20ns)</span> 4921 </p> 4922 </td> 4923<td> 4924 <p> 4925 <span class="blue">1.33<br> (20ns)</span> 4926 </p> 4927 </td> 4928</tr> 4929<tr> 4930<td> 4931 <p> 4932 NegativeBinomial (CDF) 4933 </p> 4934 </td> 4935<td> 4936 <p> 4937 <span class="blue">1.69<br> (481ns)</span> 4938 </p> 4939 </td> 4940<td> 4941 <p> 4942 <span class="blue">1.33<br> (378ns)</span> 4943 </p> 4944 </td> 4945<td> 4946 <p> 4947 <span class="green">1.00<br> (285ns)</span> 4948 </p> 4949 </td> 4950</tr> 4951<tr> 4952<td> 4953 <p> 4954 NegativeBinomial (PDF) 4955 </p> 4956 </td> 4957<td> 4958 <p> 4959 <span class="green">1.01<br> (114ns)</span> 4960 </p> 4961 </td> 4962<td> 4963 <p> 4964 <span class="green">1.00<br> (113ns)</span> 4965 </p> 4966 </td> 4967<td> 4968 <p> 4969 <span class="green">1.09<br> (123ns)</span> 4970 </p> 4971 </td> 4972</tr> 4973<tr> 4974<td> 4975 <p> 4976 NegativeBinomial (quantile) 4977 </p> 4978 </td> 4979<td> 4980 <p> 4981 <span class="blue">1.21<br> (2651ns)</span> 4982 </p> 4983 </td> 4984<td> 4985 <p> 4986 <span class="green">1.00<br> (2186ns)</span> 4987 </p> 4988 </td> 4989<td> 4990 <p> 4991 <span class="green">1.17<br> (2554ns)</span> 4992 </p> 4993 </td> 4994</tr> 4995<tr> 4996<td> 4997 <p> 4998 NonCentralBeta (CDF) 4999 </p> 5000 </td> 5001<td> 5002 <p> 5003 <span class="blue">1.90<br> (735ns)</span> 5004 </p> 5005 </td> 5006<td> 5007 <p> 5008 <span class="blue">1.54<br> (597ns)</span> 5009 </p> 5010 </td> 5011<td> 5012 <p> 5013 <span class="green">1.00<br> (387ns)</span> 5014 </p> 5015 </td> 5016</tr> 5017<tr> 5018<td> 5019 <p> 5020 NonCentralBeta (PDF) 5021 </p> 5022 </td> 5023<td> 5024 <p> 5025 <span class="blue">1.62<br> (489ns)</span> 5026 </p> 5027 </td> 5028<td> 5029 <p> 5030 <span class="blue">1.56<br> (471ns)</span> 5031 </p> 5032 </td> 5033<td> 5034 <p> 5035 <span class="green">1.00<br> (302ns)</span> 5036 </p> 5037 </td> 5038</tr> 5039<tr> 5040<td> 5041 <p> 5042 NonCentralBeta (quantile) 5043 </p> 5044 </td> 5045<td> 5046 <p> 5047 <span class="red">2.35<br> (14689ns)</span> 5048 </p> 5049 </td> 5050<td> 5051 <p> 5052 <span class="red">2.10<br> (13173ns)</span> 5053 </p> 5054 </td> 5055<td> 5056 <p> 5057 <span class="green">1.00<br> (6263ns)</span> 5058 </p> 5059 </td> 5060</tr> 5061<tr> 5062<td> 5063 <p> 5064 NonCentralChiSquared (CDF) 5065 </p> 5066 </td> 5067<td> 5068 <p> 5069 <span class="blue">1.84<br> (2643ns)</span> 5070 </p> 5071 </td> 5072<td> 5073 <p> 5074 <span class="blue">1.45<br> (2087ns)</span> 5075 </p> 5076 </td> 5077<td> 5078 <p> 5079 <span class="green">1.00<br> (1438ns)</span> 5080 </p> 5081 </td> 5082</tr> 5083<tr> 5084<td> 5085 <p> 5086 NonCentralChiSquared (PDF) 5087 </p> 5088 </td> 5089<td> 5090 <p> 5091 <span class="blue">1.36<br> (290ns)</span> 5092 </p> 5093 </td> 5094<td> 5095 <p> 5096 <span class="blue">1.28<br> (272ns)</span> 5097 </p> 5098 </td> 5099<td> 5100 <p> 5101 <span class="green">1.00<br> (213ns)</span> 5102 </p> 5103 </td> 5104</tr> 5105<tr> 5106<td> 5107 <p> 5108 NonCentralChiSquared (quantile) 5109 </p> 5110 </td> 5111<td> 5112 <p> 5113 <span class="red">2.49<br> (16692ns)</span> 5114 </p> 5115 </td> 5116<td> 5117 <p> 5118 <span class="blue">1.59<br> (10665ns)</span> 5119 </p> 5120 </td> 5121<td> 5122 <p> 5123 <span class="green">1.00<br> (6699ns)</span> 5124 </p> 5125 </td> 5126</tr> 5127<tr> 5128<td> 5129 <p> 5130 NonCentralF (CDF) 5131 </p> 5132 </td> 5133<td> 5134 <p> 5135 <span class="blue">1.54<br> (608ns)</span> 5136 </p> 5137 </td> 5138<td> 5139 <p> 5140 <span class="blue">1.36<br> (538ns)</span> 5141 </p> 5142 </td> 5143<td> 5144 <p> 5145 <span class="green">1.00<br> (396ns)</span> 5146 </p> 5147 </td> 5148</tr> 5149<tr> 5150<td> 5151 <p> 5152 NonCentralF (PDF) 5153 </p> 5154 </td> 5155<td> 5156 <p> 5157 <span class="blue">1.44<br> (467ns)</span> 5158 </p> 5159 </td> 5160<td> 5161 <p> 5162 <span class="blue">1.30<br> (420ns)</span> 5163 </p> 5164 </td> 5165<td> 5166 <p> 5167 <span class="green">1.00<br> (324ns)</span> 5168 </p> 5169 </td> 5170</tr> 5171<tr> 5172<td> 5173 <p> 5174 NonCentralF (quantile) 5175 </p> 5176 </td> 5177<td> 5178 <p> 5179 <span class="blue">1.73<br> (9122ns)</span> 5180 </p> 5181 </td> 5182<td> 5183 <p> 5184 <span class="blue">1.44<br> (7572ns)</span> 5185 </p> 5186 </td> 5187<td> 5188 <p> 5189 <span class="green">1.00<br> (5271ns)</span> 5190 </p> 5191 </td> 5192</tr> 5193<tr> 5194<td> 5195 <p> 5196 NonCentralT (CDF) 5197 </p> 5198 </td> 5199<td> 5200 <p> 5201 <span class="blue">1.65<br> (2375ns)</span> 5202 </p> 5203 </td> 5204<td> 5205 <p> 5206 <span class="blue">1.38<br> (1985ns)</span> 5207 </p> 5208 </td> 5209<td> 5210 <p> 5211 <span class="green">1.00<br> (1441ns)</span> 5212 </p> 5213 </td> 5214</tr> 5215<tr> 5216<td> 5217 <p> 5218 NonCentralT (PDF) 5219 </p> 5220 </td> 5221<td> 5222 <p> 5223 <span class="blue">1.58<br> (1701ns)</span> 5224 </p> 5225 </td> 5226<td> 5227 <p> 5228 <span class="blue">1.34<br> (1440ns)</span> 5229 </p> 5230 </td> 5231<td> 5232 <p> 5233 <span class="green">1.00<br> (1075ns)</span> 5234 </p> 5235 </td> 5236</tr> 5237<tr> 5238<td> 5239 <p> 5240 NonCentralT (quantile) 5241 </p> 5242 </td> 5243<td> 5244 <p> 5245 <span class="blue">1.93<br> (23683ns)</span> 5246 </p> 5247 </td> 5248<td> 5249 <p> 5250 <span class="blue">1.35<br> (16597ns)</span> 5251 </p> 5252 </td> 5253<td> 5254 <p> 5255 <span class="green">1.00<br> (12284ns)</span> 5256 </p> 5257 </td> 5258</tr> 5259<tr> 5260<td> 5261 <p> 5262 Normal (CDF) 5263 </p> 5264 </td> 5265<td> 5266 <p> 5267 <span class="green">1.09<br> (89ns)</span> 5268 </p> 5269 </td> 5270<td> 5271 <p> 5272 <span class="green">1.00<br> (82ns)</span> 5273 </p> 5274 </td> 5275<td> 5276 <p> 5277 <span class="blue">1.29<br> (106ns)</span> 5278 </p> 5279 </td> 5280</tr> 5281<tr> 5282<td> 5283 <p> 5284 Normal (PDF) 5285 </p> 5286 </td> 5287<td> 5288 <p> 5289 <span class="blue">1.33<br> (28ns)</span> 5290 </p> 5291 </td> 5292<td> 5293 <p> 5294 <span class="blue">1.38<br> (29ns)</span> 5295 </p> 5296 </td> 5297<td> 5298 <p> 5299 <span class="green">1.00<br> (21ns)</span> 5300 </p> 5301 </td> 5302</tr> 5303<tr> 5304<td> 5305 <p> 5306 Normal (quantile) 5307 </p> 5308 </td> 5309<td> 5310 <p> 5311 <span class="green">1.02<br> (44ns)</span> 5312 </p> 5313 </td> 5314<td> 5315 <p> 5316 <span class="green">1.00<br> (43ns)</span> 5317 </p> 5318 </td> 5319<td> 5320 <p> 5321 <span class="green">1.02<br> (44ns)</span> 5322 </p> 5323 </td> 5324</tr> 5325<tr> 5326<td> 5327 <p> 5328 Pareto (CDF) 5329 </p> 5330 </td> 5331<td> 5332 <p> 5333 <span class="blue">1.26<br> (34ns)</span> 5334 </p> 5335 </td> 5336<td> 5337 <p> 5338 <span class="blue">1.30<br> (35ns)</span> 5339 </p> 5340 </td> 5341<td> 5342 <p> 5343 <span class="green">1.00<br> (27ns)</span> 5344 </p> 5345 </td> 5346</tr> 5347<tr> 5348<td> 5349 <p> 5350 Pareto (PDF) 5351 </p> 5352 </td> 5353<td> 5354 <p> 5355 <span class="blue">1.50<br> (102ns)</span> 5356 </p> 5357 </td> 5358<td> 5359 <p> 5360 <span class="blue">1.56<br> (106ns)</span> 5361 </p> 5362 </td> 5363<td> 5364 <p> 5365 <span class="green">1.00<br> (68ns)</span> 5366 </p> 5367 </td> 5368</tr> 5369<tr> 5370<td> 5371 <p> 5372 Pareto (quantile) 5373 </p> 5374 </td> 5375<td> 5376 <p> 5377 <span class="blue">1.79<br> (50ns)</span> 5378 </p> 5379 </td> 5380<td> 5381 <p> 5382 <span class="blue">1.36<br> (38ns)</span> 5383 </p> 5384 </td> 5385<td> 5386 <p> 5387 <span class="green">1.00<br> (28ns)</span> 5388 </p> 5389 </td> 5390</tr> 5391<tr> 5392<td> 5393 <p> 5394 Poisson (CDF) 5395 </p> 5396 </td> 5397<td> 5398 <p> 5399 <span class="green">1.11<br> (84ns)</span> 5400 </p> 5401 </td> 5402<td> 5403 <p> 5404 <span class="green">1.00<br> (76ns)</span> 5405 </p> 5406 </td> 5407<td> 5408 <p> 5409 <span class="green">1.01<br> (77ns)</span> 5410 </p> 5411 </td> 5412</tr> 5413<tr> 5414<td> 5415 <p> 5416 Poisson (PDF) 5417 </p> 5418 </td> 5419<td> 5420 <p> 5421 <span class="blue">1.40<br> (49ns)</span> 5422 </p> 5423 </td> 5424<td> 5425 <p> 5426 <span class="blue">1.43<br> (50ns)</span> 5427 </p> 5428 </td> 5429<td> 5430 <p> 5431 <span class="green">1.00<br> (35ns)</span> 5432 </p> 5433 </td> 5434</tr> 5435<tr> 5436<td> 5437 <p> 5438 Poisson (quantile) 5439 </p> 5440 </td> 5441<td> 5442 <p> 5443 <span class="green">1.10<br> (440ns)</span> 5444 </p> 5445 </td> 5446<td> 5447 <p> 5448 <span class="green">1.00<br> (400ns)</span> 5449 </p> 5450 </td> 5451<td> 5452 <p> 5453 <span class="green">1.10<br> (441ns)</span> 5454 </p> 5455 </td> 5456</tr> 5457<tr> 5458<td> 5459 <p> 5460 Rayleigh (CDF) 5461 </p> 5462 </td> 5463<td> 5464 <p> 5465 <span class="blue">1.25<br> (15ns)</span> 5466 </p> 5467 </td> 5468<td> 5469 <p> 5470 <span class="green">1.08<br> (13ns)</span> 5471 </p> 5472 </td> 5473<td> 5474 <p> 5475 <span class="green">1.00<br> (12ns)</span> 5476 </p> 5477 </td> 5478</tr> 5479<tr> 5480<td> 5481 <p> 5482 Rayleigh (PDF) 5483 </p> 5484 </td> 5485<td> 5486 <p> 5487 <span class="green">1.08<br> (14ns)</span> 5488 </p> 5489 </td> 5490<td> 5491 <p> 5492 <span class="green">1.08<br> (14ns)</span> 5493 </p> 5494 </td> 5495<td> 5496 <p> 5497 <span class="green">1.00<br> (13ns)</span> 5498 </p> 5499 </td> 5500</tr> 5501<tr> 5502<td> 5503 <p> 5504 Rayleigh (quantile) 5505 </p> 5506 </td> 5507<td> 5508 <p> 5509 <span class="green">1.15<br> (23ns)</span> 5510 </p> 5511 </td> 5512<td> 5513 <p> 5514 <span class="green">1.15<br> (23ns)</span> 5515 </p> 5516 </td> 5517<td> 5518 <p> 5519 <span class="green">1.00<br> (20ns)</span> 5520 </p> 5521 </td> 5522</tr> 5523<tr> 5524<td> 5525 <p> 5526 SkewNormal (CDF) 5527 </p> 5528 </td> 5529<td> 5530 <p> 5531 <span class="green">1.01<br> (259ns)</span> 5532 </p> 5533 </td> 5534<td> 5535 <p> 5536 <span class="green">1.00<br> (256ns)</span> 5537 </p> 5538 </td> 5539<td> 5540 <p> 5541 <span class="green">1.13<br> (289ns)</span> 5542 </p> 5543 </td> 5544</tr> 5545<tr> 5546<td> 5547 <p> 5548 SkewNormal (PDF) 5549 </p> 5550 </td> 5551<td> 5552 <p> 5553 <span class="green">1.03<br> (94ns)</span> 5554 </p> 5555 </td> 5556<td> 5557 <p> 5558 <span class="green">1.00<br> (91ns)</span> 5559 </p> 5560 </td> 5561<td> 5562 <p> 5563 <span class="green">1.08<br> (98ns)</span> 5564 </p> 5565 </td> 5566</tr> 5567<tr> 5568<td> 5569 <p> 5570 SkewNormal (quantile) 5571 </p> 5572 </td> 5573<td> 5574 <p> 5575 <span class="blue">1.47<br> (2843ns)</span> 5576 </p> 5577 </td> 5578<td> 5579 <p> 5580 <span class="green">1.00<br> (1936ns)</span> 5581 </p> 5582 </td> 5583<td> 5584 <p> 5585 <span class="blue">1.24<br> (2391ns)</span> 5586 </p> 5587 </td> 5588</tr> 5589<tr> 5590<td> 5591 <p> 5592 StudentsT (CDF) 5593 </p> 5594 </td> 5595<td> 5596 <p> 5597 <span class="blue">1.83<br> (429ns)</span> 5598 </p> 5599 </td> 5600<td> 5601 <p> 5602 <span class="blue">1.85<br> (434ns)</span> 5603 </p> 5604 </td> 5605<td> 5606 <p> 5607 <span class="green">1.00<br> (235ns)</span> 5608 </p> 5609 </td> 5610</tr> 5611<tr> 5612<td> 5613 <p> 5614 StudentsT (PDF) 5615 </p> 5616 </td> 5617<td> 5618 <p> 5619 <span class="blue">1.36<br> (146ns)</span> 5620 </p> 5621 </td> 5622<td> 5623 <p> 5624 <span class="blue">1.26<br> (135ns)</span> 5625 </p> 5626 </td> 5627<td> 5628 <p> 5629 <span class="green">1.00<br> (107ns)</span> 5630 </p> 5631 </td> 5632</tr> 5633<tr> 5634<td> 5635 <p> 5636 StudentsT (quantile) 5637 </p> 5638 </td> 5639<td> 5640 <p> 5641 <span class="blue">1.53<br> (729ns)</span> 5642 </p> 5643 </td> 5644<td> 5645 <p> 5646 <span class="blue">1.57<br> (749ns)</span> 5647 </p> 5648 </td> 5649<td> 5650 <p> 5651 <span class="green">1.00<br> (476ns)</span> 5652 </p> 5653 </td> 5654</tr> 5655<tr> 5656<td> 5657 <p> 5658 Weibull (CDF) 5659 </p> 5660 </td> 5661<td> 5662 <p> 5663 <span class="blue">1.62<br> (63ns)</span> 5664 </p> 5665 </td> 5666<td> 5667 <p> 5668 <span class="blue">1.51<br> (59ns)</span> 5669 </p> 5670 </td> 5671<td> 5672 <p> 5673 <span class="green">1.00<br> (39ns)</span> 5674 </p> 5675 </td> 5676</tr> 5677<tr> 5678<td> 5679 <p> 5680 Weibull (PDF) 5681 </p> 5682 </td> 5683<td> 5684 <p> 5685 <span class="blue">1.75<br> (89ns)</span> 5686 </p> 5687 </td> 5688<td> 5689 <p> 5690 <span class="blue">1.76<br> (90ns)</span> 5691 </p> 5692 </td> 5693<td> 5694 <p> 5695 <span class="green">1.00<br> (51ns)</span> 5696 </p> 5697 </td> 5698</tr> 5699<tr> 5700<td> 5701 <p> 5702 Weibull (quantile) 5703 </p> 5704 </td> 5705<td> 5706 <p> 5707 <span class="blue">1.63<br> (62ns)</span> 5708 </p> 5709 </td> 5710<td> 5711 <p> 5712 <span class="blue">1.55<br> (59ns)</span> 5713 </p> 5714 </td> 5715<td> 5716 <p> 5717 <span class="green">1.00<br> (38ns)</span> 5718 </p> 5719 </td> 5720</tr> 5721</tbody> 5722</table></div> 5723</div> 5724<br class="table-break"> 5725</div> 5726<div class="section"> 5727<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 5728<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Distribution performance comparison with GNU C++ version 9.2.0 on Windows x64">Distribution 5729 performance comparison with GNU C++ version 9.2.0 on Windows x64</a> 5730</h2></div></div></div> 5731<div class="table"> 5732<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Distribution_performance_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 5. Distribution performance comparison with GNU C++ version 9.2.0 on Windows 5733 x64</b></p> 5734<div class="table-contents"><table class="table" summary="Distribution performance comparison with GNU C++ version 9.2.0 on Windows 5735 x64"> 5736<colgroup> 5737<col> 5738<col> 5739<col> 5740</colgroup> 5741<thead><tr> 5742<th> 5743 <p> 5744 Function 5745 </p> 5746 </th> 5747<th> 5748 <p> 5749 boost 1.73 5750 </p> 5751 </th> 5752<th> 5753 <p> 5754 Boost<br> promote_double<false> 5755 </p> 5756 </th> 5757</tr></thead> 5758<tbody> 5759<tr> 5760<td> 5761 <p> 5762 ArcSine (CDF) 5763 </p> 5764 </td> 5765<td> 5766 <p> 5767 <span class="green">1.00<br> (22ns)</span> 5768 </p> 5769 </td> 5770<td> 5771 <p> 5772 <span class="green">1.18<br> (26ns)</span> 5773 </p> 5774 </td> 5775</tr> 5776<tr> 5777<td> 5778 <p> 5779 ArcSine (PDF) 5780 </p> 5781 </td> 5782<td> 5783 <p> 5784 <span class="green">1.00<br> (5ns)</span> 5785 </p> 5786 </td> 5787<td> 5788 <p> 5789 <span class="green">1.00<br> (5ns)</span> 5790 </p> 5791 </td> 5792</tr> 5793<tr> 5794<td> 5795 <p> 5796 ArcSine (quantile) 5797 </p> 5798 </td> 5799<td> 5800 <p> 5801 <span class="green">1.00<br> (53ns)</span> 5802 </p> 5803 </td> 5804<td> 5805 <p> 5806 <span class="green">1.00<br> (53ns)</span> 5807 </p> 5808 </td> 5809</tr> 5810<tr> 5811<td> 5812 <p> 5813 Beta (CDF) 5814 </p> 5815 </td> 5816<td> 5817 <p> 5818 <span class="blue">1.77<br> (362ns)</span> 5819 </p> 5820 </td> 5821<td> 5822 <p> 5823 <span class="green">1.00<br> (205ns)</span> 5824 </p> 5825 </td> 5826</tr> 5827<tr> 5828<td> 5829 <p> 5830 Beta (PDF) 5831 </p> 5832 </td> 5833<td> 5834 <p> 5835 <span class="red">2.17<br> (302ns)</span> 5836 </p> 5837 </td> 5838<td> 5839 <p> 5840 <span class="green">1.00<br> (139ns)</span> 5841 </p> 5842 </td> 5843</tr> 5844<tr> 5845<td> 5846 <p> 5847 Beta (quantile) 5848 </p> 5849 </td> 5850<td> 5851 <p> 5852 <span class="blue">1.42<br> (1968ns)</span> 5853 </p> 5854 </td> 5855<td> 5856 <p> 5857 <span class="green">1.00<br> (1383ns)</span> 5858 </p> 5859 </td> 5860</tr> 5861<tr> 5862<td> 5863 <p> 5864 Binomial (CDF) 5865 </p> 5866 </td> 5867<td> 5868 <p> 5869 <span class="red">2.74<br> (959ns)</span> 5870 </p> 5871 </td> 5872<td> 5873 <p> 5874 <span class="green">1.00<br> (350ns)</span> 5875 </p> 5876 </td> 5877</tr> 5878<tr> 5879<td> 5880 <p> 5881 Binomial (PDF) 5882 </p> 5883 </td> 5884<td> 5885 <p> 5886 <span class="red">2.39<br> (339ns)</span> 5887 </p> 5888 </td> 5889<td> 5890 <p> 5891 <span class="green">1.00<br> (142ns)</span> 5892 </p> 5893 </td> 5894</tr> 5895<tr> 5896<td> 5897 <p> 5898 Binomial (quantile) 5899 </p> 5900 </td> 5901<td> 5902 <p> 5903 <span class="red">2.26<br> (4255ns)</span> 5904 </p> 5905 </td> 5906<td> 5907 <p> 5908 <span class="green">1.00<br> (1884ns)</span> 5909 </p> 5910 </td> 5911</tr> 5912<tr> 5913<td> 5914 <p> 5915 Cauchy (CDF) 5916 </p> 5917 </td> 5918<td> 5919 <p> 5920 <span class="green">1.00<br> (19ns)</span> 5921 </p> 5922 </td> 5923<td> 5924 <p> 5925 <span class="green">1.05<br> (20ns)</span> 5926 </p> 5927 </td> 5928</tr> 5929<tr> 5930<td> 5931 <p> 5932 Cauchy (PDF) 5933 </p> 5934 </td> 5935<td> 5936 <p> 5937 <span class="green">1.00<br> (4ns)</span> 5938 </p> 5939 </td> 5940<td> 5941 <p> 5942 <span class="blue">1.25<br> (5ns)</span> 5943 </p> 5944 </td> 5945</tr> 5946<tr> 5947<td> 5948 <p> 5949 Cauchy (quantile) 5950 </p> 5951 </td> 5952<td> 5953 <p> 5954 <span class="green">1.09<br> (25ns)</span> 5955 </p> 5956 </td> 5957<td> 5958 <p> 5959 <span class="green">1.00<br> (23ns)</span> 5960 </p> 5961 </td> 5962</tr> 5963<tr> 5964<td> 5965 <p> 5966 ChiSquared (CDF) 5967 </p> 5968 </td> 5969<td> 5970 <p> 5971 <span class="blue">1.80<br> (953ns)</span> 5972 </p> 5973 </td> 5974<td> 5975 <p> 5976 <span class="green">1.00<br> (529ns)</span> 5977 </p> 5978 </td> 5979</tr> 5980<tr> 5981<td> 5982 <p> 5983 ChiSquared (PDF) 5984 </p> 5985 </td> 5986<td> 5987 <p> 5988 <span class="blue">1.82<br> (189ns)</span> 5989 </p> 5990 </td> 5991<td> 5992 <p> 5993 <span class="green">1.00<br> (104ns)</span> 5994 </p> 5995 </td> 5996</tr> 5997<tr> 5998<td> 5999 <p> 6000 ChiSquared (quantile) 6001 </p> 6002 </td> 6003<td> 6004 <p> 6005 <span class="blue">1.61<br> (1452ns)</span> 6006 </p> 6007 </td> 6008<td> 6009 <p> 6010 <span class="green">1.00<br> (901ns)</span> 6011 </p> 6012 </td> 6013</tr> 6014<tr> 6015<td> 6016 <p> 6017 Exponential (CDF) 6018 </p> 6019 </td> 6020<td> 6021 <p> 6022 <span class="green">1.14<br> (33ns)</span> 6023 </p> 6024 </td> 6025<td> 6026 <p> 6027 <span class="green">1.00<br> (29ns)</span> 6028 </p> 6029 </td> 6030</tr> 6031<tr> 6032<td> 6033 <p> 6034 Exponential (PDF) 6035 </p> 6036 </td> 6037<td> 6038 <p> 6039 <span class="green">1.06<br> (54ns)</span> 6040 </p> 6041 </td> 6042<td> 6043 <p> 6044 <span class="green">1.00<br> (51ns)</span> 6045 </p> 6046 </td> 6047</tr> 6048<tr> 6049<td> 6050 <p> 6051 Exponential (quantile) 6052 </p> 6053 </td> 6054<td> 6055 <p> 6056 <span class="blue">1.89<br> (36ns)</span> 6057 </p> 6058 </td> 6059<td> 6060 <p> 6061 <span class="green">1.00<br> (19ns)</span> 6062 </p> 6063 </td> 6064</tr> 6065<tr> 6066<td> 6067 <p> 6068 ExtremeValue (CDF) 6069 </p> 6070 </td> 6071<td> 6072 <p> 6073 <span class="green">1.03<br> (104ns)</span> 6074 </p> 6075 </td> 6076<td> 6077 <p> 6078 <span class="green">1.00<br> (101ns)</span> 6079 </p> 6080 </td> 6081</tr> 6082<tr> 6083<td> 6084 <p> 6085 ExtremeValue (PDF) 6086 </p> 6087 </td> 6088<td> 6089 <p> 6090 <span class="green">1.00<br> (144ns)</span> 6091 </p> 6092 </td> 6093<td> 6094 <p> 6095 <span class="green">1.00<br> (144ns)</span> 6096 </p> 6097 </td> 6098</tr> 6099<tr> 6100<td> 6101 <p> 6102 ExtremeValue (quantile) 6103 </p> 6104 </td> 6105<td> 6106 <p> 6107 <span class="green">1.05<br> (64ns)</span> 6108 </p> 6109 </td> 6110<td> 6111 <p> 6112 <span class="green">1.00<br> (61ns)</span> 6113 </p> 6114 </td> 6115</tr> 6116<tr> 6117<td> 6118 <p> 6119 F (CDF) 6120 </p> 6121 </td> 6122<td> 6123 <p> 6124 <span class="red">2.25<br> (668ns)</span> 6125 </p> 6126 </td> 6127<td> 6128 <p> 6129 <span class="green">1.00<br> (297ns)</span> 6130 </p> 6131 </td> 6132</tr> 6133<tr> 6134<td> 6135 <p> 6136 F (PDF) 6137 </p> 6138 </td> 6139<td> 6140 <p> 6141 <span class="red">2.16<br> (291ns)</span> 6142 </p> 6143 </td> 6144<td> 6145 <p> 6146 <span class="green">1.00<br> (135ns)</span> 6147 </p> 6148 </td> 6149</tr> 6150<tr> 6151<td> 6152 <p> 6153 F (quantile) 6154 </p> 6155 </td> 6156<td> 6157 <p> 6158 <span class="blue">1.90<br> (2215ns)</span> 6159 </p> 6160 </td> 6161<td> 6162 <p> 6163 <span class="green">1.00<br> (1163ns)</span> 6164 </p> 6165 </td> 6166</tr> 6167<tr> 6168<td> 6169 <p> 6170 Gamma (CDF) 6171 </p> 6172 </td> 6173<td> 6174 <p> 6175 <span class="blue">1.63<br> (492ns)</span> 6176 </p> 6177 </td> 6178<td> 6179 <p> 6180 <span class="green">1.00<br> (301ns)</span> 6181 </p> 6182 </td> 6183</tr> 6184<tr> 6185<td> 6186 <p> 6187 Gamma (PDF) 6188 </p> 6189 </td> 6190<td> 6191 <p> 6192 <span class="blue">1.55<br> (236ns)</span> 6193 </p> 6194 </td> 6195<td> 6196 <p> 6197 <span class="green">1.00<br> (152ns)</span> 6198 </p> 6199 </td> 6200</tr> 6201<tr> 6202<td> 6203 <p> 6204 Gamma (quantile) 6205 </p> 6206 </td> 6207<td> 6208 <p> 6209 <span class="blue">1.44<br> (1204ns)</span> 6210 </p> 6211 </td> 6212<td> 6213 <p> 6214 <span class="green">1.00<br> (837ns)</span> 6215 </p> 6216 </td> 6217</tr> 6218<tr> 6219<td> 6220 <p> 6221 Geometric (CDF) 6222 </p> 6223 </td> 6224<td> 6225 <p> 6226 <span class="blue">1.38<br> (40ns)</span> 6227 </p> 6228 </td> 6229<td> 6230 <p> 6231 <span class="green">1.00<br> (29ns)</span> 6232 </p> 6233 </td> 6234</tr> 6235<tr> 6236<td> 6237 <p> 6238 Geometric (PDF) 6239 </p> 6240 </td> 6241<td> 6242 <p> 6243 <span class="green">1.00<br> (46ns)</span> 6244 </p> 6245 </td> 6246<td> 6247 <p> 6248 <span class="green">1.00<br> (46ns)</span> 6249 </p> 6250 </td> 6251</tr> 6252<tr> 6253<td> 6254 <p> 6255 Geometric (quantile) 6256 </p> 6257 </td> 6258<td> 6259 <p> 6260 <span class="blue">1.64<br> (36ns)</span> 6261 </p> 6262 </td> 6263<td> 6264 <p> 6265 <span class="green">1.00<br> (22ns)</span> 6266 </p> 6267 </td> 6268</tr> 6269<tr> 6270<td> 6271 <p> 6272 Hypergeometric (CDF) 6273 </p> 6274 </td> 6275<td> 6276 <p> 6277 <span class="green">1.11<br> (49938ns)</span> 6278 </p> 6279 </td> 6280<td> 6281 <p> 6282 <span class="green">1.00<br> (45127ns)</span> 6283 </p> 6284 </td> 6285</tr> 6286<tr> 6287<td> 6288 <p> 6289 Hypergeometric (PDF) 6290 </p> 6291 </td> 6292<td> 6293 <p> 6294 <span class="green">1.08<br> (53353ns)</span> 6295 </p> 6296 </td> 6297<td> 6298 <p> 6299 <span class="green">1.00<br> (49364ns)</span> 6300 </p> 6301 </td> 6302</tr> 6303<tr> 6304<td> 6305 <p> 6306 Hypergeometric (quantile) 6307 </p> 6308 </td> 6309<td> 6310 <p> 6311 <span class="green">1.00<br> (105555ns)</span> 6312 </p> 6313 </td> 6314<td> 6315 <p> 6316 <span class="blue">1.25<br> (132253ns)</span> 6317 </p> 6318 </td> 6319</tr> 6320<tr> 6321<td> 6322 <p> 6323 InverseChiSquared (CDF) 6324 </p> 6325 </td> 6326<td> 6327 <p> 6328 <span class="red">2.05<br> (1326ns)</span> 6329 </p> 6330 </td> 6331<td> 6332 <p> 6333 <span class="green">1.00<br> (647ns)</span> 6334 </p> 6335 </td> 6336</tr> 6337<tr> 6338<td> 6339 <p> 6340 InverseChiSquared (PDF) 6341 </p> 6342 </td> 6343<td> 6344 <p> 6345 <span class="blue">1.72<br> (217ns)</span> 6346 </p> 6347 </td> 6348<td> 6349 <p> 6350 <span class="green">1.00<br> (126ns)</span> 6351 </p> 6352 </td> 6353</tr> 6354<tr> 6355<td> 6356 <p> 6357 InverseChiSquared (quantile) 6358 </p> 6359 </td> 6360<td> 6361 <p> 6362 <span class="blue">1.79<br> (1852ns)</span> 6363 </p> 6364 </td> 6365<td> 6366 <p> 6367 <span class="green">1.00<br> (1035ns)</span> 6368 </p> 6369 </td> 6370</tr> 6371<tr> 6372<td> 6373 <p> 6374 InverseGamma (CDF) 6375 </p> 6376 </td> 6377<td> 6378 <p> 6379 <span class="blue">1.61<br> (516ns)</span> 6380 </p> 6381 </td> 6382<td> 6383 <p> 6384 <span class="green">1.00<br> (320ns)</span> 6385 </p> 6386 </td> 6387</tr> 6388<tr> 6389<td> 6390 <p> 6391 InverseGamma (PDF) 6392 </p> 6393 </td> 6394<td> 6395 <p> 6396 <span class="blue">1.53<br> (256ns)</span> 6397 </p> 6398 </td> 6399<td> 6400 <p> 6401 <span class="green">1.00<br> (167ns)</span> 6402 </p> 6403 </td> 6404</tr> 6405<tr> 6406<td> 6407 <p> 6408 InverseGamma (quantile) 6409 </p> 6410 </td> 6411<td> 6412 <p> 6413 <span class="blue">1.43<br> (1268ns)</span> 6414 </p> 6415 </td> 6416<td> 6417 <p> 6418 <span class="green">1.00<br> (884ns)</span> 6419 </p> 6420 </td> 6421</tr> 6422<tr> 6423<td> 6424 <p> 6425 InverseGaussian (CDF) 6426 </p> 6427 </td> 6428<td> 6429 <p> 6430 <span class="green">1.00<br> (172ns)</span> 6431 </p> 6432 </td> 6433<td> 6434 <p> 6435 <span class="green">1.00<br> (172ns)</span> 6436 </p> 6437 </td> 6438</tr> 6439<tr> 6440<td> 6441 <p> 6442 InverseGaussian (PDF) 6443 </p> 6444 </td> 6445<td> 6446 <p> 6447 <span class="green">1.00<br> (28ns)</span> 6448 </p> 6449 </td> 6450<td> 6451 <p> 6452 <span class="green">1.14<br> (32ns)</span> 6453 </p> 6454 </td> 6455</tr> 6456<tr> 6457<td> 6458 <p> 6459 InverseGaussian (quantile) 6460 </p> 6461 </td> 6462<td> 6463 <p> 6464 <span class="green">1.01<br> (2657ns)</span> 6465 </p> 6466 </td> 6467<td> 6468 <p> 6469 <span class="green">1.00<br> (2635ns)</span> 6470 </p> 6471 </td> 6472</tr> 6473<tr> 6474<td> 6475 <p> 6476 Laplace (CDF) 6477 </p> 6478 </td> 6479<td> 6480 <p> 6481 <span class="green">1.02<br> (50ns)</span> 6482 </p> 6483 </td> 6484<td> 6485 <p> 6486 <span class="green">1.00<br> (49ns)</span> 6487 </p> 6488 </td> 6489</tr> 6490<tr> 6491<td> 6492 <p> 6493 Laplace (PDF) 6494 </p> 6495 </td> 6496<td> 6497 <p> 6498 <span class="green">1.00<br> (49ns)</span> 6499 </p> 6500 </td> 6501<td> 6502 <p> 6503 <span class="green">1.02<br> (50ns)</span> 6504 </p> 6505 </td> 6506</tr> 6507<tr> 6508<td> 6509 <p> 6510 Laplace (quantile) 6511 </p> 6512 </td> 6513<td> 6514 <p> 6515 <span class="green">1.00<br> (33ns)</span> 6516 </p> 6517 </td> 6518<td> 6519 <p> 6520 <span class="green">1.00<br> (33ns)</span> 6521 </p> 6522 </td> 6523</tr> 6524<tr> 6525<td> 6526 <p> 6527 LogNormal (CDF) 6528 </p> 6529 </td> 6530<td> 6531 <p> 6532 <span class="blue">1.39<br> (176ns)</span> 6533 </p> 6534 </td> 6535<td> 6536 <p> 6537 <span class="green">1.00<br> (127ns)</span> 6538 </p> 6539 </td> 6540</tr> 6541<tr> 6542<td> 6543 <p> 6544 LogNormal (PDF) 6545 </p> 6546 </td> 6547<td> 6548 <p> 6549 <span class="green">1.01<br> (87ns)</span> 6550 </p> 6551 </td> 6552<td> 6553 <p> 6554 <span class="green">1.00<br> (86ns)</span> 6555 </p> 6556 </td> 6557</tr> 6558<tr> 6559<td> 6560 <p> 6561 LogNormal (quantile) 6562 </p> 6563 </td> 6564<td> 6565 <p> 6566 <span class="blue">1.23<br> (116ns)</span> 6567 </p> 6568 </td> 6569<td> 6570 <p> 6571 <span class="green">1.00<br> (94ns)</span> 6572 </p> 6573 </td> 6574</tr> 6575<tr> 6576<td> 6577 <p> 6578 Logistic (CDF) 6579 </p> 6580 </td> 6581<td> 6582 <p> 6583 <span class="green">1.00<br> (46ns)</span> 6584 </p> 6585 </td> 6586<td> 6587 <p> 6588 <span class="green">1.02<br> (47ns)</span> 6589 </p> 6590 </td> 6591</tr> 6592<tr> 6593<td> 6594 <p> 6595 Logistic (PDF) 6596 </p> 6597 </td> 6598<td> 6599 <p> 6600 <span class="green">1.00<br> (46ns)</span> 6601 </p> 6602 </td> 6603<td> 6604 <p> 6605 <span class="green">1.02<br> (47ns)</span> 6606 </p> 6607 </td> 6608</tr> 6609<tr> 6610<td> 6611 <p> 6612 Logistic (quantile) 6613 </p> 6614 </td> 6615<td> 6616 <p> 6617 <span class="green">1.00<br> (33ns)</span> 6618 </p> 6619 </td> 6620<td> 6621 <p> 6622 <span class="green">1.03<br> (34ns)</span> 6623 </p> 6624 </td> 6625</tr> 6626<tr> 6627<td> 6628 <p> 6629 NegativeBinomial (CDF) 6630 </p> 6631 </td> 6632<td> 6633 <p> 6634 <span class="red">2.39<br> (1158ns)</span> 6635 </p> 6636 </td> 6637<td> 6638 <p> 6639 <span class="green">1.00<br> (485ns)</span> 6640 </p> 6641 </td> 6642</tr> 6643<tr> 6644<td> 6645 <p> 6646 NegativeBinomial (PDF) 6647 </p> 6648 </td> 6649<td> 6650 <p> 6651 <span class="red">2.27<br> (307ns)</span> 6652 </p> 6653 </td> 6654<td> 6655 <p> 6656 <span class="green">1.00<br> (135ns)</span> 6657 </p> 6658 </td> 6659</tr> 6660<tr> 6661<td> 6662 <p> 6663 NegativeBinomial (quantile) 6664 </p> 6665 </td> 6666<td> 6667 <p> 6668 <span class="red">2.36<br> (6154ns)</span> 6669 </p> 6670 </td> 6671<td> 6672 <p> 6673 <span class="green">1.00<br> (2608ns)</span> 6674 </p> 6675 </td> 6676</tr> 6677<tr> 6678<td> 6679 <p> 6680 NonCentralBeta (CDF) 6681 </p> 6682 </td> 6683<td> 6684 <p> 6685 <span class="blue">1.80<br> (1450ns)</span> 6686 </p> 6687 </td> 6688<td> 6689 <p> 6690 <span class="green">1.00<br> (806ns)</span> 6691 </p> 6692 </td> 6693</tr> 6694<tr> 6695<td> 6696 <p> 6697 NonCentralBeta (PDF) 6698 </p> 6699 </td> 6700<td> 6701 <p> 6702 <span class="blue">1.98<br> (969ns)</span> 6703 </p> 6704 </td> 6705<td> 6706 <p> 6707 <span class="green">1.00<br> (490ns)</span> 6708 </p> 6709 </td> 6710</tr> 6711<tr> 6712<td> 6713 <p> 6714 NonCentralBeta (quantile) 6715 </p> 6716 </td> 6717<td> 6718 <p> 6719 <span class="blue">1.85<br> (37583ns)</span> 6720 </p> 6721 </td> 6722<td> 6723 <p> 6724 <span class="green">1.00<br> (20369ns)</span> 6725 </p> 6726 </td> 6727</tr> 6728<tr> 6729<td> 6730 <p> 6731 NonCentralChiSquared (CDF) 6732 </p> 6733 </td> 6734<td> 6735 <p> 6736 <span class="blue">1.24<br> (4037ns)</span> 6737 </p> 6738 </td> 6739<td> 6740 <p> 6741 <span class="green">1.00<br> (3256ns)</span> 6742 </p> 6743 </td> 6744</tr> 6745<tr> 6746<td> 6747 <p> 6748 NonCentralChiSquared (PDF) 6749 </p> 6750 </td> 6751<td> 6752 <p> 6753 <span class="blue">1.23<br> (630ns)</span> 6754 </p> 6755 </td> 6756<td> 6757 <p> 6758 <span class="green">1.00<br> (514ns)</span> 6759 </p> 6760 </td> 6761</tr> 6762<tr> 6763<td> 6764 <p> 6765 NonCentralChiSquared (quantile) 6766 </p> 6767 </td> 6768<td> 6769 <p> 6770 <span class="blue">1.61<br> (33255ns)</span> 6771 </p> 6772 </td> 6773<td> 6774 <p> 6775 <span class="green">1.00<br> (20620ns)</span> 6776 </p> 6777 </td> 6778</tr> 6779<tr> 6780<td> 6781 <p> 6782 NonCentralF (CDF) 6783 </p> 6784 </td> 6785<td> 6786 <p> 6787 <span class="blue">1.87<br> (1426ns)</span> 6788 </p> 6789 </td> 6790<td> 6791 <p> 6792 <span class="green">1.00<br> (762ns)</span> 6793 </p> 6794 </td> 6795</tr> 6796<tr> 6797<td> 6798 <p> 6799 NonCentralF (PDF) 6800 </p> 6801 </td> 6802<td> 6803 <p> 6804 <span class="red">2.00<br> (1306ns)</span> 6805 </p> 6806 </td> 6807<td> 6808 <p> 6809 <span class="green">1.00<br> (652ns)</span> 6810 </p> 6811 </td> 6812</tr> 6813<tr> 6814<td> 6815 <p> 6816 NonCentralF (quantile) 6817 </p> 6818 </td> 6819<td> 6820 <p> 6821 <span class="blue">1.91<br> (22025ns)</span> 6822 </p> 6823 </td> 6824<td> 6825 <p> 6826 <span class="green">1.00<br> (11560ns)</span> 6827 </p> 6828 </td> 6829</tr> 6830<tr> 6831<td> 6832 <p> 6833 NonCentralT (CDF) 6834 </p> 6835 </td> 6836<td> 6837 <p> 6838 <span class="red">2.05<br> (6473ns)</span> 6839 </p> 6840 </td> 6841<td> 6842 <p> 6843 <span class="green">1.00<br> (3155ns)</span> 6844 </p> 6845 </td> 6846</tr> 6847<tr> 6848<td> 6849 <p> 6850 NonCentralT (PDF) 6851 </p> 6852 </td> 6853<td> 6854 <p> 6855 <span class="red">2.01<br> (4098ns)</span> 6856 </p> 6857 </td> 6858<td> 6859 <p> 6860 <span class="green">1.00<br> (2040ns)</span> 6861 </p> 6862 </td> 6863</tr> 6864<tr> 6865<td> 6866 <p> 6867 NonCentralT (quantile) 6868 </p> 6869 </td> 6870<td> 6871 <p> 6872 <span class="red">2.03<br> (65926ns)</span> 6873 </p> 6874 </td> 6875<td> 6876 <p> 6877 <span class="green">1.00<br> (32431ns)</span> 6878 </p> 6879 </td> 6880</tr> 6881<tr> 6882<td> 6883 <p> 6884 Normal (CDF) 6885 </p> 6886 </td> 6887<td> 6888 <p> 6889 <span class="green">1.16<br> (135ns)</span> 6890 </p> 6891 </td> 6892<td> 6893 <p> 6894 <span class="green">1.00<br> (116ns)</span> 6895 </p> 6896 </td> 6897</tr> 6898<tr> 6899<td> 6900 <p> 6901 Normal (PDF) 6902 </p> 6903 </td> 6904<td> 6905 <p> 6906 <span class="green">1.00<br> (48ns)</span> 6907 </p> 6908 </td> 6909<td> 6910 <p> 6911 <span class="blue">1.23<br> (59ns)</span> 6912 </p> 6913 </td> 6914</tr> 6915<tr> 6916<td> 6917 <p> 6918 Normal (quantile) 6919 </p> 6920 </td> 6921<td> 6922 <p> 6923 <span class="blue">1.45<br> (80ns)</span> 6924 </p> 6925 </td> 6926<td> 6927 <p> 6928 <span class="green">1.00<br> (55ns)</span> 6929 </p> 6930 </td> 6931</tr> 6932<tr> 6933<td> 6934 <p> 6935 Pareto (CDF) 6936 </p> 6937 </td> 6938<td> 6939 <p> 6940 <span class="green">1.13<br> (59ns)</span> 6941 </p> 6942 </td> 6943<td> 6944 <p> 6945 <span class="green">1.00<br> (52ns)</span> 6946 </p> 6947 </td> 6948</tr> 6949<tr> 6950<td> 6951 <p> 6952 Pareto (PDF) 6953 </p> 6954 </td> 6955<td> 6956 <p> 6957 <span class="green">1.04<br> (96ns)</span> 6958 </p> 6959 </td> 6960<td> 6961 <p> 6962 <span class="green">1.00<br> (92ns)</span> 6963 </p> 6964 </td> 6965</tr> 6966<tr> 6967<td> 6968 <p> 6969 Pareto (quantile) 6970 </p> 6971 </td> 6972<td> 6973 <p> 6974 <span class="green">1.00<br> (82ns)</span> 6975 </p> 6976 </td> 6977<td> 6978 <p> 6979 <span class="green">1.02<br> (84ns)</span> 6980 </p> 6981 </td> 6982</tr> 6983<tr> 6984<td> 6985 <p> 6986 Poisson (CDF) 6987 </p> 6988 </td> 6989<td> 6990 <p> 6991 <span class="blue">1.90<br> (254ns)</span> 6992 </p> 6993 </td> 6994<td> 6995 <p> 6996 <span class="green">1.00<br> (134ns)</span> 6997 </p> 6998 </td> 6999</tr> 7000<tr> 7001<td> 7002 <p> 7003 Poisson (PDF) 7004 </p> 7005 </td> 7006<td> 7007 <p> 7008 <span class="blue">1.53<br> (171ns)</span> 7009 </p> 7010 </td> 7011<td> 7012 <p> 7013 <span class="green">1.00<br> (112ns)</span> 7014 </p> 7015 </td> 7016</tr> 7017<tr> 7018<td> 7019 <p> 7020 Poisson (quantile) 7021 </p> 7022 </td> 7023<td> 7024 <p> 7025 <span class="blue">1.76<br> (1128ns)</span> 7026 </p> 7027 </td> 7028<td> 7029 <p> 7030 <span class="green">1.00<br> (641ns)</span> 7031 </p> 7032 </td> 7033</tr> 7034<tr> 7035<td> 7036 <p> 7037 Rayleigh (CDF) 7038 </p> 7039 </td> 7040<td> 7041 <p> 7042 <span class="blue">1.24<br> (47ns)</span> 7043 </p> 7044 </td> 7045<td> 7046 <p> 7047 <span class="green">1.00<br> (38ns)</span> 7048 </p> 7049 </td> 7050</tr> 7051<tr> 7052<td> 7053 <p> 7054 Rayleigh (PDF) 7055 </p> 7056 </td> 7057<td> 7058 <p> 7059 <span class="green">1.00<br> (64ns)</span> 7060 </p> 7061 </td> 7062<td> 7063 <p> 7064 <span class="green">1.09<br> (70ns)</span> 7065 </p> 7066 </td> 7067</tr> 7068<tr> 7069<td> 7070 <p> 7071 Rayleigh (quantile) 7072 </p> 7073 </td> 7074<td> 7075 <p> 7076 <span class="blue">2.00<br> (48ns)</span> 7077 </p> 7078 </td> 7079<td> 7080 <p> 7081 <span class="green">1.00<br> (24ns)</span> 7082 </p> 7083 </td> 7084</tr> 7085<tr> 7086<td> 7087 <p> 7088 SkewNormal (CDF) 7089 </p> 7090 </td> 7091<td> 7092 <p> 7093 <span class="green">1.06<br> (669ns)</span> 7094 </p> 7095 </td> 7096<td> 7097 <p> 7098 <span class="green">1.00<br> (632ns)</span> 7099 </p> 7100 </td> 7101</tr> 7102<tr> 7103<td> 7104 <p> 7105 SkewNormal (PDF) 7106 </p> 7107 </td> 7108<td> 7109 <p> 7110 <span class="green">1.09<br> (173ns)</span> 7111 </p> 7112 </td> 7113<td> 7114 <p> 7115 <span class="green">1.00<br> (159ns)</span> 7116 </p> 7117 </td> 7118</tr> 7119<tr> 7120<td> 7121 <p> 7122 SkewNormal (quantile) 7123 </p> 7124 </td> 7125<td> 7126 <p> 7127 <span class="green">1.18<br> (6968ns)</span> 7128 </p> 7129 </td> 7130<td> 7131 <p> 7132 <span class="green">1.00<br> (5903ns)</span> 7133 </p> 7134 </td> 7135</tr> 7136<tr> 7137<td> 7138 <p> 7139 StudentsT (CDF) 7140 </p> 7141 </td> 7142<td> 7143 <p> 7144 <span class="blue">1.60<br> (1151ns)</span> 7145 </p> 7146 </td> 7147<td> 7148 <p> 7149 <span class="green">1.00<br> (721ns)</span> 7150 </p> 7151 </td> 7152</tr> 7153<tr> 7154<td> 7155 <p> 7156 StudentsT (PDF) 7157 </p> 7158 </td> 7159<td> 7160 <p> 7161 <span class="blue">1.94<br> (360ns)</span> 7162 </p> 7163 </td> 7164<td> 7165 <p> 7166 <span class="green">1.00<br> (186ns)</span> 7167 </p> 7168 </td> 7169</tr> 7170<tr> 7171<td> 7172 <p> 7173 StudentsT (quantile) 7174 </p> 7175 </td> 7176<td> 7177 <p> 7178 <span class="blue">1.26<br> (1461ns)</span> 7179 </p> 7180 </td> 7181<td> 7182 <p> 7183 <span class="green">1.00<br> (1161ns)</span> 7184 </p> 7185 </td> 7186</tr> 7187<tr> 7188<td> 7189 <p> 7190 Weibull (CDF) 7191 </p> 7192 </td> 7193<td> 7194 <p> 7195 <span class="blue">1.25<br> (96ns)</span> 7196 </p> 7197 </td> 7198<td> 7199 <p> 7200 <span class="green">1.00<br> (77ns)</span> 7201 </p> 7202 </td> 7203</tr> 7204<tr> 7205<td> 7206 <p> 7207 Weibull (PDF) 7208 </p> 7209 </td> 7210<td> 7211 <p> 7212 <span class="green">1.18<br> (164ns)</span> 7213 </p> 7214 </td> 7215<td> 7216 <p> 7217 <span class="green">1.00<br> (139ns)</span> 7218 </p> 7219 </td> 7220</tr> 7221<tr> 7222<td> 7223 <p> 7224 Weibull (quantile) 7225 </p> 7226 </td> 7227<td> 7228 <p> 7229 <span class="green">1.00<br> (133ns)</span> 7230 </p> 7231 </td> 7232<td> 7233 <p> 7234 <span class="green">1.01<br> (134ns)</span> 7235 </p> 7236 </td> 7237</tr> 7238</tbody> 7239</table></div> 7240</div> 7241<br class="table-break"> 7242</div> 7243<div class="section"> 7244<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 7245<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Distribution performance comparison with Microsoft Visual C++ version 14.2 on Windows x64">Distribution 7246 performance comparison with Microsoft Visual C++ version 14.2 on Windows x64</a> 7247</h2></div></div></div> 7248<div class="table"> 7249<a name="special_function_and_distributio.section_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Distribution_performance_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 6. Distribution performance comparison with Microsoft Visual C++ version 7250 14.2 on Windows x64</b></p> 7251<div class="table-contents"><table class="table" summary="Distribution performance comparison with Microsoft Visual C++ version 7252 14.2 on Windows x64"> 7253<colgroup> 7254<col> 7255<col> 7256</colgroup> 7257<thead><tr> 7258<th> 7259 <p> 7260 Function 7261 </p> 7262 </th> 7263<th> 7264 <p> 7265 boost 1.73 7266 </p> 7267 </th> 7268</tr></thead> 7269<tbody> 7270<tr> 7271<td> 7272 <p> 7273 ArcSine (CDF) 7274 </p> 7275 </td> 7276<td> 7277 <p> 7278 <span class="green">1.00<br> (43ns)</span> 7279 </p> 7280 </td> 7281</tr> 7282<tr> 7283<td> 7284 <p> 7285 ArcSine (PDF) 7286 </p> 7287 </td> 7288<td> 7289 <p> 7290 <span class="green">1.00<br> (17ns)</span> 7291 </p> 7292 </td> 7293</tr> 7294<tr> 7295<td> 7296 <p> 7297 ArcSine (quantile) 7298 </p> 7299 </td> 7300<td> 7301 <p> 7302 <span class="green">1.00<br> (30ns)</span> 7303 </p> 7304 </td> 7305</tr> 7306<tr> 7307<td> 7308 <p> 7309 Beta (CDF) 7310 </p> 7311 </td> 7312<td> 7313 <p> 7314 <span class="green">1.00<br> (158ns)</span> 7315 </p> 7316 </td> 7317</tr> 7318<tr> 7319<td> 7320 <p> 7321 Beta (PDF) 7322 </p> 7323 </td> 7324<td> 7325 <p> 7326 <span class="green">1.00<br> (104ns)</span> 7327 </p> 7328 </td> 7329</tr> 7330<tr> 7331<td> 7332 <p> 7333 Beta (quantile) 7334 </p> 7335 </td> 7336<td> 7337 <p> 7338 <span class="green">1.00<br> (806ns)</span> 7339 </p> 7340 </td> 7341</tr> 7342<tr> 7343<td> 7344 <p> 7345 Binomial (CDF) 7346 </p> 7347 </td> 7348<td> 7349 <p> 7350 <span class="green">1.00<br> (413ns)</span> 7351 </p> 7352 </td> 7353</tr> 7354<tr> 7355<td> 7356 <p> 7357 Binomial (PDF) 7358 </p> 7359 </td> 7360<td> 7361 <p> 7362 <span class="green">1.00<br> (127ns)</span> 7363 </p> 7364 </td> 7365</tr> 7366<tr> 7367<td> 7368 <p> 7369 Binomial (quantile) 7370 </p> 7371 </td> 7372<td> 7373 <p> 7374 <span class="green">1.00<br> (2024ns)</span> 7375 </p> 7376 </td> 7377</tr> 7378<tr> 7379<td> 7380 <p> 7381 Cauchy (CDF) 7382 </p> 7383 </td> 7384<td> 7385 <p> 7386 <span class="green">1.00<br> (26ns)</span> 7387 </p> 7388 </td> 7389</tr> 7390<tr> 7391<td> 7392 <p> 7393 Cauchy (PDF) 7394 </p> 7395 </td> 7396<td> 7397 <p> 7398 <span class="green">1.00<br> (8ns)</span> 7399 </p> 7400 </td> 7401</tr> 7402<tr> 7403<td> 7404 <p> 7405 Cauchy (quantile) 7406 </p> 7407 </td> 7408<td> 7409 <p> 7410 <span class="green">1.00<br> (26ns)</span> 7411 </p> 7412 </td> 7413</tr> 7414<tr> 7415<td> 7416 <p> 7417 ChiSquared (CDF) 7418 </p> 7419 </td> 7420<td> 7421 <p> 7422 <span class="green">1.00<br> (676ns)</span> 7423 </p> 7424 </td> 7425</tr> 7426<tr> 7427<td> 7428 <p> 7429 ChiSquared (PDF) 7430 </p> 7431 </td> 7432<td> 7433 <p> 7434 <span class="green">1.00<br> (93ns)</span> 7435 </p> 7436 </td> 7437</tr> 7438<tr> 7439<td> 7440 <p> 7441 ChiSquared (quantile) 7442 </p> 7443 </td> 7444<td> 7445 <p> 7446 <span class="green">1.00<br> (1073ns)</span> 7447 </p> 7448 </td> 7449</tr> 7450<tr> 7451<td> 7452 <p> 7453 Exponential (CDF) 7454 </p> 7455 </td> 7456<td> 7457 <p> 7458 <span class="green">1.00<br> (17ns)</span> 7459 </p> 7460 </td> 7461</tr> 7462<tr> 7463<td> 7464 <p> 7465 Exponential (PDF) 7466 </p> 7467 </td> 7468<td> 7469 <p> 7470 <span class="green">1.00<br> (15ns)</span> 7471 </p> 7472 </td> 7473</tr> 7474<tr> 7475<td> 7476 <p> 7477 Exponential (quantile) 7478 </p> 7479 </td> 7480<td> 7481 <p> 7482 <span class="green">1.00<br> (20ns)</span> 7483 </p> 7484 </td> 7485</tr> 7486<tr> 7487<td> 7488 <p> 7489 ExtremeValue (CDF) 7490 </p> 7491 </td> 7492<td> 7493 <p> 7494 <span class="green">1.00<br> (26ns)</span> 7495 </p> 7496 </td> 7497</tr> 7498<tr> 7499<td> 7500 <p> 7501 ExtremeValue (PDF) 7502 </p> 7503 </td> 7504<td> 7505 <p> 7506 <span class="green">1.00<br> (27ns)</span> 7507 </p> 7508 </td> 7509</tr> 7510<tr> 7511<td> 7512 <p> 7513 ExtremeValue (quantile) 7514 </p> 7515 </td> 7516<td> 7517 <p> 7518 <span class="green">1.00<br> (34ns)</span> 7519 </p> 7520 </td> 7521</tr> 7522<tr> 7523<td> 7524 <p> 7525 F (CDF) 7526 </p> 7527 </td> 7528<td> 7529 <p> 7530 <span class="green">1.00<br> (277ns)</span> 7531 </p> 7532 </td> 7533</tr> 7534<tr> 7535<td> 7536 <p> 7537 F (PDF) 7538 </p> 7539 </td> 7540<td> 7541 <p> 7542 <span class="green">1.00<br> (97ns)</span> 7543 </p> 7544 </td> 7545</tr> 7546<tr> 7547<td> 7548 <p> 7549 F (quantile) 7550 </p> 7551 </td> 7552<td> 7553 <p> 7554 <span class="green">1.00<br> (901ns)</span> 7555 </p> 7556 </td> 7557</tr> 7558<tr> 7559<td> 7560 <p> 7561 Gamma (CDF) 7562 </p> 7563 </td> 7564<td> 7565 <p> 7566 <span class="green">1.00<br> (234ns)</span> 7567 </p> 7568 </td> 7569</tr> 7570<tr> 7571<td> 7572 <p> 7573 Gamma (PDF) 7574 </p> 7575 </td> 7576<td> 7577 <p> 7578 <span class="green">1.00<br> (85ns)</span> 7579 </p> 7580 </td> 7581</tr> 7582<tr> 7583<td> 7584 <p> 7585 Gamma (quantile) 7586 </p> 7587 </td> 7588<td> 7589 <p> 7590 <span class="green">1.00<br> (640ns)</span> 7591 </p> 7592 </td> 7593</tr> 7594<tr> 7595<td> 7596 <p> 7597 Geometric (CDF) 7598 </p> 7599 </td> 7600<td> 7601 <p> 7602 <span class="green">1.00<br> (18ns)</span> 7603 </p> 7604 </td> 7605</tr> 7606<tr> 7607<td> 7608 <p> 7609 Geometric (PDF) 7610 </p> 7611 </td> 7612<td> 7613 <p> 7614 <span class="green">1.00<br> (24ns)</span> 7615 </p> 7616 </td> 7617</tr> 7618<tr> 7619<td> 7620 <p> 7621 Geometric (quantile) 7622 </p> 7623 </td> 7624<td> 7625 <p> 7626 <span class="green">1.00<br> (20ns)</span> 7627 </p> 7628 </td> 7629</tr> 7630<tr> 7631<td> 7632 <p> 7633 Hypergeometric (CDF) 7634 </p> 7635 </td> 7636<td> 7637 <p> 7638 <span class="green">1.00<br> (244196ns)</span> 7639 </p> 7640 </td> 7641</tr> 7642<tr> 7643<td> 7644 <p> 7645 Hypergeometric (PDF) 7646 </p> 7647 </td> 7648<td> 7649 <p> 7650 <span class="green">1.00<br> (272497ns)</span> 7651 </p> 7652 </td> 7653</tr> 7654<tr> 7655<td> 7656 <p> 7657 Hypergeometric (quantile) 7658 </p> 7659 </td> 7660<td> 7661 <p> 7662 <span class="green">1.00<br> (308077ns)</span> 7663 </p> 7664 </td> 7665</tr> 7666<tr> 7667<td> 7668 <p> 7669 InverseChiSquared (CDF) 7670 </p> 7671 </td> 7672<td> 7673 <p> 7674 <span class="green">1.00<br> (584ns)</span> 7675 </p> 7676 </td> 7677</tr> 7678<tr> 7679<td> 7680 <p> 7681 InverseChiSquared (PDF) 7682 </p> 7683 </td> 7684<td> 7685 <p> 7686 <span class="green">1.00<br> (78ns)</span> 7687 </p> 7688 </td> 7689</tr> 7690<tr> 7691<td> 7692 <p> 7693 InverseChiSquared (quantile) 7694 </p> 7695 </td> 7696<td> 7697 <p> 7698 <span class="green">1.00<br> (884ns)</span> 7699 </p> 7700 </td> 7701</tr> 7702<tr> 7703<td> 7704 <p> 7705 InverseGamma (CDF) 7706 </p> 7707 </td> 7708<td> 7709 <p> 7710 <span class="green">1.00<br> (244ns)</span> 7711 </p> 7712 </td> 7713</tr> 7714<tr> 7715<td> 7716 <p> 7717 InverseGamma (PDF) 7718 </p> 7719 </td> 7720<td> 7721 <p> 7722 <span class="green">1.00<br> (91ns)</span> 7723 </p> 7724 </td> 7725</tr> 7726<tr> 7727<td> 7728 <p> 7729 InverseGamma (quantile) 7730 </p> 7731 </td> 7732<td> 7733 <p> 7734 <span class="green">1.00<br> (638ns)</span> 7735 </p> 7736 </td> 7737</tr> 7738<tr> 7739<td> 7740 <p> 7741 InverseGaussian (CDF) 7742 </p> 7743 </td> 7744<td> 7745 <p> 7746 <span class="green">1.00<br> (109ns)</span> 7747 </p> 7748 </td> 7749</tr> 7750<tr> 7751<td> 7752 <p> 7753 InverseGaussian (PDF) 7754 </p> 7755 </td> 7756<td> 7757 <p> 7758 <span class="green">1.00<br> (12ns)</span> 7759 </p> 7760 </td> 7761</tr> 7762<tr> 7763<td> 7764 <p> 7765 InverseGaussian (quantile) 7766 </p> 7767 </td> 7768<td> 7769 <p> 7770 <span class="green">1.00<br> (1651ns)</span> 7771 </p> 7772 </td> 7773</tr> 7774<tr> 7775<td> 7776 <p> 7777 Laplace (CDF) 7778 </p> 7779 </td> 7780<td> 7781 <p> 7782 <span class="green">1.00<br> (13ns)</span> 7783 </p> 7784 </td> 7785</tr> 7786<tr> 7787<td> 7788 <p> 7789 Laplace (PDF) 7790 </p> 7791 </td> 7792<td> 7793 <p> 7794 <span class="green">1.00<br> (14ns)</span> 7795 </p> 7796 </td> 7797</tr> 7798<tr> 7799<td> 7800 <p> 7801 Laplace (quantile) 7802 </p> 7803 </td> 7804<td> 7805 <p> 7806 <span class="green">1.00<br> (14ns)</span> 7807 </p> 7808 </td> 7809</tr> 7810<tr> 7811<td> 7812 <p> 7813 LogNormal (CDF) 7814 </p> 7815 </td> 7816<td> 7817 <p> 7818 <span class="green">1.00<br> (79ns)</span> 7819 </p> 7820 </td> 7821</tr> 7822<tr> 7823<td> 7824 <p> 7825 LogNormal (PDF) 7826 </p> 7827 </td> 7828<td> 7829 <p> 7830 <span class="green">1.00<br> (35ns)</span> 7831 </p> 7832 </td> 7833</tr> 7834<tr> 7835<td> 7836 <p> 7837 LogNormal (quantile) 7838 </p> 7839 </td> 7840<td> 7841 <p> 7842 <span class="green">1.00<br> (61ns)</span> 7843 </p> 7844 </td> 7845</tr> 7846<tr> 7847<td> 7848 <p> 7849 Logistic (CDF) 7850 </p> 7851 </td> 7852<td> 7853 <p> 7854 <span class="green">1.00<br> (14ns)</span> 7855 </p> 7856 </td> 7857</tr> 7858<tr> 7859<td> 7860 <p> 7861 Logistic (PDF) 7862 </p> 7863 </td> 7864<td> 7865 <p> 7866 <span class="green">1.00<br> (18ns)</span> 7867 </p> 7868 </td> 7869</tr> 7870<tr> 7871<td> 7872 <p> 7873 Logistic (quantile) 7874 </p> 7875 </td> 7876<td> 7877 <p> 7878 <span class="green">1.00<br> (15ns)</span> 7879 </p> 7880 </td> 7881</tr> 7882<tr> 7883<td> 7884 <p> 7885 NegativeBinomial (CDF) 7886 </p> 7887 </td> 7888<td> 7889 <p> 7890 <span class="green">1.00<br> (481ns)</span> 7891 </p> 7892 </td> 7893</tr> 7894<tr> 7895<td> 7896 <p> 7897 NegativeBinomial (PDF) 7898 </p> 7899 </td> 7900<td> 7901 <p> 7902 <span class="green">1.00<br> (114ns)</span> 7903 </p> 7904 </td> 7905</tr> 7906<tr> 7907<td> 7908 <p> 7909 NegativeBinomial (quantile) 7910 </p> 7911 </td> 7912<td> 7913 <p> 7914 <span class="green">1.00<br> (2651ns)</span> 7915 </p> 7916 </td> 7917</tr> 7918<tr> 7919<td> 7920 <p> 7921 NonCentralBeta (CDF) 7922 </p> 7923 </td> 7924<td> 7925 <p> 7926 <span class="green">1.00<br> (735ns)</span> 7927 </p> 7928 </td> 7929</tr> 7930<tr> 7931<td> 7932 <p> 7933 NonCentralBeta (PDF) 7934 </p> 7935 </td> 7936<td> 7937 <p> 7938 <span class="green">1.00<br> (489ns)</span> 7939 </p> 7940 </td> 7941</tr> 7942<tr> 7943<td> 7944 <p> 7945 NonCentralBeta (quantile) 7946 </p> 7947 </td> 7948<td> 7949 <p> 7950 <span class="green">1.00<br> (14689ns)</span> 7951 </p> 7952 </td> 7953</tr> 7954<tr> 7955<td> 7956 <p> 7957 NonCentralChiSquared (CDF) 7958 </p> 7959 </td> 7960<td> 7961 <p> 7962 <span class="green">1.00<br> (2643ns)</span> 7963 </p> 7964 </td> 7965</tr> 7966<tr> 7967<td> 7968 <p> 7969 NonCentralChiSquared (PDF) 7970 </p> 7971 </td> 7972<td> 7973 <p> 7974 <span class="green">1.00<br> (290ns)</span> 7975 </p> 7976 </td> 7977</tr> 7978<tr> 7979<td> 7980 <p> 7981 NonCentralChiSquared (quantile) 7982 </p> 7983 </td> 7984<td> 7985 <p> 7986 <span class="green">1.00<br> (16692ns)</span> 7987 </p> 7988 </td> 7989</tr> 7990<tr> 7991<td> 7992 <p> 7993 NonCentralF (CDF) 7994 </p> 7995 </td> 7996<td> 7997 <p> 7998 <span class="green">1.00<br> (608ns)</span> 7999 </p> 8000 </td> 8001</tr> 8002<tr> 8003<td> 8004 <p> 8005 NonCentralF (PDF) 8006 </p> 8007 </td> 8008<td> 8009 <p> 8010 <span class="green">1.00<br> (467ns)</span> 8011 </p> 8012 </td> 8013</tr> 8014<tr> 8015<td> 8016 <p> 8017 NonCentralF (quantile) 8018 </p> 8019 </td> 8020<td> 8021 <p> 8022 <span class="green">1.00<br> (9122ns)</span> 8023 </p> 8024 </td> 8025</tr> 8026<tr> 8027<td> 8028 <p> 8029 NonCentralT (CDF) 8030 </p> 8031 </td> 8032<td> 8033 <p> 8034 <span class="green">1.00<br> (2375ns)</span> 8035 </p> 8036 </td> 8037</tr> 8038<tr> 8039<td> 8040 <p> 8041 NonCentralT (PDF) 8042 </p> 8043 </td> 8044<td> 8045 <p> 8046 <span class="green">1.00<br> (1701ns)</span> 8047 </p> 8048 </td> 8049</tr> 8050<tr> 8051<td> 8052 <p> 8053 NonCentralT (quantile) 8054 </p> 8055 </td> 8056<td> 8057 <p> 8058 <span class="green">1.00<br> (23683ns)</span> 8059 </p> 8060 </td> 8061</tr> 8062<tr> 8063<td> 8064 <p> 8065 Normal (CDF) 8066 </p> 8067 </td> 8068<td> 8069 <p> 8070 <span class="green">1.00<br> (89ns)</span> 8071 </p> 8072 </td> 8073</tr> 8074<tr> 8075<td> 8076 <p> 8077 Normal (PDF) 8078 </p> 8079 </td> 8080<td> 8081 <p> 8082 <span class="green">1.00<br> (28ns)</span> 8083 </p> 8084 </td> 8085</tr> 8086<tr> 8087<td> 8088 <p> 8089 Normal (quantile) 8090 </p> 8091 </td> 8092<td> 8093 <p> 8094 <span class="green">1.00<br> (44ns)</span> 8095 </p> 8096 </td> 8097</tr> 8098<tr> 8099<td> 8100 <p> 8101 Pareto (CDF) 8102 </p> 8103 </td> 8104<td> 8105 <p> 8106 <span class="green">1.00<br> (34ns)</span> 8107 </p> 8108 </td> 8109</tr> 8110<tr> 8111<td> 8112 <p> 8113 Pareto (PDF) 8114 </p> 8115 </td> 8116<td> 8117 <p> 8118 <span class="green">1.00<br> (102ns)</span> 8119 </p> 8120 </td> 8121</tr> 8122<tr> 8123<td> 8124 <p> 8125 Pareto (quantile) 8126 </p> 8127 </td> 8128<td> 8129 <p> 8130 <span class="green">1.00<br> (50ns)</span> 8131 </p> 8132 </td> 8133</tr> 8134<tr> 8135<td> 8136 <p> 8137 Poisson (CDF) 8138 </p> 8139 </td> 8140<td> 8141 <p> 8142 <span class="green">1.00<br> (84ns)</span> 8143 </p> 8144 </td> 8145</tr> 8146<tr> 8147<td> 8148 <p> 8149 Poisson (PDF) 8150 </p> 8151 </td> 8152<td> 8153 <p> 8154 <span class="green">1.00<br> (49ns)</span> 8155 </p> 8156 </td> 8157</tr> 8158<tr> 8159<td> 8160 <p> 8161 Poisson (quantile) 8162 </p> 8163 </td> 8164<td> 8165 <p> 8166 <span class="green">1.00<br> (440ns)</span> 8167 </p> 8168 </td> 8169</tr> 8170<tr> 8171<td> 8172 <p> 8173 Rayleigh (CDF) 8174 </p> 8175 </td> 8176<td> 8177 <p> 8178 <span class="green">1.00<br> (15ns)</span> 8179 </p> 8180 </td> 8181</tr> 8182<tr> 8183<td> 8184 <p> 8185 Rayleigh (PDF) 8186 </p> 8187 </td> 8188<td> 8189 <p> 8190 <span class="green">1.00<br> (14ns)</span> 8191 </p> 8192 </td> 8193</tr> 8194<tr> 8195<td> 8196 <p> 8197 Rayleigh (quantile) 8198 </p> 8199 </td> 8200<td> 8201 <p> 8202 <span class="green">1.00<br> (23ns)</span> 8203 </p> 8204 </td> 8205</tr> 8206<tr> 8207<td> 8208 <p> 8209 SkewNormal (CDF) 8210 </p> 8211 </td> 8212<td> 8213 <p> 8214 <span class="green">1.00<br> (259ns)</span> 8215 </p> 8216 </td> 8217</tr> 8218<tr> 8219<td> 8220 <p> 8221 SkewNormal (PDF) 8222 </p> 8223 </td> 8224<td> 8225 <p> 8226 <span class="green">1.00<br> (94ns)</span> 8227 </p> 8228 </td> 8229</tr> 8230<tr> 8231<td> 8232 <p> 8233 SkewNormal (quantile) 8234 </p> 8235 </td> 8236<td> 8237 <p> 8238 <span class="green">1.00<br> (2843ns)</span> 8239 </p> 8240 </td> 8241</tr> 8242<tr> 8243<td> 8244 <p> 8245 StudentsT (CDF) 8246 </p> 8247 </td> 8248<td> 8249 <p> 8250 <span class="green">1.00<br> (429ns)</span> 8251 </p> 8252 </td> 8253</tr> 8254<tr> 8255<td> 8256 <p> 8257 StudentsT (PDF) 8258 </p> 8259 </td> 8260<td> 8261 <p> 8262 <span class="green">1.00<br> (146ns)</span> 8263 </p> 8264 </td> 8265</tr> 8266<tr> 8267<td> 8268 <p> 8269 StudentsT (quantile) 8270 </p> 8271 </td> 8272<td> 8273 <p> 8274 <span class="green">1.00<br> (729ns)</span> 8275 </p> 8276 </td> 8277</tr> 8278<tr> 8279<td> 8280 <p> 8281 Weibull (CDF) 8282 </p> 8283 </td> 8284<td> 8285 <p> 8286 <span class="green">1.00<br> (63ns)</span> 8287 </p> 8288 </td> 8289</tr> 8290<tr> 8291<td> 8292 <p> 8293 Weibull (PDF) 8294 </p> 8295 </td> 8296<td> 8297 <p> 8298 <span class="green">1.00<br> (89ns)</span> 8299 </p> 8300 </td> 8301</tr> 8302<tr> 8303<td> 8304 <p> 8305 Weibull (quantile) 8306 </p> 8307 </td> 8308<td> 8309 <p> 8310 <span class="green">1.00<br> (62ns)</span> 8311 </p> 8312 </td> 8313</tr> 8314</tbody> 8315</table></div> 8316</div> 8317<br class="table-break"> 8318</div> 8319<div class="section"> 8320<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 8321<a name="special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Library Comparison with GNU C++ version 9.2.0 on Windows x64">Library 8322 Comparison with GNU C++ version 9.2.0 on Windows x64</a> 8323</h2></div></div></div> 8324<div class="table"> 8325<a name="special_function_and_distributio.section_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Library_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 7. Library Comparison with GNU C++ version 9.2.0 on Windows x64</b></p> 8326<div class="table-contents"><table class="table" summary="Library Comparison with GNU C++ version 9.2.0 on Windows x64"> 8327<colgroup> 8328<col> 8329<col> 8330<col> 8331<col> 8332<col> 8333</colgroup> 8334<thead><tr> 8335<th> 8336 <p> 8337 Function 8338 </p> 8339 </th> 8340<th> 8341 <p> 8342 boost 1.73 8343 </p> 8344 </th> 8345<th> 8346 <p> 8347 boost 1.73<br> promote_double<false> 8348 </p> 8349 </th> 8350<th> 8351 <p> 8352 tr1/cmath 8353 </p> 8354 </th> 8355<th> 8356 <p> 8357 math.h 8358 </p> 8359 </th> 8360</tr></thead> 8361<tbody> 8362<tr> 8363<td> 8364 <p> 8365 assoc_laguerre<br> (2240/2240 tests selected) 8366 </p> 8367 </td> 8368<td> 8369 <p> 8370 <span class="green">1.08<br> (137ns)</span> 8371 </p> 8372 </td> 8373<td> 8374 <p> 8375 <span class="green">1.00<br> (127ns)</span> 8376 </p> 8377 </td> 8378<td> 8379 <p> 8380 <span class="green">1.08<br> (137ns)</span> 8381 </p> 8382 </td> 8383<td> 8384 <p> 8385 <span class="grey">-</span> 8386 </p> 8387 </td> 8388</tr> 8389<tr> 8390<td> 8391 <p> 8392 assoc_legendre<br> (110/400 tests selected) 8393 </p> 8394 </td> 8395<td> 8396 <p> 8397 <span class="grey">-</span> 8398 </p> 8399 </td> 8400<td> 8401 <p> 8402 <span class="grey">-</span> 8403 </p> 8404 </td> 8405<td> 8406 <p> 8407 <span class="green">1.00<br> (40ns)</span> 8408 </p> 8409 </td> 8410<td> 8411 <p> 8412 <span class="grey">-</span> 8413 </p> 8414 </td> 8415</tr> 8416<tr> 8417<td> 8418 <p> 8419 beta<br> (2204/2204 tests selected) 8420 </p> 8421 </td> 8422<td> 8423 <p> 8424 <span class="blue">1.60<br> (322ns)</span> 8425 </p> 8426 </td> 8427<td> 8428 <p> 8429 <span class="green">1.18<br> (237ns)</span> 8430 </p> 8431 </td> 8432<td> 8433 <p> 8434 <span class="green">1.00<br> (201ns)</span> 8435 </p> 8436 </td> 8437<td> 8438 <p> 8439 <span class="grey">-</span> 8440 </p> 8441 </td> 8442</tr> 8443<tr> 8444<td> 8445 <p> 8446 cbrt<br> (85/85 tests selected) 8447 </p> 8448 </td> 8449<td> 8450 <p> 8451 <span class="red">4.67<br> (70ns)</span> 8452 </p> 8453 </td> 8454<td> 8455 <p> 8456 <span class="green">1.00<br> (15ns)</span> 8457 </p> 8458 </td> 8459<td> 8460 <p> 8461 <span class="blue">2.00<br> (30ns)</span> 8462 </p> 8463 </td> 8464<td> 8465 <p> 8466 <span class="red">2.13<br> (32ns)</span> 8467 </p> 8468 </td> 8469</tr> 8470<tr> 8471<td> 8472 <p> 8473 cyl_bessel_i (integer order)<br> (515/526 tests selected) 8474 </p> 8475 </td> 8476<td> 8477 <p> 8478 <span class="red">3.06<br> (597ns)</span> 8479 </p> 8480 </td> 8481<td> 8482 <p> 8483 <span class="green">1.00<br> (195ns)</span> 8484 </p> 8485 </td> 8486<td> 8487 <p> 8488 <span class="green">1.01<br> (196ns)</span> 8489 </p> 8490 </td> 8491<td> 8492 <p> 8493 <span class="grey">-</span> 8494 </p> 8495 </td> 8496</tr> 8497<tr> 8498<td> 8499 <p> 8500 cyl_bessel_i<br> (215/240 tests selected) 8501 </p> 8502 </td> 8503<td> 8504 <p> 8505 <span class="red">5.68<br> (949ns)</span> 8506 </p> 8507 </td> 8508<td> 8509 <p> 8510 <span class="red">2.32<br> (387ns)</span> 8511 </p> 8512 </td> 8513<td> 8514 <p> 8515 <span class="green">1.00<br> (167ns)</span> 8516 </p> 8517 </td> 8518<td> 8519 <p> 8520 <span class="grey">-</span> 8521 </p> 8522 </td> 8523</tr> 8524<tr> 8525<td> 8526 <p> 8527 cyl_bessel_j (integer order)<br> (253/268 tests selected) 8528 </p> 8529 </td> 8530<td> 8531 <p> 8532 <span class="blue">1.92<br> (184ns)</span> 8533 </p> 8534 </td> 8535<td> 8536 <p> 8537 <span class="green">1.00<br> (96ns)</span> 8538 </p> 8539 </td> 8540<td> 8541 <p> 8542 <span class="red">3.12<br> (300ns)</span> 8543 </p> 8544 </td> 8545<td> 8546 <p> 8547 <span class="blue">1.94<br> (186ns)</span> 8548 </p> 8549 </td> 8550</tr> 8551<tr> 8552<td> 8553 <p> 8554 cyl_bessel_j<br> (442/451 tests selected) 8555 </p> 8556 </td> 8557<td> 8558 <p> 8559 <span class="red">2.15<br> (886ns)</span> 8560 </p> 8561 </td> 8562<td> 8563 <p> 8564 <span class="blue">1.21<br> (499ns)</span> 8565 </p> 8566 </td> 8567<td> 8568 <p> 8569 <span class="green">1.00<br> (412ns)</span> 8570 </p> 8571 </td> 8572<td> 8573 <p> 8574 <span class="grey">-</span> 8575 </p> 8576 </td> 8577</tr> 8578<tr> 8579<td> 8580 <p> 8581 cyl_bessel_k (integer order)<br> (505/508 tests selected) 8582 </p> 8583 </td> 8584<td> 8585 <p> 8586 <span class="red">18.17<br> (3724ns)</span> 8587 </p> 8588 </td> 8589<td> 8590 <p> 8591 <span class="green">1.00<br> (205ns)</span> 8592 </p> 8593 </td> 8594<td> 8595 <p> 8596 <span class="red">8.40<br> (1722ns)</span> 8597 </p> 8598 </td> 8599<td> 8600 <p> 8601 <span class="grey">-</span> 8602 </p> 8603 </td> 8604</tr> 8605<tr> 8606<td> 8607 <p> 8608 cyl_bessel_k<br> (187/279 tests selected) 8609 </p> 8610 </td> 8611<td> 8612 <p> 8613 <span class="red">19.68<br> (6847ns)</span> 8614 </p> 8615 </td> 8616<td> 8617 <p> 8618 <span class="green">1.00<br> (348ns)</span> 8619 </p> 8620 </td> 8621<td> 8622 <p> 8623 <span class="red">6.31<br> (2196ns)</span> 8624 </p> 8625 </td> 8626<td> 8627 <p> 8628 <span class="grey">-</span> 8629 </p> 8630 </td> 8631</tr> 8632<tr> 8633<td> 8634 <p> 8635 cyl_neumann (integer order)<br> (424/428 tests selected) 8636 </p> 8637 </td> 8638<td> 8639 <p> 8640 <span class="red">2.13<br> (348ns)</span> 8641 </p> 8642 </td> 8643<td> 8644 <p> 8645 <span class="blue">1.55<br> (252ns)</span> 8646 </p> 8647 </td> 8648<td> 8649 <p> 8650 <span class="red">3.83<br> (624ns)</span> 8651 </p> 8652 </td> 8653<td> 8654 <p> 8655 <span class="green">1.00<br> (163ns)</span> 8656 </p> 8657 </td> 8658</tr> 8659<tr> 8660<td> 8661 <p> 8662 cyl_neumann<br> (428/450 tests selected) 8663 </p> 8664 </td> 8665<td> 8666 <p> 8667 <span class="red">12.46<br> (10032ns)</span> 8668 </p> 8669 </td> 8670<td> 8671 <p> 8672 <span class="red">7.10<br> (5715ns)</span> 8673 </p> 8674 </td> 8675<td> 8676 <p> 8677 <span class="green">1.00<br> (805ns)</span> 8678 </p> 8679 </td> 8680<td> 8681 <p> 8682 <span class="grey">-</span> 8683 </p> 8684 </td> 8685</tr> 8686<tr> 8687<td> 8688 <p> 8689 ellint_1 (complete)<br> (109/109 tests selected) 8690 </p> 8691 </td> 8692<td> 8693 <p> 8694 <span class="blue">1.64<br> (77ns)</span> 8695 </p> 8696 </td> 8697<td> 8698 <p> 8699 <span class="green">1.00<br> (47ns)</span> 8700 </p> 8701 </td> 8702<td> 8703 <p> 8704 <span class="red">2.36<br> (111ns)</span> 8705 </p> 8706 </td> 8707<td> 8708 <p> 8709 <span class="grey">-</span> 8710 </p> 8711 </td> 8712</tr> 8713<tr> 8714<td> 8715 <p> 8716 ellint_1<br> (627/629 tests selected) 8717 </p> 8718 </td> 8719<td> 8720 <p> 8721 <span class="blue">1.41<br> (349ns)</span> 8722 </p> 8723 </td> 8724<td> 8725 <p> 8726 <span class="green">1.00<br> (248ns)</span> 8727 </p> 8728 </td> 8729<td> 8730 <p> 8731 <span class="green">1.09<br> (270ns)</span> 8732 </p> 8733 </td> 8734<td> 8735 <p> 8736 <span class="grey">-</span> 8737 </p> 8738 </td> 8739</tr> 8740<tr> 8741<td> 8742 <p> 8743 ellint_2 (complete)<br> (110/110 tests selected) 8744 </p> 8745 </td> 8746<td> 8747 <p> 8748 <span class="red">2.11<br> (57ns)</span> 8749 </p> 8750 </td> 8751<td> 8752 <p> 8753 <span class="green">1.00<br> (27ns)</span> 8754 </p> 8755 </td> 8756<td> 8757 <p> 8758 <span class="red">9.37<br> (253ns)</span> 8759 </p> 8760 </td> 8761<td> 8762 <p> 8763 <span class="grey">-</span> 8764 </p> 8765 </td> 8766</tr> 8767<tr> 8768<td> 8769 <p> 8770 ellint_2<br> (527/530 tests selected) 8771 </p> 8772 </td> 8773<td> 8774 <p> 8775 <span class="blue">1.50<br> (583ns)</span> 8776 </p> 8777 </td> 8778<td> 8779 <p> 8780 <span class="green">1.00<br> (388ns)</span> 8781 </p> 8782 </td> 8783<td> 8784 <p> 8785 <span class="green">1.06<br> (412ns)</span> 8786 </p> 8787 </td> 8788<td> 8789 <p> 8790 <span class="grey">-</span> 8791 </p> 8792 </td> 8793</tr> 8794<tr> 8795<td> 8796 <p> 8797 ellint_3 (complete)<br> (0/500 tests selected) 8798 </p> 8799 </td> 8800<td> 8801 <p> 8802 <span class="green">nan<br> (0ns)</span> 8803 </p> 8804 </td> 8805<td> 8806 <p> 8807 <span class="green">nan<br> (0ns)</span> 8808 </p> 8809 </td> 8810<td> 8811 <p> 8812 <span class="green">nan<br> (0ns)</span> 8813 </p> 8814 </td> 8815<td> 8816 <p> 8817 <span class="grey">-</span> 8818 </p> 8819 </td> 8820</tr> 8821<tr> 8822<td> 8823 <p> 8824 ellint_3<br> (22/845 tests selected) 8825 </p> 8826 </td> 8827<td> 8828 <p> 8829 <span class="red">2.58<br> (670ns)</span> 8830 </p> 8831 </td> 8832<td> 8833 <p> 8834 <span class="blue">1.53<br> (398ns)</span> 8835 </p> 8836 </td> 8837<td> 8838 <p> 8839 <span class="green">1.00<br> (260ns)</span> 8840 </p> 8841 </td> 8842<td> 8843 <p> 8844 <span class="grey">-</span> 8845 </p> 8846 </td> 8847</tr> 8848<tr> 8849<td> 8850 <p> 8851 erf<br> (950/950 tests selected) 8852 </p> 8853 </td> 8854<td> 8855 <p> 8856 <span class="green">1.00<br> (33ns)</span> 8857 </p> 8858 </td> 8859<td> 8860 <p> 8861 <span class="grey">-</span> 8862 </p> 8863 </td> 8864<td> 8865 <p> 8866 <span class="green">1.15<br> (38ns)</span> 8867 </p> 8868 </td> 8869<td> 8870 <p> 8871 <span class="blue">1.30<br> (43ns)</span> 8872 </p> 8873 </td> 8874</tr> 8875<tr> 8876<td> 8877 <p> 8878 erfc<br> (950/950 tests selected) 8879 </p> 8880 </td> 8881<td> 8882 <p> 8883 <span class="blue">1.76<br> (90ns)</span> 8884 </p> 8885 </td> 8886<td> 8887 <p> 8888 <span class="green">1.00<br> (51ns)</span> 8889 </p> 8890 </td> 8891<td> 8892 <p> 8893 <span class="green">1.08<br> (55ns)</span> 8894 </p> 8895 </td> 8896<td> 8897 <p> 8898 <span class="blue">1.25<br> (64ns)</span> 8899 </p> 8900 </td> 8901</tr> 8902<tr> 8903<td> 8904 <p> 8905 expint<br> (436/436 tests selected) 8906 </p> 8907 </td> 8908<td> 8909 <p> 8910 <span class="blue">1.53<br> (92ns)</span> 8911 </p> 8912 </td> 8913<td> 8914 <p> 8915 <span class="green">1.00<br> (60ns)</span> 8916 </p> 8917 </td> 8918<td> 8919 <p> 8920 <span class="blue">1.83<br> (110ns)</span> 8921 </p> 8922 </td> 8923<td> 8924 <p> 8925 <span class="grey">-</span> 8926 </p> 8927 </td> 8928</tr> 8929<tr> 8930<td> 8931 <p> 8932 expm1<br> (80/80 tests selected) 8933 </p> 8934 </td> 8935<td> 8936 <p> 8937 <span class="blue">1.38<br> (33ns)</span> 8938 </p> 8939 </td> 8940<td> 8941 <p> 8942 <span class="green">1.08<br> (26ns)</span> 8943 </p> 8944 </td> 8945<td> 8946 <p> 8947 <span class="green">1.00<br> (24ns)</span> 8948 </p> 8949 </td> 8950<td> 8951 <p> 8952 <span class="green">1.00<br> (24ns)</span> 8953 </p> 8954 </td> 8955</tr> 8956<tr> 8957<td> 8958 <p> 8959 laguerre<br> (280/280 tests selected) 8960 </p> 8961 </td> 8962<td> 8963 <p> 8964 <span class="green">1.07<br> (112ns)</span> 8965 </p> 8966 </td> 8967<td> 8968 <p> 8969 <span class="green">1.00<br> (105ns)</span> 8970 </p> 8971 </td> 8972<td> 8973 <p> 8974 <span class="green">1.03<br> (108ns)</span> 8975 </p> 8976 </td> 8977<td> 8978 <p> 8979 <span class="grey">-</span> 8980 </p> 8981 </td> 8982</tr> 8983<tr> 8984<td> 8985 <p> 8986 legendre<br> (300/300 tests selected) 8987 </p> 8988 </td> 8989<td> 8990 <p> 8991 <span class="blue">1.25<br> (320ns)</span> 8992 </p> 8993 </td> 8994<td> 8995 <p> 8996 <span class="green">1.00<br> (255ns)</span> 8997 </p> 8998 </td> 8999<td> 9000 <p> 9001 <span class="blue">1.27<br> (323ns)</span> 9002 </p> 9003 </td> 9004<td> 9005 <p> 9006 <span class="grey">-</span> 9007 </p> 9008 </td> 9009</tr> 9010<tr> 9011<td> 9012 <p> 9013 lgamma<br> (400/400 tests selected) 9014 </p> 9015 </td> 9016<td> 9017 <p> 9018 <span class="red">3.40<br> (214ns)</span> 9019 </p> 9020 </td> 9021<td> 9022 <p> 9023 <span class="red">2.54<br> (160ns)</span> 9024 </p> 9025 </td> 9026<td> 9027 <p> 9028 <span class="green">1.00<br> (63ns)</span> 9029 </p> 9030 </td> 9031<td> 9032 <p> 9033 <span class="green">1.02<br> (64ns)</span> 9034 </p> 9035 </td> 9036</tr> 9037<tr> 9038<td> 9039 <p> 9040 log1p<br> (80/80 tests selected) 9041 </p> 9042 </td> 9043<td> 9044 <p> 9045 <span class="blue">1.71<br> (29ns)</span> 9046 </p> 9047 </td> 9048<td> 9049 <p> 9050 <span class="green">1.00<br> (17ns)</span> 9051 </p> 9052 </td> 9053<td> 9054 <p> 9055 <span class="blue">1.53<br> (26ns)</span> 9056 </p> 9057 </td> 9058<td> 9059 <p> 9060 <span class="blue">1.71<br> (29ns)</span> 9061 </p> 9062 </td> 9063</tr> 9064<tr> 9065<td> 9066 <p> 9067 sph_bessel<br> (483/483 tests selected) 9068 </p> 9069 </td> 9070<td> 9071 <p> 9072 <span class="blue">1.48<br> (975ns)</span> 9073 </p> 9074 </td> 9075<td> 9076 <p> 9077 <span class="green">1.00<br> (661ns)</span> 9078 </p> 9079 </td> 9080<td> 9081 <p> 9082 <span class="red">3.02<br> (1999ns)</span> 9083 </p> 9084 </td> 9085<td> 9086 <p> 9087 <span class="grey">-</span> 9088 </p> 9089 </td> 9090</tr> 9091<tr> 9092<td> 9093 <p> 9094 sph_neumann<br> (284/284 tests selected) 9095 </p> 9096 </td> 9097<td> 9098 <p> 9099 <span class="red">2.96<br> (3153ns)</span> 9100 </p> 9101 </td> 9102<td> 9103 <p> 9104 <span class="green">1.00<br> (1064ns)</span> 9105 </p> 9106 </td> 9107<td> 9108 <p> 9109 <span class="red">2.73<br> (2906ns)</span> 9110 </p> 9111 </td> 9112<td> 9113 <p> 9114 <span class="grey">-</span> 9115 </p> 9116 </td> 9117</tr> 9118<tr> 9119<td> 9120 <p> 9121 tgamma<br> (400/400 tests selected) 9122 </p> 9123 </td> 9124<td> 9125 <p> 9126 <span class="red">3.32<br> (259ns)</span> 9127 </p> 9128 </td> 9129<td> 9130 <p> 9131 <span class="red">2.03<br> (158ns)</span> 9132 </p> 9133 </td> 9134<td> 9135 <p> 9136 <span class="green">1.01<br> (79ns)</span> 9137 </p> 9138 </td> 9139<td> 9140 <p> 9141 <span class="green">1.00<br> (78ns)</span> 9142 </p> 9143 </td> 9144</tr> 9145<tr> 9146<td> 9147 <p> 9148 zeta<br> (448/448 tests selected) 9149 </p> 9150 </td> 9151<td> 9152 <p> 9153 <span class="blue">1.40<br> (310ns)</span> 9154 </p> 9155 </td> 9156<td> 9157 <p> 9158 <span class="green">1.00<br> (221ns)</span> 9159 </p> 9160 </td> 9161<td> 9162 <p> 9163 <span class="red">918.24<br> (202930ns)</span> 9164 </p> 9165 </td> 9166<td> 9167 <p> 9168 <span class="grey">-</span> 9169 </p> 9170 </td> 9171</tr> 9172</tbody> 9173</table></div> 9174</div> 9175<br class="table-break"> 9176</div> 9177<div class="section"> 9178<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 9179<a name="special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Library Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Library 9180 Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a> 9181</h2></div></div></div> 9182<div class="table"> 9183<a name="special_function_and_distributio.section_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Library_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 8. Library Comparison with Microsoft Visual C++ version 14.2 on Windows 9184 x64</b></p> 9185<div class="table-contents"><table class="table" summary="Library Comparison with Microsoft Visual C++ version 14.2 on Windows 9186 x64"> 9187<colgroup> 9188<col> 9189<col> 9190<col> 9191</colgroup> 9192<thead><tr> 9193<th> 9194 <p> 9195 Function 9196 </p> 9197 </th> 9198<th> 9199 <p> 9200 boost 1.73 9201 </p> 9202 </th> 9203<th> 9204 <p> 9205 math.h 9206 </p> 9207 </th> 9208</tr></thead> 9209<tbody> 9210<tr> 9211<td> 9212 <p> 9213 cbrt<br> (85/85 tests selected) 9214 </p> 9215 </td> 9216<td> 9217 <p> 9218 <span class="green">1.00<br> (51ns)</span> 9219 </p> 9220 </td> 9221<td> 9222 <p> 9223 <span class="blue">1.22<br> (62ns)</span> 9224 </p> 9225 </td> 9226</tr> 9227<tr> 9228<td> 9229 <p> 9230 cyl_bessel_j (integer order)<br> (267/268 tests selected) 9231 </p> 9232 </td> 9233<td> 9234 <p> 9235 <span class="green">1.00<br> (123ns)</span> 9236 </p> 9237 </td> 9238<td> 9239 <p> 9240 <span class="blue">1.50<br> (185ns)</span> 9241 </p> 9242 </td> 9243</tr> 9244<tr> 9245<td> 9246 <p> 9247 cyl_neumann (integer order)<br> (428/428 tests selected) 9248 </p> 9249 </td> 9250<td> 9251 <p> 9252 <span class="green">1.01<br> (158ns)</span> 9253 </p> 9254 </td> 9255<td> 9256 <p> 9257 <span class="green">1.00<br> (156ns)</span> 9258 </p> 9259 </td> 9260</tr> 9261<tr> 9262<td> 9263 <p> 9264 erf<br> (950/950 tests selected) 9265 </p> 9266 </td> 9267<td> 9268 <p> 9269 <span class="red">2.15<br> (43ns)</span> 9270 </p> 9271 </td> 9272<td> 9273 <p> 9274 <span class="green">1.00<br> (20ns)</span> 9275 </p> 9276 </td> 9277</tr> 9278<tr> 9279<td> 9280 <p> 9281 erfc<br> (950/950 tests selected) 9282 </p> 9283 </td> 9284<td> 9285 <p> 9286 <span class="green">1.00<br> (54ns)</span> 9287 </p> 9288 </td> 9289<td> 9290 <p> 9291 <span class="green">1.09<br> (59ns)</span> 9292 </p> 9293 </td> 9294</tr> 9295<tr> 9296<td> 9297 <p> 9298 expm1<br> (80/80 tests selected) 9299 </p> 9300 </td> 9301<td> 9302 <p> 9303 <span class="green">1.10<br> (11ns)</span> 9304 </p> 9305 </td> 9306<td> 9307 <p> 9308 <span class="green">1.00<br> (10ns)</span> 9309 </p> 9310 </td> 9311</tr> 9312<tr> 9313<td> 9314 <p> 9315 lgamma<br> (400/400 tests selected) 9316 </p> 9317 </td> 9318<td> 9319 <p> 9320 <span class="green">1.00<br> (80ns)</span> 9321 </p> 9322 </td> 9323<td> 9324 <p> 9325 <span class="blue">1.60<br> (128ns)</span> 9326 </p> 9327 </td> 9328</tr> 9329<tr> 9330<td> 9331 <p> 9332 log1p<br> (80/80 tests selected) 9333 </p> 9334 </td> 9335<td> 9336 <p> 9337 <span class="green">1.00<br> (14ns)</span> 9338 </p> 9339 </td> 9340<td> 9341 <p> 9342 <span class="green">1.07<br> (15ns)</span> 9343 </p> 9344 </td> 9345</tr> 9346<tr> 9347<td> 9348 <p> 9349 tgamma<br> (400/400 tests selected) 9350 </p> 9351 </td> 9352<td> 9353 <p> 9354 <span class="green">1.00<br> (74ns)</span> 9355 </p> 9356 </td> 9357<td> 9358 <p> 9359 <span class="red">12.53<br> (927ns)</span> 9360 </p> 9361 </td> 9362</tr> 9363</tbody> 9364</table></div> 9365</div> 9366<br class="table-break"> 9367</div> 9368<div class="section"> 9369<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 9370<a name="special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_" title="Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)">Polynomial 9371 Arithmetic (GNU C++ version 9.2.0, Windows x64)</a> 9372</h2></div></div></div> 9373<div class="table"> 9374<a name="special_function_and_distributio.section_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_.table_Polynomial_Arithmetic_GNU_C_version_9_2_0_Windows_x64_"></a><p class="title"><b>Table 9. Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)</b></p> 9375<div class="table-contents"><table class="table" summary="Polynomial Arithmetic (GNU C++ version 9.2.0, Windows x64)"> 9376<colgroup> 9377<col> 9378<col> 9379<col> 9380<col> 9381</colgroup> 9382<thead><tr> 9383<th> 9384 <p> 9385 Function 9386 </p> 9387 </th> 9388<th> 9389 <p> 9390 boost::uint64_t 9391 </p> 9392 </th> 9393<th> 9394 <p> 9395 double 9396 </p> 9397 </th> 9398<th> 9399 <p> 9400 cpp_int 9401 </p> 9402 </th> 9403</tr></thead> 9404<tbody> 9405<tr> 9406<td> 9407 <p> 9408 operator * 9409 </p> 9410 </td> 9411<td> 9412 <p> 9413 <span class="green">1.00<br> (503ns)</span> 9414 </p> 9415 </td> 9416<td> 9417 <p> 9418 <span class="green">1.00<br> (502ns)</span> 9419 </p> 9420 </td> 9421<td> 9422 <p> 9423 <span class="red">15.20<br> (7629ns)</span> 9424 </p> 9425 </td> 9426</tr> 9427<tr> 9428<td> 9429 <p> 9430 operator * (int) 9431 </p> 9432 </td> 9433<td> 9434 <p> 9435 <span class="green">1.05<br> (114ns)</span> 9436 </p> 9437 </td> 9438<td> 9439 <p> 9440 <span class="green">1.00<br> (109ns)</span> 9441 </p> 9442 </td> 9443<td> 9444 <p> 9445 <span class="red">6.04<br> (658ns)</span> 9446 </p> 9447 </td> 9448</tr> 9449<tr> 9450<td> 9451 <p> 9452 operator *= 9453 </p> 9454 </td> 9455<td> 9456 <p> 9457 <span class="green">1.04<br> (223824ns)</span> 9458 </p> 9459 </td> 9460<td> 9461 <p> 9462 <span class="green">1.00<br> (215955ns)</span> 9463 </p> 9464 </td> 9465<td> 9466 <p> 9467 <span class="red">19.30<br> (4168184ns)</span> 9468 </p> 9469 </td> 9470</tr> 9471<tr> 9472<td> 9473 <p> 9474 operator *= (int) 9475 </p> 9476 </td> 9477<td> 9478 <p> 9479 <span class="green">1.06<br> (13931ns)</span> 9480 </p> 9481 </td> 9482<td> 9483 <p> 9484 <span class="green">1.00<br> (13163ns)</span> 9485 </p> 9486 </td> 9487<td> 9488 <p> 9489 <span class="red">26.10<br> (343615ns)</span> 9490 </p> 9491 </td> 9492</tr> 9493<tr> 9494<td> 9495 <p> 9496 operator + 9497 </p> 9498 </td> 9499<td> 9500 <p> 9501 <span class="green">1.00<br> (163ns)</span> 9502 </p> 9503 </td> 9504<td> 9505 <p> 9506 <span class="green">1.14<br> (186ns)</span> 9507 </p> 9508 </td> 9509<td> 9510 <p> 9511 <span class="red">6.04<br> (985ns)</span> 9512 </p> 9513 </td> 9514</tr> 9515<tr> 9516<td> 9517 <p> 9518 operator + (int) 9519 </p> 9520 </td> 9521<td> 9522 <p> 9523 <span class="green">1.16<br> (116ns)</span> 9524 </p> 9525 </td> 9526<td> 9527 <p> 9528 <span class="green">1.00<br> (100ns)</span> 9529 </p> 9530 </td> 9531<td> 9532 <p> 9533 <span class="red">4.07<br> (407ns)</span> 9534 </p> 9535 </td> 9536</tr> 9537<tr> 9538<td> 9539 <p> 9540 operator += 9541 </p> 9542 </td> 9543<td> 9544 <p> 9545 <span class="green">1.12<br> (18ns)</span> 9546 </p> 9547 </td> 9548<td> 9549 <p> 9550 <span class="green">1.00<br> (16ns)</span> 9551 </p> 9552 </td> 9553<td> 9554 <p> 9555 <span class="red">22.81<br> (365ns)</span> 9556 </p> 9557 </td> 9558</tr> 9559<tr> 9560<td> 9561 <p> 9562 operator += (int) 9563 </p> 9564 </td> 9565<td> 9566 <p> 9567 <span class="blue">1.33<br> (4ns)</span> 9568 </p> 9569 </td> 9570<td> 9571 <p> 9572 <span class="green">1.00<br> (3ns)</span> 9573 </p> 9574 </td> 9575<td> 9576 <p> 9577 <span class="red">33.00<br> (99ns)</span> 9578 </p> 9579 </td> 9580</tr> 9581<tr> 9582<td> 9583 <p> 9584 operator - 9585 </p> 9586 </td> 9587<td> 9588 <p> 9589 <span class="green">1.00<br> (159ns)</span> 9590 </p> 9591 </td> 9592<td> 9593 <p> 9594 <span class="green">1.16<br> (185ns)</span> 9595 </p> 9596 </td> 9597<td> 9598 <p> 9599 <span class="red">6.66<br> (1059ns)</span> 9600 </p> 9601 </td> 9602</tr> 9603<tr> 9604<td> 9605 <p> 9606 operator - (int) 9607 </p> 9608 </td> 9609<td> 9610 <p> 9611 <span class="green">1.11<br> (113ns)</span> 9612 </p> 9613 </td> 9614<td> 9615 <p> 9616 <span class="green">1.00<br> (102ns)</span> 9617 </p> 9618 </td> 9619<td> 9620 <p> 9621 <span class="red">3.75<br> (382ns)</span> 9622 </p> 9623 </td> 9624</tr> 9625<tr> 9626<td> 9627 <p> 9628 operator -= 9629 </p> 9630 </td> 9631<td> 9632 <p> 9633 <span class="blue">1.38<br> (22ns)</span> 9634 </p> 9635 </td> 9636<td> 9637 <p> 9638 <span class="green">1.00<br> (16ns)</span> 9639 </p> 9640 </td> 9641<td> 9642 <p> 9643 <span class="red">23.38<br> (374ns)</span> 9644 </p> 9645 </td> 9646</tr> 9647<tr> 9648<td> 9649 <p> 9650 operator -= (int) 9651 </p> 9652 </td> 9653<td> 9654 <p> 9655 <span class="green">1.00<br> (3ns)</span> 9656 </p> 9657 </td> 9658<td> 9659 <p> 9660 <span class="green">1.00<br> (3ns)</span> 9661 </p> 9662 </td> 9663<td> 9664 <p> 9665 <span class="red">31.00<br> (93ns)</span> 9666 </p> 9667 </td> 9668</tr> 9669<tr> 9670<td> 9671 <p> 9672 operator / 9673 </p> 9674 </td> 9675<td> 9676 <p> 9677 <span class="blue">1.44<br> (767ns)</span> 9678 </p> 9679 </td> 9680<td> 9681 <p> 9682 <span class="green">1.00<br> (533ns)</span> 9683 </p> 9684 </td> 9685<td> 9686 <p> 9687 <span class="red">41.38<br> (22054ns)</span> 9688 </p> 9689 </td> 9690</tr> 9691<tr> 9692<td> 9693 <p> 9694 operator / (int) 9695 </p> 9696 </td> 9697<td> 9698 <p> 9699 <span class="blue">1.29<br> (138ns)</span> 9700 </p> 9701 </td> 9702<td> 9703 <p> 9704 <span class="green">1.00<br> (107ns)</span> 9705 </p> 9706 </td> 9707<td> 9708 <p> 9709 <span class="red">13.58<br> (1453ns)</span> 9710 </p> 9711 </td> 9712</tr> 9713<tr> 9714<td> 9715 <p> 9716 operator /= 9717 </p> 9718 </td> 9719<td> 9720 <p> 9721 <span class="green">1.10<br> (11ns)</span> 9722 </p> 9723 </td> 9724<td> 9725 <p> 9726 <span class="green">1.00<br> (10ns)</span> 9727 </p> 9728 </td> 9729<td> 9730 <p> 9731 <span class="red">194.00<br> (1940ns)</span> 9732 </p> 9733 </td> 9734</tr> 9735<tr> 9736<td> 9737 <p> 9738 operator /= (int) 9739 </p> 9740 </td> 9741<td> 9742 <p> 9743 <span class="green">1.00<br> (679ns)</span> 9744 </p> 9745 </td> 9746<td> 9747 <p> 9748 <span class="red">21.14<br> (14351ns)</span> 9749 </p> 9750 </td> 9751<td> 9752 <p> 9753 <span class="red">3447.12<br> (2340595ns)</span> 9754 </p> 9755 </td> 9756</tr> 9757</tbody> 9758</table></div> 9759</div> 9760<br class="table-break"> 9761</div> 9762<div class="section"> 9763<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 9764<a name="special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_" title="Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)">Polynomial 9765 Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</a> 9766</h2></div></div></div> 9767<div class="table"> 9768<a name="special_function_and_distributio.section_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_.table_Polynomial_Arithmetic_Microsoft_Visual_C_version_14_2_Windows_x64_"></a><p class="title"><b>Table 10. Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)</b></p> 9769<div class="table-contents"><table class="table" summary="Polynomial Arithmetic (Microsoft Visual C++ version 14.2, Windows x64)"> 9770<colgroup> 9771<col> 9772<col> 9773<col> 9774<col> 9775</colgroup> 9776<thead><tr> 9777<th> 9778 <p> 9779 Function 9780 </p> 9781 </th> 9782<th> 9783 <p> 9784 boost::uint64_t 9785 </p> 9786 </th> 9787<th> 9788 <p> 9789 double 9790 </p> 9791 </th> 9792<th> 9793 <p> 9794 cpp_int 9795 </p> 9796 </th> 9797</tr></thead> 9798<tbody> 9799<tr> 9800<td> 9801 <p> 9802 operator * 9803 </p> 9804 </td> 9805<td> 9806 <p> 9807 <span class="blue">1.54<br> (951ns)</span> 9808 </p> 9809 </td> 9810<td> 9811 <p> 9812 <span class="green">1.00<br> (617ns)</span> 9813 </p> 9814 </td> 9815<td> 9816 <p> 9817 <span class="red">15.22<br> (9391ns)</span> 9818 </p> 9819 </td> 9820</tr> 9821<tr> 9822<td> 9823 <p> 9824 operator * (int) 9825 </p> 9826 </td> 9827<td> 9828 <p> 9829 <span class="green">1.16<br> (135ns)</span> 9830 </p> 9831 </td> 9832<td> 9833 <p> 9834 <span class="green">1.00<br> (116ns)</span> 9835 </p> 9836 </td> 9837<td> 9838 <p> 9839 <span class="red">5.22<br> (605ns)</span> 9840 </p> 9841 </td> 9842</tr> 9843<tr> 9844<td> 9845 <p> 9846 operator *= 9847 </p> 9848 </td> 9849<td> 9850 <p> 9851 <span class="blue">1.30<br> (371957ns)</span> 9852 </p> 9853 </td> 9854<td> 9855 <p> 9856 <span class="green">1.00<br> (286462ns)</span> 9857 </p> 9858 </td> 9859<td> 9860 <p> 9861 <span class="red">17.11<br> (4901613ns)</span> 9862 </p> 9863 </td> 9864</tr> 9865<tr> 9866<td> 9867 <p> 9868 operator *= (int) 9869 </p> 9870 </td> 9871<td> 9872 <p> 9873 <span class="green">1.00<br> (14157ns)</span> 9874 </p> 9875 </td> 9876<td> 9877 <p> 9878 <span class="green">1.04<br> (14670ns)</span> 9879 </p> 9880 </td> 9881<td> 9882 <p> 9883 <span class="red">19.69<br> (278738ns)</span> 9884 </p> 9885 </td> 9886</tr> 9887<tr> 9888<td> 9889 <p> 9890 operator + 9891 </p> 9892 </td> 9893<td> 9894 <p> 9895 <span class="blue">1.41<br> (273ns)</span> 9896 </p> 9897 </td> 9898<td> 9899 <p> 9900 <span class="green">1.00<br> (194ns)</span> 9901 </p> 9902 </td> 9903<td> 9904 <p> 9905 <span class="red">6.20<br> (1203ns)</span> 9906 </p> 9907 </td> 9908</tr> 9909<tr> 9910<td> 9911 <p> 9912 operator + (int) 9913 </p> 9914 </td> 9915<td> 9916 <p> 9917 <span class="blue">1.25<br> (126ns)</span> 9918 </p> 9919 </td> 9920<td> 9921 <p> 9922 <span class="green">1.00<br> (101ns)</span> 9923 </p> 9924 </td> 9925<td> 9926 <p> 9927 <span class="red">3.47<br> (350ns)</span> 9928 </p> 9929 </td> 9930</tr> 9931<tr> 9932<td> 9933 <p> 9934 operator += 9935 </p> 9936 </td> 9937<td> 9938 <p> 9939 <span class="blue">1.35<br> (42ns)</span> 9940 </p> 9941 </td> 9942<td> 9943 <p> 9944 <span class="green">1.00<br> (31ns)</span> 9945 </p> 9946 </td> 9947<td> 9948 <p> 9949 <span class="red">11.16<br> (346ns)</span> 9950 </p> 9951 </td> 9952</tr> 9953<tr> 9954<td> 9955 <p> 9956 operator += (int) 9957 </p> 9958 </td> 9959<td> 9960 <p> 9961 <span class="blue">1.25<br> (5ns)</span> 9962 </p> 9963 </td> 9964<td> 9965 <p> 9966 <span class="green">1.00<br> (4ns)</span> 9967 </p> 9968 </td> 9969<td> 9970 <p> 9971 <span class="red">25.50<br> (102ns)</span> 9972 </p> 9973 </td> 9974</tr> 9975<tr> 9976<td> 9977 <p> 9978 operator - 9979 </p> 9980 </td> 9981<td> 9982 <p> 9983 <span class="blue">1.20<br> (231ns)</span> 9984 </p> 9985 </td> 9986<td> 9987 <p> 9988 <span class="green">1.00<br> (192ns)</span> 9989 </p> 9990 </td> 9991<td> 9992 <p> 9993 <span class="red">6.44<br> (1236ns)</span> 9994 </p> 9995 </td> 9996</tr> 9997<tr> 9998<td> 9999 <p> 10000 operator - (int) 10001 </p> 10002 </td> 10003<td> 10004 <p> 10005 <span class="green">1.20<br> (121ns)</span> 10006 </p> 10007 </td> 10008<td> 10009 <p> 10010 <span class="green">1.00<br> (101ns)</span> 10011 </p> 10012 </td> 10013<td> 10014 <p> 10015 <span class="red">3.34<br> (337ns)</span> 10016 </p> 10017 </td> 10018</tr> 10019<tr> 10020<td> 10021 <p> 10022 operator -= 10023 </p> 10024 </td> 10025<td> 10026 <p> 10027 <span class="blue">1.35<br> (42ns)</span> 10028 </p> 10029 </td> 10030<td> 10031 <p> 10032 <span class="green">1.00<br> (31ns)</span> 10033 </p> 10034 </td> 10035<td> 10036 <p> 10037 <span class="red">11.13<br> (345ns)</span> 10038 </p> 10039 </td> 10040</tr> 10041<tr> 10042<td> 10043 <p> 10044 operator -= (int) 10045 </p> 10046 </td> 10047<td> 10048 <p> 10049 <span class="green">1.00<br> (4ns)</span> 10050 </p> 10051 </td> 10052<td> 10053 <p> 10054 <span class="green">1.00<br> (4ns)</span> 10055 </p> 10056 </td> 10057<td> 10058 <p> 10059 <span class="red">23.50<br> (94ns)</span> 10060 </p> 10061 </td> 10062</tr> 10063<tr> 10064<td> 10065 <p> 10066 operator / 10067 </p> 10068 </td> 10069<td> 10070 <p> 10071 <span class="red">2.17<br> (1164ns)</span> 10072 </p> 10073 </td> 10074<td> 10075 <p> 10076 <span class="green">1.00<br> (537ns)</span> 10077 </p> 10078 </td> 10079<td> 10080 <p> 10081 <span class="red">51.34<br> (27568ns)</span> 10082 </p> 10083 </td> 10084</tr> 10085<tr> 10086<td> 10087 <p> 10088 operator / (int) 10089 </p> 10090 </td> 10091<td> 10092 <p> 10093 <span class="green">1.17<br> (138ns)</span> 10094 </p> 10095 </td> 10096<td> 10097 <p> 10098 <span class="green">1.00<br> (118ns)</span> 10099 </p> 10100 </td> 10101<td> 10102 <p> 10103 <span class="red">9.73<br> (1148ns)</span> 10104 </p> 10105 </td> 10106</tr> 10107<tr> 10108<td> 10109 <p> 10110 operator /= 10111 </p> 10112 </td> 10113<td> 10114 <p> 10115 <span class="green">1.08<br> (13ns)</span> 10116 </p> 10117 </td> 10118<td> 10119 <p> 10120 <span class="green">1.00<br> (12ns)</span> 10121 </p> 10122 </td> 10123<td> 10124 <p> 10125 <span class="red">192.42<br> (2309ns)</span> 10126 </p> 10127 </td> 10128</tr> 10129<tr> 10130<td> 10131 <p> 10132 operator /= (int) 10133 </p> 10134 </td> 10135<td> 10136 <p> 10137 <span class="green">1.00<br> (697ns)</span> 10138 </p> 10139 </td> 10140<td> 10141 <p> 10142 <span class="red">36.29<br> (25293ns)</span> 10143 </p> 10144 </td> 10145<td> 10146 <p> 10147 <span class="red">2700.21<br> (1882045ns)</span> 10148 </p> 10149 </td> 10150</tr> 10151</tbody> 10152</table></div> 10153</div> 10154<br class="table-break"> 10155</div> 10156<div class="section"> 10157<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 10158<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64">Polynomial 10159 Method Comparison with GNU C++ version 9.2.0 on Windows x64</a> 10160</h2></div></div></div> 10161<div class="table"> 10162<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Polynomial_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 11. Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64</b></p> 10163<div class="table-contents"><table class="table" summary="Polynomial Method Comparison with GNU C++ version 9.2.0 on Windows x64"> 10164<colgroup> 10165<col> 10166<col> 10167<col> 10168<col> 10169<col> 10170<col> 10171<col> 10172<col> 10173<col> 10174</colgroup> 10175<thead><tr> 10176<th> 10177 <p> 10178 Function 10179 </p> 10180 </th> 10181<th> 10182 <p> 10183 Method 0<br> (Double Coefficients) 10184 </p> 10185 </th> 10186<th> 10187 <p> 10188 Method 0<br> (Integer Coefficients) 10189 </p> 10190 </th> 10191<th> 10192 <p> 10193 Method 1<br> (Double Coefficients) 10194 </p> 10195 </th> 10196<th> 10197 <p> 10198 Method 1<br> (Integer Coefficients) 10199 </p> 10200 </th> 10201<th> 10202 <p> 10203 Method 2<br> (Double Coefficients) 10204 </p> 10205 </th> 10206<th> 10207 <p> 10208 Method 2<br> (Integer Coefficients) 10209 </p> 10210 </th> 10211<th> 10212 <p> 10213 Method 3<br> (Double Coefficients) 10214 </p> 10215 </th> 10216<th> 10217 <p> 10218 Method 3<br> (Integer Coefficients) 10219 </p> 10220 </th> 10221</tr></thead> 10222<tbody> 10223<tr> 10224<td> 10225 <p> 10226 Order 2 10227 </p> 10228 </td> 10229<td> 10230 <p> 10231 <span class="grey">-</span> 10232 </p> 10233 </td> 10234<td> 10235 <p> 10236 <span class="grey">-</span> 10237 </p> 10238 </td> 10239<td> 10240 <p> 10241 <span class="green">1.00<br> (6ns)</span> 10242 </p> 10243 </td> 10244<td> 10245 <p> 10246 <span class="green">1.00<br> (6ns)</span> 10247 </p> 10248 </td> 10249<td> 10250 <p> 10251 <span class="green">1.00<br> (6ns)</span> 10252 </p> 10253 </td> 10254<td> 10255 <p> 10256 <span class="green">1.00<br> (6ns)</span> 10257 </p> 10258 </td> 10259<td> 10260 <p> 10261 <span class="green">1.00<br> (6ns)</span> 10262 </p> 10263 </td> 10264<td> 10265 <p> 10266 <span class="green">1.00<br> (6ns)</span> 10267 </p> 10268 </td> 10269</tr> 10270<tr> 10271<td> 10272 <p> 10273 Order 3 10274 </p> 10275 </td> 10276<td> 10277 <p> 10278 <span class="blue">1.56<br> (14ns)</span> 10279 </p> 10280 </td> 10281<td> 10282 <p> 10283 <span class="red">2.56<br> (23ns)</span> 10284 </p> 10285 </td> 10286<td> 10287 <p> 10288 <span class="green">1.00<br> (9ns)</span> 10289 </p> 10290 </td> 10291<td> 10292 <p> 10293 <span class="green">1.00<br> (9ns)</span> 10294 </p> 10295 </td> 10296<td> 10297 <p> 10298 <span class="green">1.00<br> (9ns)</span> 10299 </p> 10300 </td> 10301<td> 10302 <p> 10303 <span class="green">1.00<br> (9ns)</span> 10304 </p> 10305 </td> 10306<td> 10307 <p> 10308 <span class="green">1.11<br> (10ns)</span> 10309 </p> 10310 </td> 10311<td> 10312 <p> 10313 <span class="green">1.00<br> (9ns)</span> 10314 </p> 10315 </td> 10316</tr> 10317<tr> 10318<td> 10319 <p> 10320 Order 4 10321 </p> 10322 </td> 10323<td> 10324 <p> 10325 <span class="blue">1.50<br> (18ns)</span> 10326 </p> 10327 </td> 10328<td> 10329 <p> 10330 <span class="red">2.42<br> (29ns)</span> 10331 </p> 10332 </td> 10333<td> 10334 <p> 10335 <span class="green">1.08<br> (13ns)</span> 10336 </p> 10337 </td> 10338<td> 10339 <p> 10340 <span class="green">1.00<br> (12ns)</span> 10341 </p> 10342 </td> 10343<td> 10344 <p> 10345 <span class="green">1.08<br> (13ns)</span> 10346 </p> 10347 </td> 10348<td> 10349 <p> 10350 <span class="green">1.08<br> (13ns)</span> 10351 </p> 10352 </td> 10353<td> 10354 <p> 10355 <span class="green">1.08<br> (13ns)</span> 10356 </p> 10357 </td> 10358<td> 10359 <p> 10360 <span class="green">1.08<br> (13ns)</span> 10361 </p> 10362 </td> 10363</tr> 10364<tr> 10365<td> 10366 <p> 10367 Order 5 10368 </p> 10369 </td> 10370<td> 10371 <p> 10372 <span class="blue">1.38<br> (22ns)</span> 10373 </p> 10374 </td> 10375<td> 10376 <p> 10377 <span class="red">2.31<br> (37ns)</span> 10378 </p> 10379 </td> 10380<td> 10381 <p> 10382 <span class="green">1.06<br> (17ns)</span> 10383 </p> 10384 </td> 10385<td> 10386 <p> 10387 <span class="green">1.00<br> (16ns)</span> 10388 </p> 10389 </td> 10390<td> 10391 <p> 10392 <span class="green">1.06<br> (17ns)</span> 10393 </p> 10394 </td> 10395<td> 10396 <p> 10397 <span class="green">1.12<br> (18ns)</span> 10398 </p> 10399 </td> 10400<td> 10401 <p> 10402 <span class="green">1.12<br> (18ns)</span> 10403 </p> 10404 </td> 10405<td> 10406 <p> 10407 <span class="green">1.12<br> (18ns)</span> 10408 </p> 10409 </td> 10410</tr> 10411<tr> 10412<td> 10413 <p> 10414 Order 6 10415 </p> 10416 </td> 10417<td> 10418 <p> 10419 <span class="blue">1.48<br> (31ns)</span> 10420 </p> 10421 </td> 10422<td> 10423 <p> 10424 <span class="red">2.14<br> (45ns)</span> 10425 </p> 10426 </td> 10427<td> 10428 <p> 10429 <span class="green">1.00<br> (21ns)</span> 10430 </p> 10431 </td> 10432<td> 10433 <p> 10434 <span class="green">1.00<br> (21ns)</span> 10435 </p> 10436 </td> 10437<td> 10438 <p> 10439 <span class="green">1.05<br> (22ns)</span> 10440 </p> 10441 </td> 10442<td> 10443 <p> 10444 <span class="green">1.05<br> (22ns)</span> 10445 </p> 10446 </td> 10447<td> 10448 <p> 10449 <span class="blue">1.24<br> (26ns)</span> 10450 </p> 10451 </td> 10452<td> 10453 <p> 10454 <span class="green">1.05<br> (22ns)</span> 10455 </p> 10456 </td> 10457</tr> 10458<tr> 10459<td> 10460 <p> 10461 Order 7 10462 </p> 10463 </td> 10464<td> 10465 <p> 10466 <span class="blue">1.31<br> (34ns)</span> 10467 </p> 10468 </td> 10469<td> 10470 <p> 10471 <span class="red">2.15<br> (56ns)</span> 10472 </p> 10473 </td> 10474<td> 10475 <p> 10476 <span class="green">1.00<br> (26ns)</span> 10477 </p> 10478 </td> 10479<td> 10480 <p> 10481 <span class="green">1.00<br> (26ns)</span> 10482 </p> 10483 </td> 10484<td> 10485 <p> 10486 <span class="green">1.00<br> (26ns)</span> 10487 </p> 10488 </td> 10489<td> 10490 <p> 10491 <span class="green">1.12<br> (29ns)</span> 10492 </p> 10493 </td> 10494<td> 10495 <p> 10496 <span class="green">1.04<br> (27ns)</span> 10497 </p> 10498 </td> 10499<td> 10500 <p> 10501 <span class="green">1.19<br> (31ns)</span> 10502 </p> 10503 </td> 10504</tr> 10505<tr> 10506<td> 10507 <p> 10508 Order 8 10509 </p> 10510 </td> 10511<td> 10512 <p> 10513 <span class="blue">1.37<br> (41ns)</span> 10514 </p> 10515 </td> 10516<td> 10517 <p> 10518 <span class="red">2.23<br> (67ns)</span> 10519 </p> 10520 </td> 10521<td> 10522 <p> 10523 <span class="green">1.07<br> (32ns)</span> 10524 </p> 10525 </td> 10526<td> 10527 <p> 10528 <span class="green">1.03<br> (31ns)</span> 10529 </p> 10530 </td> 10531<td> 10532 <p> 10533 <span class="green">1.10<br> (33ns)</span> 10534 </p> 10535 </td> 10536<td> 10537 <p> 10538 <span class="green">1.03<br> (31ns)</span> 10539 </p> 10540 </td> 10541<td> 10542 <p> 10543 <span class="green">1.20<br> (36ns)</span> 10544 </p> 10545 </td> 10546<td> 10547 <p> 10548 <span class="green">1.00<br> (30ns)</span> 10549 </p> 10550 </td> 10551</tr> 10552<tr> 10553<td> 10554 <p> 10555 Order 9 10556 </p> 10557 </td> 10558<td> 10559 <p> 10560 <span class="blue">1.58<br> (52ns)</span> 10561 </p> 10562 </td> 10563<td> 10564 <p> 10565 <span class="red">2.42<br> (80ns)</span> 10566 </p> 10567 </td> 10568<td> 10569 <p> 10570 <span class="green">1.15<br> (38ns)</span> 10571 </p> 10572 </td> 10573<td> 10574 <p> 10575 <span class="green">1.15<br> (38ns)</span> 10576 </p> 10577 </td> 10578<td> 10579 <p> 10580 <span class="green">1.00<br> (33ns)</span> 10581 </p> 10582 </td> 10583<td> 10584 <p> 10585 <span class="green">1.00<br> (33ns)</span> 10586 </p> 10587 </td> 10588<td> 10589 <p> 10590 <span class="green">1.00<br> (33ns)</span> 10591 </p> 10592 </td> 10593<td> 10594 <p> 10595 <span class="green">1.03<br> (34ns)</span> 10596 </p> 10597 </td> 10598</tr> 10599<tr> 10600<td> 10601 <p> 10602 Order 10 10603 </p> 10604 </td> 10605<td> 10606 <p> 10607 <span class="blue">1.51<br> (56ns)</span> 10608 </p> 10609 </td> 10610<td> 10611 <p> 10612 <span class="red">2.41<br> (89ns)</span> 10613 </p> 10614 </td> 10615<td> 10616 <p> 10617 <span class="blue">1.22<br> (45ns)</span> 10618 </p> 10619 </td> 10620<td> 10621 <p> 10622 <span class="blue">1.22<br> (45ns)</span> 10623 </p> 10624 </td> 10625<td> 10626 <p> 10627 <span class="green">1.00<br> (37ns)</span> 10628 </p> 10629 </td> 10630<td> 10631 <p> 10632 <span class="green">1.03<br> (38ns)</span> 10633 </p> 10634 </td> 10635<td> 10636 <p> 10637 <span class="green">1.05<br> (39ns)</span> 10638 </p> 10639 </td> 10640<td> 10641 <p> 10642 <span class="green">1.05<br> (39ns)</span> 10643 </p> 10644 </td> 10645</tr> 10646<tr> 10647<td> 10648 <p> 10649 Order 11 10650 </p> 10651 </td> 10652<td> 10653 <p> 10654 <span class="blue">1.56<br> (64ns)</span> 10655 </p> 10656 </td> 10657<td> 10658 <p> 10659 <span class="red">2.46<br> (101ns)</span> 10660 </p> 10661 </td> 10662<td> 10663 <p> 10664 <span class="blue">1.27<br> (52ns)</span> 10665 </p> 10666 </td> 10667<td> 10668 <p> 10669 <span class="blue">1.27<br> (52ns)</span> 10670 </p> 10671 </td> 10672<td> 10673 <p> 10674 <span class="green">1.00<br> (41ns)</span> 10675 </p> 10676 </td> 10677<td> 10678 <p> 10679 <span class="green">1.00<br> (41ns)</span> 10680 </p> 10681 </td> 10682<td> 10683 <p> 10684 <span class="green">1.00<br> (41ns)</span> 10685 </p> 10686 </td> 10687<td> 10688 <p> 10689 <span class="green">1.00<br> (41ns)</span> 10690 </p> 10691 </td> 10692</tr> 10693<tr> 10694<td> 10695 <p> 10696 Order 12 10697 </p> 10698 </td> 10699<td> 10700 <p> 10701 <span class="blue">1.70<br> (78ns)</span> 10702 </p> 10703 </td> 10704<td> 10705 <p> 10706 <span class="red">2.63<br> (121ns)</span> 10707 </p> 10708 </td> 10709<td> 10710 <p> 10711 <span class="blue">1.30<br> (60ns)</span> 10712 </p> 10713 </td> 10714<td> 10715 <p> 10716 <span class="blue">1.28<br> (59ns)</span> 10717 </p> 10718 </td> 10719<td> 10720 <p> 10721 <span class="green">1.00<br> (46ns)</span> 10722 </p> 10723 </td> 10724<td> 10725 <p> 10726 <span class="green">1.04<br> (48ns)</span> 10727 </p> 10728 </td> 10729<td> 10730 <p> 10731 <span class="green">1.02<br> (47ns)</span> 10732 </p> 10733 </td> 10734<td> 10735 <p> 10736 <span class="green">1.02<br> (47ns)</span> 10737 </p> 10738 </td> 10739</tr> 10740<tr> 10741<td> 10742 <p> 10743 Order 13 10744 </p> 10745 </td> 10746<td> 10747 <p> 10748 <span class="blue">1.78<br> (87ns)</span> 10749 </p> 10750 </td> 10751<td> 10752 <p> 10753 <span class="red">2.78<br> (136ns)</span> 10754 </p> 10755 </td> 10756<td> 10757 <p> 10758 <span class="blue">1.29<br> (63ns)</span> 10759 </p> 10760 </td> 10761<td> 10762 <p> 10763 <span class="blue">1.29<br> (63ns)</span> 10764 </p> 10765 </td> 10766<td> 10767 <p> 10768 <span class="green">1.00<br> (49ns)</span> 10769 </p> 10770 </td> 10771<td> 10772 <p> 10773 <span class="green">1.02<br> (50ns)</span> 10774 </p> 10775 </td> 10776<td> 10777 <p> 10778 <span class="green">1.00<br> (49ns)</span> 10779 </p> 10780 </td> 10781<td> 10782 <p> 10783 <span class="green">1.00<br> (49ns)</span> 10784 </p> 10785 </td> 10786</tr> 10787<tr> 10788<td> 10789 <p> 10790 Order 14 10791 </p> 10792 </td> 10793<td> 10794 <p> 10795 <span class="blue">1.79<br> (95ns)</span> 10796 </p> 10797 </td> 10798<td> 10799 <p> 10800 <span class="red">2.75<br> (146ns)</span> 10801 </p> 10802 </td> 10803<td> 10804 <p> 10805 <span class="blue">1.43<br> (76ns)</span> 10806 </p> 10807 </td> 10808<td> 10809 <p> 10810 <span class="blue">1.43<br> (76ns)</span> 10811 </p> 10812 </td> 10813<td> 10814 <p> 10815 <span class="green">1.00<br> (53ns)</span> 10816 </p> 10817 </td> 10818<td> 10819 <p> 10820 <span class="green">1.02<br> (54ns)</span> 10821 </p> 10822 </td> 10823<td> 10824 <p> 10825 <span class="green">1.00<br> (53ns)</span> 10826 </p> 10827 </td> 10828<td> 10829 <p> 10830 <span class="green">1.00<br> (53ns)</span> 10831 </p> 10832 </td> 10833</tr> 10834<tr> 10835<td> 10836 <p> 10837 Order 15 10838 </p> 10839 </td> 10840<td> 10841 <p> 10842 <span class="blue">1.63<br> (103ns)</span> 10843 </p> 10844 </td> 10845<td> 10846 <p> 10847 <span class="red">2.51<br> (158ns)</span> 10848 </p> 10849 </td> 10850<td> 10851 <p> 10852 <span class="blue">1.33<br> (84ns)</span> 10853 </p> 10854 </td> 10855<td> 10856 <p> 10857 <span class="blue">1.43<br> (90ns)</span> 10858 </p> 10859 </td> 10860<td> 10861 <p> 10862 <span class="green">1.02<br> (64ns)</span> 10863 </p> 10864 </td> 10865<td> 10866 <p> 10867 <span class="green">1.02<br> (64ns)</span> 10868 </p> 10869 </td> 10870<td> 10871 <p> 10872 <span class="green">1.00<br> (63ns)</span> 10873 </p> 10874 </td> 10875<td> 10876 <p> 10877 <span class="green">1.02<br> (64ns)</span> 10878 </p> 10879 </td> 10880</tr> 10881<tr> 10882<td> 10883 <p> 10884 Order 16 10885 </p> 10886 </td> 10887<td> 10888 <p> 10889 <span class="blue">1.61<br> (119ns)</span> 10890 </p> 10891 </td> 10892<td> 10893 <p> 10894 <span class="red">2.31<br> (171ns)</span> 10895 </p> 10896 </td> 10897<td> 10898 <p> 10899 <span class="blue">1.31<br> (97ns)</span> 10900 </p> 10901 </td> 10902<td> 10903 <p> 10904 <span class="blue">1.31<br> (97ns)</span> 10905 </p> 10906 </td> 10907<td> 10908 <p> 10909 <span class="green">1.01<br> (75ns)</span> 10910 </p> 10911 </td> 10912<td> 10913 <p> 10914 <span class="green">1.01<br> (75ns)</span> 10915 </p> 10916 </td> 10917<td> 10918 <p> 10919 <span class="green">1.01<br> (75ns)</span> 10920 </p> 10921 </td> 10922<td> 10923 <p> 10924 <span class="green">1.00<br> (74ns)</span> 10925 </p> 10926 </td> 10927</tr> 10928<tr> 10929<td> 10930 <p> 10931 Order 17 10932 </p> 10933 </td> 10934<td> 10935 <p> 10936 <span class="blue">1.67<br> (127ns)</span> 10937 </p> 10938 </td> 10939<td> 10940 <p> 10941 <span class="red">2.42<br> (184ns)</span> 10942 </p> 10943 </td> 10944<td> 10945 <p> 10946 <span class="blue">1.42<br> (108ns)</span> 10947 </p> 10948 </td> 10949<td> 10950 <p> 10951 <span class="blue">1.41<br> (107ns)</span> 10952 </p> 10953 </td> 10954<td> 10955 <p> 10956 <span class="green">1.00<br> (76ns)</span> 10957 </p> 10958 </td> 10959<td> 10960 <p> 10961 <span class="green">1.00<br> (76ns)</span> 10962 </p> 10963 </td> 10964<td> 10965 <p> 10966 <span class="green">1.01<br> (77ns)</span> 10967 </p> 10968 </td> 10969<td> 10970 <p> 10971 <span class="green">1.01<br> (77ns)</span> 10972 </p> 10973 </td> 10974</tr> 10975<tr> 10976<td> 10977 <p> 10978 Order 18 10979 </p> 10980 </td> 10981<td> 10982 <p> 10983 <span class="blue">1.66<br> (136ns)</span> 10984 </p> 10985 </td> 10986<td> 10987 <p> 10988 <span class="red">2.39<br> (196ns)</span> 10989 </p> 10990 </td> 10991<td> 10992 <p> 10993 <span class="blue">1.41<br> (116ns)</span> 10994 </p> 10995 </td> 10996<td> 10997 <p> 10998 <span class="blue">1.44<br> (118ns)</span> 10999 </p> 11000 </td> 11001<td> 11002 <p> 11003 <span class="green">1.05<br> (86ns)</span> 11004 </p> 11005 </td> 11006<td> 11007 <p> 11008 <span class="green">1.02<br> (84ns)</span> 11009 </p> 11010 </td> 11011<td> 11012 <p> 11013 <span class="green">1.06<br> (87ns)</span> 11014 </p> 11015 </td> 11016<td> 11017 <p> 11018 <span class="green">1.00<br> (82ns)</span> 11019 </p> 11020 </td> 11021</tr> 11022<tr> 11023<td> 11024 <p> 11025 Order 19 11026 </p> 11027 </td> 11028<td> 11029 <p> 11030 <span class="blue">1.72<br> (146ns)</span> 11031 </p> 11032 </td> 11033<td> 11034 <p> 11035 <span class="red">2.51<br> (213ns)</span> 11036 </p> 11037 </td> 11038<td> 11039 <p> 11040 <span class="blue">1.59<br> (135ns)</span> 11041 </p> 11042 </td> 11043<td> 11044 <p> 11045 <span class="blue">1.56<br> (133ns)</span> 11046 </p> 11047 </td> 11048<td> 11049 <p> 11050 <span class="green">1.01<br> (86ns)</span> 11051 </p> 11052 </td> 11053<td> 11054 <p> 11055 <span class="green">1.01<br> (86ns)</span> 11056 </p> 11057 </td> 11058<td> 11059 <p> 11060 <span class="green">1.00<br> (85ns)</span> 11061 </p> 11062 </td> 11063<td> 11064 <p> 11065 <span class="green">1.02<br> (87ns)</span> 11066 </p> 11067 </td> 11068</tr> 11069<tr> 11070<td> 11071 <p> 11072 Order 20 11073 </p> 11074 </td> 11075<td> 11076 <p> 11077 <span class="blue">1.70<br> (158ns)</span> 11078 </p> 11079 </td> 11080<td> 11081 <p> 11082 <span class="red">2.52<br> (234ns)</span> 11083 </p> 11084 </td> 11085<td> 11086 <p> 11087 <span class="blue">1.55<br> (144ns)</span> 11088 </p> 11089 </td> 11090<td> 11091 <p> 11092 <span class="blue">1.59<br> (148ns)</span> 11093 </p> 11094 </td> 11095<td> 11096 <p> 11097 <span class="green">1.05<br> (98ns)</span> 11098 </p> 11099 </td> 11100<td> 11101 <p> 11102 <span class="green">1.02<br> (95ns)</span> 11103 </p> 11104 </td> 11105<td> 11106 <p> 11107 <span class="green">1.00<br> (93ns)</span> 11108 </p> 11109 </td> 11110<td> 11111 <p> 11112 <span class="green">1.06<br> (99ns)</span> 11113 </p> 11114 </td> 11115</tr> 11116</tbody> 11117</table></div> 11118</div> 11119<br class="table-break"> 11120</div> 11121<div class="section"> 11122<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 11123<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Polynomial Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Polynomial 11124 Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a> 11125</h2></div></div></div> 11126<div class="table"> 11127<a name="special_function_and_distributio.section_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Polynomial_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 12. Polynomial Method Comparison with Microsoft Visual C++ version 14.2 11128 on Windows x64</b></p> 11129<div class="table-contents"><table class="table" summary="Polynomial Method Comparison with Microsoft Visual C++ version 14.2 11130 on Windows x64"> 11131<colgroup> 11132<col> 11133<col> 11134<col> 11135<col> 11136<col> 11137<col> 11138<col> 11139<col> 11140<col> 11141</colgroup> 11142<thead><tr> 11143<th> 11144 <p> 11145 Function 11146 </p> 11147 </th> 11148<th> 11149 <p> 11150 Method 0<br> (Double Coefficients) 11151 </p> 11152 </th> 11153<th> 11154 <p> 11155 Method 0<br> (Integer Coefficients) 11156 </p> 11157 </th> 11158<th> 11159 <p> 11160 Method 1<br> (Double Coefficients) 11161 </p> 11162 </th> 11163<th> 11164 <p> 11165 Method 1<br> (Integer Coefficients) 11166 </p> 11167 </th> 11168<th> 11169 <p> 11170 Method 2<br> (Double Coefficients) 11171 </p> 11172 </th> 11173<th> 11174 <p> 11175 Method 2<br> (Integer Coefficients) 11176 </p> 11177 </th> 11178<th> 11179 <p> 11180 Method 3<br> (Double Coefficients) 11181 </p> 11182 </th> 11183<th> 11184 <p> 11185 Method 3<br> (Integer Coefficients) 11186 </p> 11187 </th> 11188</tr></thead> 11189<tbody> 11190<tr> 11191<td> 11192 <p> 11193 Order 2 11194 </p> 11195 </td> 11196<td> 11197 <p> 11198 <span class="grey">-</span> 11199 </p> 11200 </td> 11201<td> 11202 <p> 11203 <span class="grey">-</span> 11204 </p> 11205 </td> 11206<td> 11207 <p> 11208 <span class="green">1.00<br> (6ns)</span> 11209 </p> 11210 </td> 11211<td> 11212 <p> 11213 <span class="green">1.00<br> (6ns)</span> 11214 </p> 11215 </td> 11216<td> 11217 <p> 11218 <span class="green">1.00<br> (6ns)</span> 11219 </p> 11220 </td> 11221<td> 11222 <p> 11223 <span class="green">1.00<br> (6ns)</span> 11224 </p> 11225 </td> 11226<td> 11227 <p> 11228 <span class="green">1.00<br> (6ns)</span> 11229 </p> 11230 </td> 11231<td> 11232 <p> 11233 <span class="green">1.00<br> (6ns)</span> 11234 </p> 11235 </td> 11236</tr> 11237<tr> 11238<td> 11239 <p> 11240 Order 3 11241 </p> 11242 </td> 11243<td> 11244 <p> 11245 <span class="red">2.33<br> (21ns)</span> 11246 </p> 11247 </td> 11248<td> 11249 <p> 11250 <span class="red">3.33<br> (30ns)</span> 11251 </p> 11252 </td> 11253<td> 11254 <p> 11255 <span class="green">1.00<br> (9ns)</span> 11256 </p> 11257 </td> 11258<td> 11259 <p> 11260 <span class="green">1.00<br> (9ns)</span> 11261 </p> 11262 </td> 11263<td> 11264 <p> 11265 <span class="green">1.00<br> (9ns)</span> 11266 </p> 11267 </td> 11268<td> 11269 <p> 11270 <span class="green">1.00<br> (9ns)</span> 11271 </p> 11272 </td> 11273<td> 11274 <p> 11275 <span class="green">1.00<br> (9ns)</span> 11276 </p> 11277 </td> 11278<td> 11279 <p> 11280 <span class="green">1.00<br> (9ns)</span> 11281 </p> 11282 </td> 11283</tr> 11284<tr> 11285<td> 11286 <p> 11287 Order 4 11288 </p> 11289 </td> 11290<td> 11291 <p> 11292 <span class="blue">2.00<br> (24ns)</span> 11293 </p> 11294 </td> 11295<td> 11296 <p> 11297 <span class="red">3.00<br> (36ns)</span> 11298 </p> 11299 </td> 11300<td> 11301 <p> 11302 <span class="green">1.00<br> (12ns)</span> 11303 </p> 11304 </td> 11305<td> 11306 <p> 11307 <span class="green">1.00<br> (12ns)</span> 11308 </p> 11309 </td> 11310<td> 11311 <p> 11312 <span class="green">1.00<br> (12ns)</span> 11313 </p> 11314 </td> 11315<td> 11316 <p> 11317 <span class="green">1.00<br> (12ns)</span> 11318 </p> 11319 </td> 11320<td> 11321 <p> 11322 <span class="green">1.08<br> (13ns)</span> 11323 </p> 11324 </td> 11325<td> 11326 <p> 11327 <span class="green">1.08<br> (13ns)</span> 11328 </p> 11329 </td> 11330</tr> 11331<tr> 11332<td> 11333 <p> 11334 Order 5 11335 </p> 11336 </td> 11337<td> 11338 <p> 11339 <span class="blue">1.56<br> (25ns)</span> 11340 </p> 11341 </td> 11342<td> 11343 <p> 11344 <span class="red">2.31<br> (37ns)</span> 11345 </p> 11346 </td> 11347<td> 11348 <p> 11349 <span class="green">1.00<br> (16ns)</span> 11350 </p> 11351 </td> 11352<td> 11353 <p> 11354 <span class="green">1.00<br> (16ns)</span> 11355 </p> 11356 </td> 11357<td> 11358 <p> 11359 <span class="green">1.13<br> (18ns)</span> 11360 </p> 11361 </td> 11362<td> 11363 <p> 11364 <span class="green">1.13<br> (18ns)</span> 11365 </p> 11366 </td> 11367<td> 11368 <p> 11369 <span class="blue">1.56<br> (25ns)</span> 11370 </p> 11371 </td> 11372<td> 11373 <p> 11374 <span class="blue">1.56<br> (25ns)</span> 11375 </p> 11376 </td> 11377</tr> 11378<tr> 11379<td> 11380 <p> 11381 Order 6 11382 </p> 11383 </td> 11384<td> 11385 <p> 11386 <span class="blue">1.48<br> (31ns)</span> 11387 </p> 11388 </td> 11389<td> 11390 <p> 11391 <span class="red">2.19<br> (46ns)</span> 11392 </p> 11393 </td> 11394<td> 11395 <p> 11396 <span class="green">1.05<br> (22ns)</span> 11397 </p> 11398 </td> 11399<td> 11400 <p> 11401 <span class="green">1.00<br> (21ns)</span> 11402 </p> 11403 </td> 11404<td> 11405 <p> 11406 <span class="green">1.00<br> (21ns)</span> 11407 </p> 11408 </td> 11409<td> 11410 <p> 11411 <span class="green">1.00<br> (21ns)</span> 11412 </p> 11413 </td> 11414<td> 11415 <p> 11416 <span class="blue">1.29<br> (27ns)</span> 11417 </p> 11418 </td> 11419<td> 11420 <p> 11421 <span class="blue">1.29<br> (27ns)</span> 11422 </p> 11423 </td> 11424</tr> 11425<tr> 11426<td> 11427 <p> 11428 Order 7 11429 </p> 11430 </td> 11431<td> 11432 <p> 11433 <span class="blue">1.54<br> (37ns)</span> 11434 </p> 11435 </td> 11436<td> 11437 <p> 11438 <span class="red">2.33<br> (56ns)</span> 11439 </p> 11440 </td> 11441<td> 11442 <p> 11443 <span class="green">1.08<br> (26ns)</span> 11444 </p> 11445 </td> 11446<td> 11447 <p> 11448 <span class="green">1.08<br> (26ns)</span> 11449 </p> 11450 </td> 11451<td> 11452 <p> 11453 <span class="green">1.04<br> (25ns)</span> 11454 </p> 11455 </td> 11456<td> 11457 <p> 11458 <span class="green">1.00<br> (24ns)</span> 11459 </p> 11460 </td> 11461<td> 11462 <p> 11463 <span class="green">1.13<br> (27ns)</span> 11464 </p> 11465 </td> 11466<td> 11467 <p> 11468 <span class="green">1.17<br> (28ns)</span> 11469 </p> 11470 </td> 11471</tr> 11472<tr> 11473<td> 11474 <p> 11475 Order 8 11476 </p> 11477 </td> 11478<td> 11479 <p> 11480 <span class="blue">1.53<br> (46ns)</span> 11481 </p> 11482 </td> 11483<td> 11484 <p> 11485 <span class="red">2.23<br> (67ns)</span> 11486 </p> 11487 </td> 11488<td> 11489 <p> 11490 <span class="green">1.07<br> (32ns)</span> 11491 </p> 11492 </td> 11493<td> 11494 <p> 11495 <span class="green">1.07<br> (32ns)</span> 11496 </p> 11497 </td> 11498<td> 11499 <p> 11500 <span class="green">1.00<br> (30ns)</span> 11501 </p> 11502 </td> 11503<td> 11504 <p> 11505 <span class="green">1.00<br> (30ns)</span> 11506 </p> 11507 </td> 11508<td> 11509 <p> 11510 <span class="green">1.03<br> (31ns)</span> 11511 </p> 11512 </td> 11513<td> 11514 <p> 11515 <span class="green">1.03<br> (31ns)</span> 11516 </p> 11517 </td> 11518</tr> 11519<tr> 11520<td> 11521 <p> 11522 Order 9 11523 </p> 11524 </td> 11525<td> 11526 <p> 11527 <span class="blue">1.35<br> (46ns)</span> 11528 </p> 11529 </td> 11530<td> 11531 <p> 11532 <span class="red">2.06<br> (70ns)</span> 11533 </p> 11534 </td> 11535<td> 11536 <p> 11537 <span class="green">1.18<br> (40ns)</span> 11538 </p> 11539 </td> 11540<td> 11541 <p> 11542 <span class="blue">1.32<br> (45ns)</span> 11543 </p> 11544 </td> 11545<td> 11546 <p> 11547 <span class="green">1.00<br> (34ns)</span> 11548 </p> 11549 </td> 11550<td> 11551 <p> 11552 <span class="green">1.00<br> (34ns)</span> 11553 </p> 11554 </td> 11555<td> 11556 <p> 11557 <span class="green">1.09<br> (37ns)</span> 11558 </p> 11559 </td> 11560<td> 11561 <p> 11562 <span class="green">1.06<br> (36ns)</span> 11563 </p> 11564 </td> 11565</tr> 11566<tr> 11567<td> 11568 <p> 11569 Order 10 11570 </p> 11571 </td> 11572<td> 11573 <p> 11574 <span class="blue">1.38<br> (54ns)</span> 11575 </p> 11576 </td> 11577<td> 11578 <p> 11579 <span class="red">2.13<br> (83ns)</span> 11580 </p> 11581 </td> 11582<td> 11583 <p> 11584 <span class="blue">1.21<br> (47ns)</span> 11585 </p> 11586 </td> 11587<td> 11588 <p> 11589 <span class="green">1.15<br> (45ns)</span> 11590 </p> 11591 </td> 11592<td> 11593 <p> 11594 <span class="green">1.00<br> (39ns)</span> 11595 </p> 11596 </td> 11597<td> 11598 <p> 11599 <span class="green">1.00<br> (39ns)</span> 11600 </p> 11601 </td> 11602<td> 11603 <p> 11604 <span class="green">1.03<br> (40ns)</span> 11605 </p> 11606 </td> 11607<td> 11608 <p> 11609 <span class="green">1.03<br> (40ns)</span> 11610 </p> 11611 </td> 11612</tr> 11613<tr> 11614<td> 11615 <p> 11616 Order 11 11617 </p> 11618 </td> 11619<td> 11620 <p> 11621 <span class="blue">1.48<br> (62ns)</span> 11622 </p> 11623 </td> 11624<td> 11625 <p> 11626 <span class="red">2.24<br> (94ns)</span> 11627 </p> 11628 </td> 11629<td> 11630 <p> 11631 <span class="blue">1.24<br> (52ns)</span> 11632 </p> 11633 </td> 11634<td> 11635 <p> 11636 <span class="blue">1.26<br> (53ns)</span> 11637 </p> 11638 </td> 11639<td> 11640 <p> 11641 <span class="green">1.07<br> (45ns)</span> 11642 </p> 11643 </td> 11644<td> 11645 <p> 11646 <span class="green">1.00<br> (42ns)</span> 11647 </p> 11648 </td> 11649<td> 11650 <p> 11651 <span class="green">1.10<br> (46ns)</span> 11652 </p> 11653 </td> 11654<td> 11655 <p> 11656 <span class="green">1.02<br> (43ns)</span> 11657 </p> 11658 </td> 11659</tr> 11660<tr> 11661<td> 11662 <p> 11663 Order 12 11664 </p> 11665 </td> 11666<td> 11667 <p> 11668 <span class="blue">1.48<br> (71ns)</span> 11669 </p> 11670 </td> 11671<td> 11672 <p> 11673 <span class="red">2.27<br> (109ns)</span> 11674 </p> 11675 </td> 11676<td> 11677 <p> 11678 <span class="blue">1.25<br> (60ns)</span> 11679 </p> 11680 </td> 11681<td> 11682 <p> 11683 <span class="blue">1.27<br> (61ns)</span> 11684 </p> 11685 </td> 11686<td> 11687 <p> 11688 <span class="green">1.04<br> (50ns)</span> 11689 </p> 11690 </td> 11691<td> 11692 <p> 11693 <span class="green">1.00<br> (48ns)</span> 11694 </p> 11695 </td> 11696<td> 11697 <p> 11698 <span class="green">1.00<br> (48ns)</span> 11699 </p> 11700 </td> 11701<td> 11702 <p> 11703 <span class="green">1.00<br> (48ns)</span> 11704 </p> 11705 </td> 11706</tr> 11707<tr> 11708<td> 11709 <p> 11710 Order 13 11711 </p> 11712 </td> 11713<td> 11714 <p> 11715 <span class="blue">1.55<br> (76ns)</span> 11716 </p> 11717 </td> 11718<td> 11719 <p> 11720 <span class="red">2.33<br> (114ns)</span> 11721 </p> 11722 </td> 11723<td> 11724 <p> 11725 <span class="blue">1.31<br> (64ns)</span> 11726 </p> 11727 </td> 11728<td> 11729 <p> 11730 <span class="blue">1.31<br> (64ns)</span> 11731 </p> 11732 </td> 11733<td> 11734 <p> 11735 <span class="green">1.04<br> (51ns)</span> 11736 </p> 11737 </td> 11738<td> 11739 <p> 11740 <span class="green">1.04<br> (51ns)</span> 11741 </p> 11742 </td> 11743<td> 11744 <p> 11745 <span class="green">1.02<br> (50ns)</span> 11746 </p> 11747 </td> 11748<td> 11749 <p> 11750 <span class="green">1.00<br> (49ns)</span> 11751 </p> 11752 </td> 11753</tr> 11754<tr> 11755<td> 11756 <p> 11757 Order 14 11758 </p> 11759 </td> 11760<td> 11761 <p> 11762 <span class="blue">1.53<br> (84ns)</span> 11763 </p> 11764 </td> 11765<td> 11766 <p> 11767 <span class="red">2.40<br> (132ns)</span> 11768 </p> 11769 </td> 11770<td> 11771 <p> 11772 <span class="blue">1.44<br> (79ns)</span> 11773 </p> 11774 </td> 11775<td> 11776 <p> 11777 <span class="blue">1.40<br> (77ns)</span> 11778 </p> 11779 </td> 11780<td> 11781 <p> 11782 <span class="green">1.04<br> (57ns)</span> 11783 </p> 11784 </td> 11785<td> 11786 <p> 11787 <span class="green">1.02<br> (56ns)</span> 11788 </p> 11789 </td> 11790<td> 11791 <p> 11792 <span class="green">1.00<br> (55ns)</span> 11793 </p> 11794 </td> 11795<td> 11796 <p> 11797 <span class="green">1.00<br> (55ns)</span> 11798 </p> 11799 </td> 11800</tr> 11801<tr> 11802<td> 11803 <p> 11804 Order 15 11805 </p> 11806 </td> 11807<td> 11808 <p> 11809 <span class="blue">1.51<br> (95ns)</span> 11810 </p> 11811 </td> 11812<td> 11813 <p> 11814 <span class="red">2.33<br> (147ns)</span> 11815 </p> 11816 </td> 11817<td> 11818 <p> 11819 <span class="blue">1.37<br> (86ns)</span> 11820 </p> 11821 </td> 11822<td> 11823 <p> 11824 <span class="blue">1.38<br> (87ns)</span> 11825 </p> 11826 </td> 11827<td> 11828 <p> 11829 <span class="green">1.05<br> (66ns)</span> 11830 </p> 11831 </td> 11832<td> 11833 <p> 11834 <span class="green">1.06<br> (67ns)</span> 11835 </p> 11836 </td> 11837<td> 11838 <p> 11839 <span class="green">1.00<br> (63ns)</span> 11840 </p> 11841 </td> 11842<td> 11843 <p> 11844 <span class="green">1.00<br> (63ns)</span> 11845 </p> 11846 </td> 11847</tr> 11848<tr> 11849<td> 11850 <p> 11851 Order 16 11852 </p> 11853 </td> 11854<td> 11855 <p> 11856 <span class="blue">1.47<br> (106ns)</span> 11857 </p> 11858 </td> 11859<td> 11860 <p> 11861 <span class="red">2.18<br> (157ns)</span> 11862 </p> 11863 </td> 11864<td> 11865 <p> 11866 <span class="blue">1.40<br> (101ns)</span> 11867 </p> 11868 </td> 11869<td> 11870 <p> 11871 <span class="blue">1.33<br> (96ns)</span> 11872 </p> 11873 </td> 11874<td> 11875 <p> 11876 <span class="green">1.01<br> (73ns)</span> 11877 </p> 11878 </td> 11879<td> 11880 <p> 11881 <span class="green">1.03<br> (74ns)</span> 11882 </p> 11883 </td> 11884<td> 11885 <p> 11886 <span class="green">1.00<br> (72ns)</span> 11887 </p> 11888 </td> 11889<td> 11890 <p> 11891 <span class="green">1.04<br> (75ns)</span> 11892 </p> 11893 </td> 11894</tr> 11895<tr> 11896<td> 11897 <p> 11898 Order 17 11899 </p> 11900 </td> 11901<td> 11902 <p> 11903 <span class="blue">1.46<br> (114ns)</span> 11904 </p> 11905 </td> 11906<td> 11907 <p> 11908 <span class="red">2.08<br> (162ns)</span> 11909 </p> 11910 </td> 11911<td> 11912 <p> 11913 <span class="blue">1.44<br> (112ns)</span> 11914 </p> 11915 </td> 11916<td> 11917 <p> 11918 <span class="blue">1.44<br> (112ns)</span> 11919 </p> 11920 </td> 11921<td> 11922 <p> 11923 <span class="green">1.00<br> (78ns)</span> 11924 </p> 11925 </td> 11926<td> 11927 <p> 11928 <span class="green">1.01<br> (79ns)</span> 11929 </p> 11930 </td> 11931<td> 11932 <p> 11933 <span class="green">1.05<br> (82ns)</span> 11934 </p> 11935 </td> 11936<td> 11937 <p> 11938 <span class="green">1.03<br> (80ns)</span> 11939 </p> 11940 </td> 11941</tr> 11942<tr> 11943<td> 11944 <p> 11945 Order 18 11946 </p> 11947 </td> 11948<td> 11949 <p> 11950 <span class="blue">1.48<br> (126ns)</span> 11951 </p> 11952 </td> 11953<td> 11954 <p> 11955 <span class="red">2.08<br> (177ns)</span> 11956 </p> 11957 </td> 11958<td> 11959 <p> 11960 <span class="blue">1.44<br> (122ns)</span> 11961 </p> 11962 </td> 11963<td> 11964 <p> 11965 <span class="blue">1.46<br> (124ns)</span> 11966 </p> 11967 </td> 11968<td> 11969 <p> 11970 <span class="green">1.02<br> (87ns)</span> 11971 </p> 11972 </td> 11973<td> 11974 <p> 11975 <span class="green">1.04<br> (88ns)</span> 11976 </p> 11977 </td> 11978<td> 11979 <p> 11980 <span class="green">1.01<br> (86ns)</span> 11981 </p> 11982 </td> 11983<td> 11984 <p> 11985 <span class="green">1.00<br> (85ns)</span> 11986 </p> 11987 </td> 11988</tr> 11989<tr> 11990<td> 11991 <p> 11992 Order 19 11993 </p> 11994 </td> 11995<td> 11996 <p> 11997 <span class="blue">1.49<br> (136ns)</span> 11998 </p> 11999 </td> 12000<td> 12001 <p> 12002 <span class="red">2.07<br> (188ns)</span> 12003 </p> 12004 </td> 12005<td> 12006 <p> 12007 <span class="blue">1.47<br> (134ns)</span> 12008 </p> 12009 </td> 12010<td> 12011 <p> 12012 <span class="blue">1.47<br> (134ns)</span> 12013 </p> 12014 </td> 12015<td> 12016 <p> 12017 <span class="green">1.00<br> (91ns)</span> 12018 </p> 12019 </td> 12020<td> 12021 <p> 12022 <span class="green">1.01<br> (92ns)</span> 12023 </p> 12024 </td> 12025<td> 12026 <p> 12027 <span class="green">1.05<br> (96ns)</span> 12028 </p> 12029 </td> 12030<td> 12031 <p> 12032 <span class="green">1.03<br> (94ns)</span> 12033 </p> 12034 </td> 12035</tr> 12036<tr> 12037<td> 12038 <p> 12039 Order 20 12040 </p> 12041 </td> 12042<td> 12043 <p> 12044 <span class="blue">1.52<br> (150ns)</span> 12045 </p> 12046 </td> 12047<td> 12048 <p> 12049 <span class="red">2.05<br> (203ns)</span> 12050 </p> 12051 </td> 12052<td> 12053 <p> 12054 <span class="blue">1.45<br> (144ns)</span> 12055 </p> 12056 </td> 12057<td> 12058 <p> 12059 <span class="blue">1.46<br> (145ns)</span> 12060 </p> 12061 </td> 12062<td> 12063 <p> 12064 <span class="green">1.00<br> (99ns)</span> 12065 </p> 12066 </td> 12067<td> 12068 <p> 12069 <span class="green">1.02<br> (101ns)</span> 12070 </p> 12071 </td> 12072<td> 12073 <p> 12074 <span class="green">1.02<br> (101ns)</span> 12075 </p> 12076 </td> 12077<td> 12078 <p> 12079 <span class="green">1.02<br> (101ns)</span> 12080 </p> 12081 </td> 12082</tr> 12083</tbody> 12084</table></div> 12085</div> 12086<br class="table-break"> 12087</div> 12088<div class="section"> 12089<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 12090<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64">Rational 12091 Method Comparison with GNU C++ version 9.2.0 on Windows x64</a> 12092</h2></div></div></div> 12093<div class="table"> 12094<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_Rational_Method_Comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 13. Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64</b></p> 12095<div class="table-contents"><table class="table" summary="Rational Method Comparison with GNU C++ version 9.2.0 on Windows x64"> 12096<colgroup> 12097<col> 12098<col> 12099<col> 12100<col> 12101<col> 12102<col> 12103<col> 12104<col> 12105<col> 12106</colgroup> 12107<thead><tr> 12108<th> 12109 <p> 12110 Function 12111 </p> 12112 </th> 12113<th> 12114 <p> 12115 Method 0<br> (Double Coefficients) 12116 </p> 12117 </th> 12118<th> 12119 <p> 12120 Method 0<br> (Integer Coefficients) 12121 </p> 12122 </th> 12123<th> 12124 <p> 12125 Method 1<br> (Double Coefficients) 12126 </p> 12127 </th> 12128<th> 12129 <p> 12130 Method 1<br> (Integer Coefficients) 12131 </p> 12132 </th> 12133<th> 12134 <p> 12135 Method 2<br> (Double Coefficients) 12136 </p> 12137 </th> 12138<th> 12139 <p> 12140 Method 2<br> (Integer Coefficients) 12141 </p> 12142 </th> 12143<th> 12144 <p> 12145 Method 3<br> (Double Coefficients) 12146 </p> 12147 </th> 12148<th> 12149 <p> 12150 Method 3<br> (Integer Coefficients) 12151 </p> 12152 </th> 12153</tr></thead> 12154<tbody> 12155<tr> 12156<td> 12157 <p> 12158 Order 2 12159 </p> 12160 </td> 12161<td> 12162 <p> 12163 <span class="grey">-</span> 12164 </p> 12165 </td> 12166<td> 12167 <p> 12168 <span class="grey">-</span> 12169 </p> 12170 </td> 12171<td> 12172 <p> 12173 <span class="blue">1.83<br> (22ns)</span> 12174 </p> 12175 </td> 12176<td> 12177 <p> 12178 <span class="blue">1.83<br> (22ns)</span> 12179 </p> 12180 </td> 12181<td> 12182 <p> 12183 <span class="green">1.00<br> (12ns)</span> 12184 </p> 12185 </td> 12186<td> 12187 <p> 12188 <span class="green">1.00<br> (12ns)</span> 12189 </p> 12190 </td> 12191<td> 12192 <p> 12193 <span class="green">1.17<br> (14ns)</span> 12194 </p> 12195 </td> 12196<td> 12197 <p> 12198 <span class="green">1.08<br> (13ns)</span> 12199 </p> 12200 </td> 12201</tr> 12202<tr> 12203<td> 12204 <p> 12205 Order 3 12206 </p> 12207 </td> 12208<td> 12209 <p> 12210 <span class="blue">1.83<br> (33ns)</span> 12211 </p> 12212 </td> 12213<td> 12214 <p> 12215 <span class="red">2.17<br> (39ns)</span> 12216 </p> 12217 </td> 12218<td> 12219 <p> 12220 <span class="blue">1.56<br> (28ns)</span> 12221 </p> 12222 </td> 12223<td> 12224 <p> 12225 <span class="blue">1.44<br> (26ns)</span> 12226 </p> 12227 </td> 12228<td> 12229 <p> 12230 <span class="green">1.00<br> (18ns)</span> 12231 </p> 12232 </td> 12233<td> 12234 <p> 12235 <span class="green">1.00<br> (18ns)</span> 12236 </p> 12237 </td> 12238<td> 12239 <p> 12240 <span class="green">1.00<br> (18ns)</span> 12241 </p> 12242 </td> 12243<td> 12244 <p> 12245 <span class="green">1.00<br> (18ns)</span> 12246 </p> 12247 </td> 12248</tr> 12249<tr> 12250<td> 12251 <p> 12252 Order 4 12253 </p> 12254 </td> 12255<td> 12256 <p> 12257 <span class="blue">1.65<br> (43ns)</span> 12258 </p> 12259 </td> 12260<td> 12261 <p> 12262 <span class="blue">2.00<br> (52ns)</span> 12263 </p> 12264 </td> 12265<td> 12266 <p> 12267 <span class="blue">1.46<br> (38ns)</span> 12268 </p> 12269 </td> 12270<td> 12271 <p> 12272 <span class="blue">1.46<br> (38ns)</span> 12273 </p> 12274 </td> 12275<td> 12276 <p> 12277 <span class="green">1.00<br> (26ns)</span> 12278 </p> 12279 </td> 12280<td> 12281 <p> 12282 <span class="green">1.00<br> (26ns)</span> 12283 </p> 12284 </td> 12285<td> 12286 <p> 12287 <span class="green">1.04<br> (27ns)</span> 12288 </p> 12289 </td> 12290<td> 12291 <p> 12292 <span class="green">1.12<br> (29ns)</span> 12293 </p> 12294 </td> 12295</tr> 12296<tr> 12297<td> 12298 <p> 12299 Order 5 12300 </p> 12301 </td> 12302<td> 12303 <p> 12304 <span class="green">1.17<br> (56ns)</span> 12305 </p> 12306 </td> 12307<td> 12308 <p> 12309 <span class="blue">1.40<br> (67ns)</span> 12310 </p> 12311 </td> 12312<td> 12313 <p> 12314 <span class="green">1.02<br> (49ns)</span> 12315 </p> 12316 </td> 12317<td> 12318 <p> 12319 <span class="green">1.00<br> (48ns)</span> 12320 </p> 12321 </td> 12322<td> 12323 <p> 12324 <span class="green">1.12<br> (54ns)</span> 12325 </p> 12326 </td> 12327<td> 12328 <p> 12329 <span class="green">1.10<br> (53ns)</span> 12330 </p> 12331 </td> 12332<td> 12333 <p> 12334 <span class="green">1.17<br> (56ns)</span> 12335 </p> 12336 </td> 12337<td> 12338 <p> 12339 <span class="green">1.12<br> (54ns)</span> 12340 </p> 12341 </td> 12342</tr> 12343<tr> 12344<td> 12345 <p> 12346 Order 6 12347 </p> 12348 </td> 12349<td> 12350 <p> 12351 <span class="green">1.02<br> (62ns)</span> 12352 </p> 12353 </td> 12354<td> 12355 <p> 12356 <span class="blue">1.25<br> (76ns)</span> 12357 </p> 12358 </td> 12359<td> 12360 <p> 12361 <span class="green">1.00<br> (61ns)</span> 12362 </p> 12363 </td> 12364<td> 12365 <p> 12366 <span class="green">1.00<br> (61ns)</span> 12367 </p> 12368 </td> 12369<td> 12370 <p> 12371 <span class="green">1.02<br> (62ns)</span> 12372 </p> 12373 </td> 12374<td> 12375 <p> 12376 <span class="green">1.02<br> (62ns)</span> 12377 </p> 12378 </td> 12379<td> 12380 <p> 12381 <span class="green">1.05<br> (64ns)</span> 12382 </p> 12383 </td> 12384<td> 12385 <p> 12386 <span class="blue">1.30<br> (79ns)</span> 12387 </p> 12388 </td> 12389</tr> 12390<tr> 12391<td> 12392 <p> 12393 Order 7 12394 </p> 12395 </td> 12396<td> 12397 <p> 12398 <span class="green">1.03<br> (74ns)</span> 12399 </p> 12400 </td> 12401<td> 12402 <p> 12403 <span class="blue">1.29<br> (93ns)</span> 12404 </p> 12405 </td> 12406<td> 12407 <p> 12408 <span class="green">1.01<br> (73ns)</span> 12409 </p> 12410 </td> 12411<td> 12412 <p> 12413 <span class="green">1.00<br> (72ns)</span> 12414 </p> 12415 </td> 12416<td> 12417 <p> 12418 <span class="green">1.01<br> (73ns)</span> 12419 </p> 12420 </td> 12421<td> 12422 <p> 12423 <span class="green">1.01<br> (73ns)</span> 12424 </p> 12425 </td> 12426<td> 12427 <p> 12428 <span class="green">1.03<br> (74ns)</span> 12429 </p> 12430 </td> 12431<td> 12432 <p> 12433 <span class="green">1.01<br> (73ns)</span> 12434 </p> 12435 </td> 12436</tr> 12437<tr> 12438<td> 12439 <p> 12440 Order 8 12441 </p> 12442 </td> 12443<td> 12444 <p> 12445 <span class="green">1.10<br> (90ns)</span> 12446 </p> 12447 </td> 12448<td> 12449 <p> 12450 <span class="blue">1.27<br> (104ns)</span> 12451 </p> 12452 </td> 12453<td> 12454 <p> 12455 <span class="green">1.00<br> (82ns)</span> 12456 </p> 12457 </td> 12458<td> 12459 <p> 12460 <span class="green">1.00<br> (82ns)</span> 12461 </p> 12462 </td> 12463<td> 12464 <p> 12465 <span class="green">1.00<br> (82ns)</span> 12466 </p> 12467 </td> 12468<td> 12469 <p> 12470 <span class="green">1.02<br> (84ns)</span> 12471 </p> 12472 </td> 12473<td> 12474 <p> 12475 <span class="green">1.12<br> (92ns)</span> 12476 </p> 12477 </td> 12478<td> 12479 <p> 12480 <span class="green">1.05<br> (86ns)</span> 12481 </p> 12482 </td> 12483</tr> 12484<tr> 12485<td> 12486 <p> 12487 Order 9 12488 </p> 12489 </td> 12490<td> 12491 <p> 12492 <span class="blue">1.27<br> (119ns)</span> 12493 </p> 12494 </td> 12495<td> 12496 <p> 12497 <span class="blue">1.66<br> (156ns)</span> 12498 </p> 12499 </td> 12500<td> 12501 <p> 12502 <span class="green">1.03<br> (97ns)</span> 12503 </p> 12504 </td> 12505<td> 12506 <p> 12507 <span class="green">1.02<br> (96ns)</span> 12508 </p> 12509 </td> 12510<td> 12511 <p> 12512 <span class="green">1.00<br> (94ns)</span> 12513 </p> 12514 </td> 12515<td> 12516 <p> 12517 <span class="green">1.01<br> (95ns)</span> 12518 </p> 12519 </td> 12520<td> 12521 <p> 12522 <span class="green">1.00<br> (94ns)</span> 12523 </p> 12524 </td> 12525<td> 12526 <p> 12527 <span class="green">1.01<br> (95ns)</span> 12528 </p> 12529 </td> 12530</tr> 12531<tr> 12532<td> 12533 <p> 12534 Order 10 12535 </p> 12536 </td> 12537<td> 12538 <p> 12539 <span class="blue">1.22<br> (128ns)</span> 12540 </p> 12541 </td> 12542<td> 12543 <p> 12544 <span class="blue">1.40<br> (147ns)</span> 12545 </p> 12546 </td> 12547<td> 12548 <p> 12549 <span class="green">1.06<br> (111ns)</span> 12550 </p> 12551 </td> 12552<td> 12553 <p> 12554 <span class="green">1.07<br> (112ns)</span> 12555 </p> 12556 </td> 12557<td> 12558 <p> 12559 <span class="green">1.00<br> (105ns)</span> 12560 </p> 12561 </td> 12562<td> 12563 <p> 12564 <span class="green">1.02<br> (107ns)</span> 12565 </p> 12566 </td> 12567<td> 12568 <p> 12569 <span class="green">1.00<br> (105ns)</span> 12570 </p> 12571 </td> 12572<td> 12573 <p> 12574 <span class="green">1.08<br> (113ns)</span> 12575 </p> 12576 </td> 12577</tr> 12578<tr> 12579<td> 12580 <p> 12581 Order 11 12582 </p> 12583 </td> 12584<td> 12585 <p> 12586 <span class="green">1.20<br> (140ns)</span> 12587 </p> 12588 </td> 12589<td> 12590 <p> 12591 <span class="blue">1.44<br> (169ns)</span> 12592 </p> 12593 </td> 12594<td> 12595 <p> 12596 <span class="green">1.07<br> (125ns)</span> 12597 </p> 12598 </td> 12599<td> 12600 <p> 12601 <span class="green">1.06<br> (124ns)</span> 12602 </p> 12603 </td> 12604<td> 12605 <p> 12606 <span class="green">1.00<br> (117ns)</span> 12607 </p> 12608 </td> 12609<td> 12610 <p> 12611 <span class="green">1.07<br> (125ns)</span> 12612 </p> 12613 </td> 12614<td> 12615 <p> 12616 <span class="green">1.01<br> (118ns)</span> 12617 </p> 12618 </td> 12619<td> 12620 <p> 12621 <span class="green">1.04<br> (122ns)</span> 12622 </p> 12623 </td> 12624</tr> 12625<tr> 12626<td> 12627 <p> 12628 Order 12 12629 </p> 12630 </td> 12631<td> 12632 <p> 12633 <span class="blue">1.24<br> (155ns)</span> 12634 </p> 12635 </td> 12636<td> 12637 <p> 12638 <span class="blue">1.32<br> (165ns)</span> 12639 </p> 12640 </td> 12641<td> 12642 <p> 12643 <span class="green">1.10<br> (137ns)</span> 12644 </p> 12645 </td> 12646<td> 12647 <p> 12648 <span class="green">1.12<br> (140ns)</span> 12649 </p> 12650 </td> 12651<td> 12652 <p> 12653 <span class="green">1.02<br> (128ns)</span> 12654 </p> 12655 </td> 12656<td> 12657 <p> 12658 <span class="blue">1.23<br> (154ns)</span> 12659 </p> 12660 </td> 12661<td> 12662 <p> 12663 <span class="green">1.04<br> (130ns)</span> 12664 </p> 12665 </td> 12666<td> 12667 <p> 12668 <span class="green">1.00<br> (125ns)</span> 12669 </p> 12670 </td> 12671</tr> 12672<tr> 12673<td> 12674 <p> 12675 Order 13 12676 </p> 12677 </td> 12678<td> 12679 <p> 12680 <span class="blue">1.27<br> (171ns)</span> 12681 </p> 12682 </td> 12683<td> 12684 <p> 12685 <span class="blue">1.36<br> (183ns)</span> 12686 </p> 12687 </td> 12688<td> 12689 <p> 12690 <span class="green">1.18<br> (159ns)</span> 12691 </p> 12692 </td> 12693<td> 12694 <p> 12695 <span class="green">1.13<br> (153ns)</span> 12696 </p> 12697 </td> 12698<td> 12699 <p> 12700 <span class="green">1.06<br> (143ns)</span> 12701 </p> 12702 </td> 12703<td> 12704 <p> 12705 <span class="green">1.00<br> (135ns)</span> 12706 </p> 12707 </td> 12708<td> 12709 <p> 12710 <span class="green">1.01<br> (136ns)</span> 12711 </p> 12712 </td> 12713<td> 12714 <p> 12715 <span class="green">1.02<br> (138ns)</span> 12716 </p> 12717 </td> 12718</tr> 12719<tr> 12720<td> 12721 <p> 12722 Order 14 12723 </p> 12724 </td> 12725<td> 12726 <p> 12727 <span class="green">1.16<br> (178ns)</span> 12728 </p> 12729 </td> 12730<td> 12731 <p> 12732 <span class="blue">1.28<br> (196ns)</span> 12733 </p> 12734 </td> 12735<td> 12736 <p> 12737 <span class="green">1.10<br> (168ns)</span> 12738 </p> 12739 </td> 12740<td> 12741 <p> 12742 <span class="green">1.08<br> (166ns)</span> 12743 </p> 12744 </td> 12745<td> 12746 <p> 12747 <span class="green">1.14<br> (174ns)</span> 12748 </p> 12749 </td> 12750<td> 12751 <p> 12752 <span class="green">1.10<br> (168ns)</span> 12753 </p> 12754 </td> 12755<td> 12756 <p> 12757 <span class="green">1.13<br> (173ns)</span> 12758 </p> 12759 </td> 12760<td> 12761 <p> 12762 <span class="green">1.00<br> (153ns)</span> 12763 </p> 12764 </td> 12765</tr> 12766<tr> 12767<td> 12768 <p> 12769 Order 15 12770 </p> 12771 </td> 12772<td> 12773 <p> 12774 <span class="blue">1.32<br> (196ns)</span> 12775 </p> 12776 </td> 12777<td> 12778 <p> 12779 <span class="blue">1.47<br> (217ns)</span> 12780 </p> 12781 </td> 12782<td> 12783 <p> 12784 <span class="blue">1.23<br> (182ns)</span> 12785 </p> 12786 </td> 12787<td> 12788 <p> 12789 <span class="blue">1.22<br> (181ns)</span> 12790 </p> 12791 </td> 12792<td> 12793 <p> 12794 <span class="green">1.00<br> (148ns)</span> 12795 </p> 12796 </td> 12797<td> 12798 <p> 12799 <span class="green">1.01<br> (150ns)</span> 12800 </p> 12801 </td> 12802<td> 12803 <p> 12804 <span class="green">1.15<br> (170ns)</span> 12805 </p> 12806 </td> 12807<td> 12808 <p> 12809 <span class="green">1.03<br> (152ns)</span> 12810 </p> 12811 </td> 12812</tr> 12813<tr> 12814<td> 12815 <p> 12816 Order 16 12817 </p> 12818 </td> 12819<td> 12820 <p> 12821 <span class="blue">1.31<br> (209ns)</span> 12822 </p> 12823 </td> 12824<td> 12825 <p> 12826 <span class="blue">1.39<br> (223ns)</span> 12827 </p> 12828 </td> 12829<td> 12830 <p> 12831 <span class="blue">1.26<br> (202ns)</span> 12832 </p> 12833 </td> 12834<td> 12835 <p> 12836 <span class="blue">1.28<br> (205ns)</span> 12837 </p> 12838 </td> 12839<td> 12840 <p> 12841 <span class="green">1.00<br> (160ns)</span> 12842 </p> 12843 </td> 12844<td> 12845 <p> 12846 <span class="green">1.01<br> (161ns)</span> 12847 </p> 12848 </td> 12849<td> 12850 <p> 12851 <span class="green">1.09<br> (174ns)</span> 12852 </p> 12853 </td> 12854<td> 12855 <p> 12856 <span class="green">1.01<br> (161ns)</span> 12857 </p> 12858 </td> 12859</tr> 12860<tr> 12861<td> 12862 <p> 12863 Order 17 12864 </p> 12865 </td> 12866<td> 12867 <p> 12868 <span class="blue">1.34<br> (221ns)</span> 12869 </p> 12870 </td> 12871<td> 12872 <p> 12873 <span class="blue">1.46<br> (241ns)</span> 12874 </p> 12875 </td> 12876<td> 12877 <p> 12878 <span class="blue">1.32<br> (217ns)</span> 12879 </p> 12880 </td> 12881<td> 12882 <p> 12883 <span class="blue">1.37<br> (226ns)</span> 12884 </p> 12885 </td> 12886<td> 12887 <p> 12888 <span class="green">1.00<br> (165ns)</span> 12889 </p> 12890 </td> 12891<td> 12892 <p> 12893 <span class="green">1.06<br> (175ns)</span> 12894 </p> 12895 </td> 12896<td> 12897 <p> 12898 <span class="green">1.08<br> (178ns)</span> 12899 </p> 12900 </td> 12901<td> 12902 <p> 12903 <span class="green">1.00<br> (165ns)</span> 12904 </p> 12905 </td> 12906</tr> 12907<tr> 12908<td> 12909 <p> 12910 Order 18 12911 </p> 12912 </td> 12913<td> 12914 <p> 12915 <span class="blue">1.52<br> (264ns)</span> 12916 </p> 12917 </td> 12918<td> 12919 <p> 12920 <span class="blue">1.53<br> (266ns)</span> 12921 </p> 12922 </td> 12923<td> 12924 <p> 12925 <span class="blue">1.41<br> (246ns)</span> 12926 </p> 12927 </td> 12928<td> 12929 <p> 12930 <span class="blue">1.43<br> (249ns)</span> 12931 </p> 12932 </td> 12933<td> 12934 <p> 12935 <span class="blue">1.23<br> (214ns)</span> 12936 </p> 12937 </td> 12938<td> 12939 <p> 12940 <span class="green">1.03<br> (179ns)</span> 12941 </p> 12942 </td> 12943<td> 12944 <p> 12945 <span class="green">1.00<br> (174ns)</span> 12946 </p> 12947 </td> 12948<td> 12949 <p> 12950 <span class="green">1.05<br> (182ns)</span> 12951 </p> 12952 </td> 12953</tr> 12954<tr> 12955<td> 12956 <p> 12957 Order 19 12958 </p> 12959 </td> 12960<td> 12961 <p> 12962 <span class="blue">1.35<br> (252ns)</span> 12963 </p> 12964 </td> 12965<td> 12966 <p> 12967 <span class="blue">1.56<br> (292ns)</span> 12968 </p> 12969 </td> 12970<td> 12971 <p> 12972 <span class="blue">1.54<br> (288ns)</span> 12973 </p> 12974 </td> 12975<td> 12976 <p> 12977 <span class="blue">1.39<br> (259ns)</span> 12978 </p> 12979 </td> 12980<td> 12981 <p> 12982 <span class="green">1.00<br> (187ns)</span> 12983 </p> 12984 </td> 12985<td> 12986 <p> 12987 <span class="blue">1.22<br> (228ns)</span> 12988 </p> 12989 </td> 12990<td> 12991 <p> 12992 <span class="green">1.02<br> (191ns)</span> 12993 </p> 12994 </td> 12995<td> 12996 <p> 12997 <span class="green">1.04<br> (195ns)</span> 12998 </p> 12999 </td> 13000</tr> 13001<tr> 13002<td> 13003 <p> 13004 Order 20 13005 </p> 13006 </td> 13007<td> 13008 <p> 13009 <span class="blue">1.34<br> (271ns)</span> 13010 </p> 13011 </td> 13012<td> 13013 <p> 13014 <span class="blue">1.59<br> (322ns)</span> 13015 </p> 13016 </td> 13017<td> 13018 <p> 13019 <span class="blue">1.39<br> (280ns)</span> 13020 </p> 13021 </td> 13022<td> 13023 <p> 13024 <span class="blue">1.46<br> (294ns)</span> 13025 </p> 13026 </td> 13027<td> 13028 <p> 13029 <span class="green">1.06<br> (214ns)</span> 13030 </p> 13031 </td> 13032<td> 13033 <p> 13034 <span class="green">1.01<br> (205ns)</span> 13035 </p> 13036 </td> 13037<td> 13038 <p> 13039 <span class="green">1.00<br> (202ns)</span> 13040 </p> 13041 </td> 13042<td> 13043 <p> 13044 <span class="green">1.00<br> (202ns)</span> 13045 </p> 13046 </td> 13047</tr> 13048</tbody> 13049</table></div> 13050</div> 13051<br class="table-break"> 13052</div> 13053<div class="section"> 13054<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 13055<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="Rational Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64">Rational 13056 Method Comparison with Microsoft Visual C++ version 14.2 on Windows x64</a> 13057</h2></div></div></div> 13058<div class="table"> 13059<a name="special_function_and_distributio.section_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_Rational_Method_Comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 14. Rational Method Comparison with Microsoft Visual C++ version 14.2 on 13060 Windows x64</b></p> 13061<div class="table-contents"><table class="table" summary="Rational Method Comparison with Microsoft Visual C++ version 14.2 on 13062 Windows x64"> 13063<colgroup> 13064<col> 13065<col> 13066<col> 13067<col> 13068<col> 13069<col> 13070<col> 13071<col> 13072<col> 13073</colgroup> 13074<thead><tr> 13075<th> 13076 <p> 13077 Function 13078 </p> 13079 </th> 13080<th> 13081 <p> 13082 Method 0<br> (Double Coefficients) 13083 </p> 13084 </th> 13085<th> 13086 <p> 13087 Method 0<br> (Integer Coefficients) 13088 </p> 13089 </th> 13090<th> 13091 <p> 13092 Method 1<br> (Double Coefficients) 13093 </p> 13094 </th> 13095<th> 13096 <p> 13097 Method 1<br> (Integer Coefficients) 13098 </p> 13099 </th> 13100<th> 13101 <p> 13102 Method 2<br> (Double Coefficients) 13103 </p> 13104 </th> 13105<th> 13106 <p> 13107 Method 2<br> (Integer Coefficients) 13108 </p> 13109 </th> 13110<th> 13111 <p> 13112 Method 3<br> (Double Coefficients) 13113 </p> 13114 </th> 13115<th> 13116 <p> 13117 Method 3<br> (Integer Coefficients) 13118 </p> 13119 </th> 13120</tr></thead> 13121<tbody> 13122<tr> 13123<td> 13124 <p> 13125 Order 2 13126 </p> 13127 </td> 13128<td> 13129 <p> 13130 <span class="grey">-</span> 13131 </p> 13132 </td> 13133<td> 13134 <p> 13135 <span class="grey">-</span> 13136 </p> 13137 </td> 13138<td> 13139 <p> 13140 <span class="blue">1.92<br> (23ns)</span> 13141 </p> 13142 </td> 13143<td> 13144 <p> 13145 <span class="blue">1.92<br> (23ns)</span> 13146 </p> 13147 </td> 13148<td> 13149 <p> 13150 <span class="green">1.00<br> (12ns)</span> 13151 </p> 13152 </td> 13153<td> 13154 <p> 13155 <span class="green">1.17<br> (14ns)</span> 13156 </p> 13157 </td> 13158<td> 13159 <p> 13160 <span class="green">1.00<br> (12ns)</span> 13161 </p> 13162 </td> 13163<td> 13164 <p> 13165 <span class="green">1.00<br> (12ns)</span> 13166 </p> 13167 </td> 13168</tr> 13169<tr> 13170<td> 13171 <p> 13172 Order 3 13173 </p> 13174 </td> 13175<td> 13176 <p> 13177 <span class="blue">1.89<br> (34ns)</span> 13178 </p> 13179 </td> 13180<td> 13181 <p> 13182 <span class="red">2.28<br> (41ns)</span> 13183 </p> 13184 </td> 13185<td> 13186 <p> 13187 <span class="blue">1.67<br> (30ns)</span> 13188 </p> 13189 </td> 13190<td> 13191 <p> 13192 <span class="blue">1.61<br> (29ns)</span> 13193 </p> 13194 </td> 13195<td> 13196 <p> 13197 <span class="green">1.06<br> (19ns)</span> 13198 </p> 13199 </td> 13200<td> 13201 <p> 13202 <span class="green">1.00<br> (18ns)</span> 13203 </p> 13204 </td> 13205<td> 13206 <p> 13207 <span class="green">1.00<br> (18ns)</span> 13208 </p> 13209 </td> 13210<td> 13211 <p> 13212 <span class="green">1.00<br> (18ns)</span> 13213 </p> 13214 </td> 13215</tr> 13216<tr> 13217<td> 13218 <p> 13219 Order 4 13220 </p> 13221 </td> 13222<td> 13223 <p> 13224 <span class="blue">1.72<br> (43ns)</span> 13225 </p> 13226 </td> 13227<td> 13228 <p> 13229 <span class="red">2.16<br> (54ns)</span> 13230 </p> 13231 </td> 13232<td> 13233 <p> 13234 <span class="blue">1.64<br> (41ns)</span> 13235 </p> 13236 </td> 13237<td> 13238 <p> 13239 <span class="blue">1.60<br> (40ns)</span> 13240 </p> 13241 </td> 13242<td> 13243 <p> 13244 <span class="green">1.00<br> (25ns)</span> 13245 </p> 13246 </td> 13247<td> 13248 <p> 13249 <span class="green">1.00<br> (25ns)</span> 13250 </p> 13251 </td> 13252<td> 13253 <p> 13254 <span class="green">1.00<br> (25ns)</span> 13255 </p> 13256 </td> 13257<td> 13258 <p> 13259 <span class="green">1.04<br> (26ns)</span> 13260 </p> 13261 </td> 13262</tr> 13263<tr> 13264<td> 13265 <p> 13266 Order 5 13267 </p> 13268 </td> 13269<td> 13270 <p> 13271 <span class="green">1.08<br> (53ns)</span> 13272 </p> 13273 </td> 13274<td> 13275 <p> 13276 <span class="blue">1.41<br> (69ns)</span> 13277 </p> 13278 </td> 13279<td> 13280 <p> 13281 <span class="green">1.00<br> (49ns)</span> 13282 </p> 13283 </td> 13284<td> 13285 <p> 13286 <span class="green">1.00<br> (49ns)</span> 13287 </p> 13288 </td> 13289<td> 13290 <p> 13291 <span class="green">1.08<br> (53ns)</span> 13292 </p> 13293 </td> 13294<td> 13295 <p> 13296 <span class="green">1.08<br> (53ns)</span> 13297 </p> 13298 </td> 13299<td> 13300 <p> 13301 <span class="green">1.00<br> (49ns)</span> 13302 </p> 13303 </td> 13304<td> 13305 <p> 13306 <span class="green">1.10<br> (54ns)</span> 13307 </p> 13308 </td> 13309</tr> 13310<tr> 13311<td> 13312 <p> 13313 Order 6 13314 </p> 13315 </td> 13316<td> 13317 <p> 13318 <span class="green">1.08<br> (65ns)</span> 13319 </p> 13320 </td> 13321<td> 13322 <p> 13323 <span class="blue">1.42<br> (85ns)</span> 13324 </p> 13325 </td> 13326<td> 13327 <p> 13328 <span class="green">1.02<br> (61ns)</span> 13329 </p> 13330 </td> 13331<td> 13332 <p> 13333 <span class="green">1.00<br> (60ns)</span> 13334 </p> 13335 </td> 13336<td> 13337 <p> 13338 <span class="green">1.05<br> (63ns)</span> 13339 </p> 13340 </td> 13341<td> 13342 <p> 13343 <span class="blue">1.23<br> (74ns)</span> 13344 </p> 13345 </td> 13346<td> 13347 <p> 13348 <span class="blue">1.25<br> (75ns)</span> 13349 </p> 13350 </td> 13351<td> 13352 <p> 13353 <span class="blue">1.40<br> (84ns)</span> 13354 </p> 13355 </td> 13356</tr> 13357<tr> 13358<td> 13359 <p> 13360 Order 7 13361 </p> 13362 </td> 13363<td> 13364 <p> 13365 <span class="green">1.06<br> (75ns)</span> 13366 </p> 13367 </td> 13368<td> 13369 <p> 13370 <span class="blue">1.37<br> (97ns)</span> 13371 </p> 13372 </td> 13373<td> 13374 <p> 13375 <span class="green">1.01<br> (72ns)</span> 13376 </p> 13377 </td> 13378<td> 13379 <p> 13380 <span class="green">1.00<br> (71ns)</span> 13381 </p> 13382 </td> 13383<td> 13384 <p> 13385 <span class="green">1.14<br> (81ns)</span> 13386 </p> 13387 </td> 13388<td> 13389 <p> 13390 <span class="green">1.01<br> (72ns)</span> 13391 </p> 13392 </td> 13393<td> 13394 <p> 13395 <span class="green">1.20<br> (85ns)</span> 13396 </p> 13397 </td> 13398<td> 13399 <p> 13400 <span class="blue">1.35<br> (96ns)</span> 13401 </p> 13402 </td> 13403</tr> 13404<tr> 13405<td> 13406 <p> 13407 Order 8 13408 </p> 13409 </td> 13410<td> 13411 <p> 13412 <span class="green">1.07<br> (87ns)</span> 13413 </p> 13414 </td> 13415<td> 13416 <p> 13417 <span class="blue">1.38<br> (112ns)</span> 13418 </p> 13419 </td> 13420<td> 13421 <p> 13422 <span class="green">1.04<br> (84ns)</span> 13423 </p> 13424 </td> 13425<td> 13426 <p> 13427 <span class="green">1.02<br> (83ns)</span> 13428 </p> 13429 </td> 13430<td> 13431 <p> 13432 <span class="green">1.01<br> (82ns)</span> 13433 </p> 13434 </td> 13435<td> 13436 <p> 13437 <span class="green">1.00<br> (81ns)</span> 13438 </p> 13439 </td> 13440<td> 13441 <p> 13442 <span class="red">2.49<br> (202ns)</span> 13443 </p> 13444 </td> 13445<td> 13446 <p> 13447 <span class="red">2.60<br> (211ns)</span> 13448 </p> 13449 </td> 13450</tr> 13451<tr> 13452<td> 13453 <p> 13454 Order 9 13455 </p> 13456 </td> 13457<td> 13458 <p> 13459 <span class="green">1.16<br> (103ns)</span> 13460 </p> 13461 </td> 13462<td> 13463 <p> 13464 <span class="blue">1.61<br> (143ns)</span> 13465 </p> 13466 </td> 13467<td> 13468 <p> 13469 <span class="green">1.18<br> (105ns)</span> 13470 </p> 13471 </td> 13472<td> 13473 <p> 13474 <span class="blue">1.27<br> (113ns)</span> 13475 </p> 13476 </td> 13477<td> 13478 <p> 13479 <span class="green">1.01<br> (90ns)</span> 13480 </p> 13481 </td> 13482<td> 13483 <p> 13484 <span class="green">1.02<br> (91ns)</span> 13485 </p> 13486 </td> 13487<td> 13488 <p> 13489 <span class="green">1.02<br> (91ns)</span> 13490 </p> 13491 </td> 13492<td> 13493 <p> 13494 <span class="green">1.00<br> (89ns)</span> 13495 </p> 13496 </td> 13497</tr> 13498<tr> 13499<td> 13500 <p> 13501 Order 10 13502 </p> 13503 </td> 13504<td> 13505 <p> 13506 <span class="green">1.15<br> (115ns)</span> 13507 </p> 13508 </td> 13509<td> 13510 <p> 13511 <span class="blue">1.46<br> (146ns)</span> 13512 </p> 13513 </td> 13514<td> 13515 <p> 13516 <span class="green">1.14<br> (114ns)</span> 13517 </p> 13518 </td> 13519<td> 13520 <p> 13521 <span class="green">1.12<br> (112ns)</span> 13522 </p> 13523 </td> 13524<td> 13525 <p> 13526 <span class="green">1.01<br> (101ns)</span> 13527 </p> 13528 </td> 13529<td> 13530 <p> 13531 <span class="green">1.02<br> (102ns)</span> 13532 </p> 13533 </td> 13534<td> 13535 <p> 13536 <span class="green">1.01<br> (101ns)</span> 13537 </p> 13538 </td> 13539<td> 13540 <p> 13541 <span class="green">1.00<br> (100ns)</span> 13542 </p> 13543 </td> 13544</tr> 13545<tr> 13546<td> 13547 <p> 13548 Order 11 13549 </p> 13550 </td> 13551<td> 13552 <p> 13553 <span class="blue">1.21<br> (131ns)</span> 13554 </p> 13555 </td> 13556<td> 13557 <p> 13558 <span class="blue">1.48<br> (160ns)</span> 13559 </p> 13560 </td> 13561<td> 13562 <p> 13563 <span class="green">1.17<br> (126ns)</span> 13564 </p> 13565 </td> 13566<td> 13567 <p> 13568 <span class="green">1.16<br> (125ns)</span> 13569 </p> 13570 </td> 13571<td> 13572 <p> 13573 <span class="green">1.00<br> (108ns)</span> 13574 </p> 13575 </td> 13576<td> 13577 <p> 13578 <span class="blue">1.27<br> (137ns)</span> 13579 </p> 13580 </td> 13581<td> 13582 <p> 13583 <span class="green">1.00<br> (108ns)</span> 13584 </p> 13585 </td> 13586<td> 13587 <p> 13588 <span class="green">1.01<br> (109ns)</span> 13589 </p> 13590 </td> 13591</tr> 13592<tr> 13593<td> 13594 <p> 13595 Order 12 13596 </p> 13597 </td> 13598<td> 13599 <p> 13600 <span class="blue">1.26<br> (148ns)</span> 13601 </p> 13602 </td> 13603<td> 13604 <p> 13605 <span class="blue">1.53<br> (179ns)</span> 13606 </p> 13607 </td> 13608<td> 13609 <p> 13610 <span class="green">1.19<br> (139ns)</span> 13611 </p> 13612 </td> 13613<td> 13614 <p> 13615 <span class="green">1.19<br> (139ns)</span> 13616 </p> 13617 </td> 13618<td> 13619 <p> 13620 <span class="green">1.02<br> (119ns)</span> 13621 </p> 13622 </td> 13623<td> 13624 <p> 13625 <span class="blue">1.24<br> (145ns)</span> 13626 </p> 13627 </td> 13628<td> 13629 <p> 13630 <span class="green">1.00<br> (117ns)</span> 13631 </p> 13632 </td> 13633<td> 13634 <p> 13635 <span class="green">1.00<br> (117ns)</span> 13636 </p> 13637 </td> 13638</tr> 13639<tr> 13640<td> 13641 <p> 13642 Order 13 13643 </p> 13644 </td> 13645<td> 13646 <p> 13647 <span class="blue">1.31<br> (163ns)</span> 13648 </p> 13649 </td> 13650<td> 13651 <p> 13652 <span class="blue">1.71<br> (212ns)</span> 13653 </p> 13654 </td> 13655<td> 13656 <p> 13657 <span class="blue">1.23<br> (153ns)</span> 13658 </p> 13659 </td> 13660<td> 13661 <p> 13662 <span class="blue">1.52<br> (189ns)</span> 13663 </p> 13664 </td> 13665<td> 13666 <p> 13667 <span class="green">1.01<br> (125ns)</span> 13668 </p> 13669 </td> 13670<td> 13671 <p> 13672 <span class="blue">1.29<br> (160ns)</span> 13673 </p> 13674 </td> 13675<td> 13676 <p> 13677 <span class="green">1.01<br> (125ns)</span> 13678 </p> 13679 </td> 13680<td> 13681 <p> 13682 <span class="green">1.00<br> (124ns)</span> 13683 </p> 13684 </td> 13685</tr> 13686<tr> 13687<td> 13688 <p> 13689 Order 14 13690 </p> 13691 </td> 13692<td> 13693 <p> 13694 <span class="blue">1.42<br> (190ns)</span> 13695 </p> 13696 </td> 13697<td> 13698 <p> 13699 <span class="blue">1.56<br> (209ns)</span> 13700 </p> 13701 </td> 13702<td> 13703 <p> 13704 <span class="blue">1.32<br> (177ns)</span> 13705 </p> 13706 </td> 13707<td> 13708 <p> 13709 <span class="blue">1.47<br> (197ns)</span> 13710 </p> 13711 </td> 13712<td> 13713 <p> 13714 <span class="green">1.02<br> (137ns)</span> 13715 </p> 13716 </td> 13717<td> 13718 <p> 13719 <span class="blue">1.31<br> (175ns)</span> 13720 </p> 13721 </td> 13722<td> 13723 <p> 13724 <span class="green">1.00<br> (134ns)</span> 13725 </p> 13726 </td> 13727<td> 13728 <p> 13729 <span class="green">1.01<br> (136ns)</span> 13730 </p> 13731 </td> 13732</tr> 13733<tr> 13734<td> 13735 <p> 13736 Order 15 13737 </p> 13738 </td> 13739<td> 13740 <p> 13741 <span class="blue">1.34<br> (194ns)</span> 13742 </p> 13743 </td> 13744<td> 13745 <p> 13746 <span class="blue">1.51<br> (219ns)</span> 13747 </p> 13748 </td> 13749<td> 13750 <p> 13751 <span class="blue">1.36<br> (197ns)</span> 13752 </p> 13753 </td> 13754<td> 13755 <p> 13756 <span class="blue">1.46<br> (212ns)</span> 13757 </p> 13758 </td> 13759<td> 13760 <p> 13761 <span class="green">1.02<br> (148ns)</span> 13762 </p> 13763 </td> 13764<td> 13765 <p> 13766 <span class="blue">1.30<br> (188ns)</span> 13767 </p> 13768 </td> 13769<td> 13770 <p> 13771 <span class="green">1.00<br> (145ns)</span> 13772 </p> 13773 </td> 13774<td> 13775 <p> 13776 <span class="red">2.23<br> (323ns)</span> 13777 </p> 13778 </td> 13779</tr> 13780<tr> 13781<td> 13782 <p> 13783 Order 16 13784 </p> 13785 </td> 13786<td> 13787 <p> 13788 <span class="blue">1.38<br> (216ns)</span> 13789 </p> 13790 </td> 13791<td> 13792 <p> 13793 <span class="blue">1.56<br> (244ns)</span> 13794 </p> 13795 </td> 13796<td> 13797 <p> 13798 <span class="blue">1.36<br> (212ns)</span> 13799 </p> 13800 </td> 13801<td> 13802 <p> 13803 <span class="blue">1.31<br> (204ns)</span> 13804 </p> 13805 </td> 13806<td> 13807 <p> 13808 <span class="green">1.15<br> (179ns)</span> 13809 </p> 13810 </td> 13811<td> 13812 <p> 13813 <span class="blue">1.34<br> (209ns)</span> 13814 </p> 13815 </td> 13816<td> 13817 <p> 13818 <span class="green">1.00<br> (156ns)</span> 13819 </p> 13820 </td> 13821<td> 13822 <p> 13823 <span class="red">2.10<br> (328ns)</span> 13824 </p> 13825 </td> 13826</tr> 13827<tr> 13828<td> 13829 <p> 13830 Order 17 13831 </p> 13832 </td> 13833<td> 13834 <p> 13835 <span class="blue">1.39<br> (227ns)</span> 13836 </p> 13837 </td> 13838<td> 13839 <p> 13840 <span class="blue">1.67<br> (273ns)</span> 13841 </p> 13842 </td> 13843<td> 13844 <p> 13845 <span class="blue">1.34<br> (218ns)</span> 13846 </p> 13847 </td> 13848<td> 13849 <p> 13850 <span class="blue">1.69<br> (275ns)</span> 13851 </p> 13852 </td> 13853<td> 13854 <p> 13855 <span class="green">1.00<br> (163ns)</span> 13856 </p> 13857 </td> 13858<td> 13859 <p> 13860 <span class="blue">1.32<br> (215ns)</span> 13861 </p> 13862 </td> 13863<td> 13864 <p> 13865 <span class="green">1.02<br> (167ns)</span> 13866 </p> 13867 </td> 13868<td> 13869 <p> 13870 <span class="red">2.53<br> (412ns)</span> 13871 </p> 13872 </td> 13873</tr> 13874<tr> 13875<td> 13876 <p> 13877 Order 18 13878 </p> 13879 </td> 13880<td> 13881 <p> 13882 <span class="blue">1.37<br> (242ns)</span> 13883 </p> 13884 </td> 13885<td> 13886 <p> 13887 <span class="blue">1.73<br> (306ns)</span> 13888 </p> 13889 </td> 13890<td> 13891 <p> 13892 <span class="blue">1.40<br> (248ns)</span> 13893 </p> 13894 </td> 13895<td> 13896 <p> 13897 <span class="blue">1.56<br> (276ns)</span> 13898 </p> 13899 </td> 13900<td> 13901 <p> 13902 <span class="green">1.06<br> (187ns)</span> 13903 </p> 13904 </td> 13905<td> 13906 <p> 13907 <span class="blue">1.32<br> (233ns)</span> 13908 </p> 13909 </td> 13910<td> 13911 <p> 13912 <span class="green">1.00<br> (177ns)</span> 13913 </p> 13914 </td> 13915<td> 13916 <p> 13917 <span class="red">2.15<br> (380ns)</span> 13918 </p> 13919 </td> 13920</tr> 13921<tr> 13922<td> 13923 <p> 13924 Order 19 13925 </p> 13926 </td> 13927<td> 13928 <p> 13929 <span class="blue">1.28<br> (254ns)</span> 13930 </p> 13931 </td> 13932<td> 13933 <p> 13934 <span class="blue">1.60<br> (319ns)</span> 13935 </p> 13936 </td> 13937<td> 13938 <p> 13939 <span class="blue">1.27<br> (253ns)</span> 13940 </p> 13941 </td> 13942<td> 13943 <p> 13944 <span class="blue">1.51<br> (300ns)</span> 13945 </p> 13946 </td> 13947<td> 13948 <p> 13949 <span class="green">1.00<br> (199ns)</span> 13950 </p> 13951 </td> 13952<td> 13953 <p> 13954 <span class="blue">1.22<br> (243ns)</span> 13955 </p> 13956 </td> 13957<td> 13958 <p> 13959 <span class="blue">1.80<br> (359ns)</span> 13960 </p> 13961 </td> 13962<td> 13963 <p> 13964 <span class="blue">1.92<br> (382ns)</span> 13965 </p> 13966 </td> 13967</tr> 13968<tr> 13969<td> 13970 <p> 13971 Order 20 13972 </p> 13973 </td> 13974<td> 13975 <p> 13976 <span class="blue">1.28<br> (268ns)</span> 13977 </p> 13978 </td> 13979<td> 13980 <p> 13981 <span class="blue">1.62<br> (338ns)</span> 13982 </p> 13983 </td> 13984<td> 13985 <p> 13986 <span class="blue">1.27<br> (265ns)</span> 13987 </p> 13988 </td> 13989<td> 13990 <p> 13991 <span class="blue">1.56<br> (325ns)</span> 13992 </p> 13993 </td> 13994<td> 13995 <p> 13996 <span class="green">1.00<br> (209ns)</span> 13997 </p> 13998 </td> 13999<td> 14000 <p> 14001 <span class="blue">1.24<br> (259ns)</span> 14002 </p> 14003 </td> 14004<td> 14005 <p> 14006 <span class="blue">1.87<br> (391ns)</span> 14007 </p> 14008 </td> 14009<td> 14010 <p> 14011 <span class="red">2.04<br> (427ns)</span> 14012 </p> 14013 </td> 14014</tr> 14015</tbody> 14016</table></div> 14017</div> 14018<br class="table-break"> 14019</div> 14020<div class="section"> 14021<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 14022<a name="special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64" title="gcd method comparison with GNU C++ version 9.2.0 on Windows x64">gcd 14023 method comparison with GNU C++ version 9.2.0 on Windows x64</a> 14024</h2></div></div></div> 14025<div class="table"> 14026<a name="special_function_and_distributio.section_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64.table_gcd_method_comparison_with_GNU_C_version_9_2_0_on_Windows_x64"></a><p class="title"><b>Table 15. gcd method comparison with GNU C++ version 9.2.0 on Windows x64</b></p> 14027<div class="table-contents"><table class="table" summary="gcd method comparison with GNU C++ version 9.2.0 on Windows x64"> 14028<colgroup> 14029<col> 14030<col> 14031<col> 14032<col> 14033<col> 14034<col> 14035<col> 14036</colgroup> 14037<thead><tr> 14038<th> 14039 <p> 14040 Function 14041 </p> 14042 </th> 14043<th> 14044 <p> 14045 gcd boost 1.73 14046 </p> 14047 </th> 14048<th> 14049 <p> 14050 Euclid_gcd boost 1.73 14051 </p> 14052 </th> 14053<th> 14054 <p> 14055 Stein_gcd boost 1.73 14056 </p> 14057 </th> 14058<th> 14059 <p> 14060 mixed_binary_gcd boost 1.73 14061 </p> 14062 </th> 14063<th> 14064 <p> 14065 Stein_gcd_textbook boost 1.73 14066 </p> 14067 </th> 14068<th> 14069 <p> 14070 gcd_euclid_textbook boost 1.73 14071 </p> 14072 </th> 14073</tr></thead> 14074<tbody> 14075<tr> 14076<td> 14077 <p> 14078 gcd<boost::multiprecision::uint1024_t> (Trivial cases) 14079 </p> 14080 </td> 14081<td> 14082 <p> 14083 <span class="green">1.00<br> (585ns)</span> 14084 </p> 14085 </td> 14086<td> 14087 <p> 14088 <span class="blue">1.30<br> (761ns)</span> 14089 </p> 14090 </td> 14091<td> 14092 <p> 14093 <span class="red">3.82<br> (2237ns)</span> 14094 </p> 14095 </td> 14096<td> 14097 <p> 14098 <span class="red">3.97<br> (2321ns)</span> 14099 </p> 14100 </td> 14101<td> 14102 <p> 14103 <span class="blue">1.43<br> (836ns)</span> 14104 </p> 14105 </td> 14106<td> 14107 <p> 14108 <span class="green">1.10<br> (645ns)</span> 14109 </p> 14110 </td> 14111</tr> 14112<tr> 14113<td> 14114 <p> 14115 gcd<boost::multiprecision::uint1024_t> (adjacent Fibonacci 14116 numbers) 14117 </p> 14118 </td> 14119<td> 14120 <p> 14121 <span class="green">1.00<br> (9970176ns)</span> 14122 </p> 14123 </td> 14124<td> 14125 <p> 14126 <span class="red">7.06<br> (70352275ns)</span> 14127 </p> 14128 </td> 14129<td> 14130 <p> 14131 <span class="red">3.96<br> (39452018ns)</span> 14132 </p> 14133 </td> 14134<td> 14135 <p> 14136 <span class="red">3.33<br> (33171075ns)</span> 14137 </p> 14138 </td> 14139<td> 14140 <p> 14141 <span class="red">2.04<br> (20368737ns)</span> 14142 </p> 14143 </td> 14144<td> 14145 <p> 14146 <span class="red">7.38<br> (73577712ns)</span> 14147 </p> 14148 </td> 14149</tr> 14150<tr> 14151<td> 14152 <p> 14153 gcd<boost::multiprecision::uint1024_t> (permutations of Fibonacci 14154 numbers) 14155 </p> 14156 </td> 14157<td> 14158 <p> 14159 <span class="red">3.58<br> (5700044700ns)</span> 14160 </p> 14161 </td> 14162<td> 14163 <p> 14164 <span class="green">1.02<br> (1619575299ns)</span> 14165 </p> 14166 </td> 14167<td> 14168 <p> 14169 <span class="red">15.19<br> (24170880700ns)</span> 14170 </p> 14171 </td> 14172<td> 14173 <p> 14174 <span class="red">3.10<br> (4926301699ns)</span> 14175 </p> 14176 </td> 14177<td> 14178 <p> 14179 <span class="red">7.61<br> (12103557199ns)</span> 14180 </p> 14181 </td> 14182<td> 14183 <p> 14184 <span class="green">1.00<br> (1591386600ns)</span> 14185 </p> 14186 </td> 14187</tr> 14188<tr> 14189<td> 14190 <p> 14191 gcd<boost::multiprecision::uint1024_t> (random prime number 14192 products) 14193 </p> 14194 </td> 14195<td> 14196 <p> 14197 <span class="green">1.00<br> (776840ns)</span> 14198 </p> 14199 </td> 14200<td> 14201 <p> 14202 <span class="blue">1.83<br> (1420825ns)</span> 14203 </p> 14204 </td> 14205<td> 14206 <p> 14207 <span class="red">7.78<br> (6040362ns)</span> 14208 </p> 14209 </td> 14210<td> 14211 <p> 14212 <span class="red">2.39<br> (1853658ns)</span> 14213 </p> 14214 </td> 14215<td> 14216 <p> 14217 <span class="red">4.19<br> (3251426ns)</span> 14218 </p> 14219 </td> 14220<td> 14221 <p> 14222 <span class="blue">1.96<br> (1522179ns)</span> 14223 </p> 14224 </td> 14225</tr> 14226<tr> 14227<td> 14228 <p> 14229 gcd<boost::multiprecision::uint1024_t> (uniform random numbers) 14230 </p> 14231 </td> 14232<td> 14233 <p> 14234 <span class="green">1.00<br> (55462256ns)</span> 14235 </p> 14236 </td> 14237<td> 14238 <p> 14239 <span class="red">2.02<br> (112246250ns)</span> 14240 </p> 14241 </td> 14242<td> 14243 <p> 14244 <span class="red">2.55<br> (141227725ns)</span> 14245 </p> 14246 </td> 14247<td> 14248 <p> 14249 <span class="red">2.21<br> (122643774ns)</span> 14250 </p> 14251 </td> 14252<td> 14253 <p> 14254 <span class="blue">1.49<br> (82400762ns)</span> 14255 </p> 14256 </td> 14257<td> 14258 <p> 14259 <span class="blue">1.99<br> (110242300ns)</span> 14260 </p> 14261 </td> 14262</tr> 14263<tr> 14264<td> 14265 <p> 14266 gcd<boost::multiprecision::uint256_t> (Trivial cases) 14267 </p> 14268 </td> 14269<td> 14270 <p> 14271 <span class="green">1.00<br> (442ns)</span> 14272 </p> 14273 </td> 14274<td> 14275 <p> 14276 <span class="green">1.08<br> (475ns)</span> 14277 </p> 14278 </td> 14279<td> 14280 <p> 14281 <span class="red">4.12<br> (1815ns)</span> 14282 </p> 14283 </td> 14284<td> 14285 <p> 14286 <span class="red">4.11<br> (1813ns)</span> 14287 </p> 14288 </td> 14289<td> 14290 <p> 14291 <span class="green">1.17<br> (515ns)</span> 14292 </p> 14293 </td> 14294<td> 14295 <p> 14296 <span class="green">1.00<br> (441ns)</span> 14297 </p> 14298 </td> 14299</tr> 14300<tr> 14301<td> 14302 <p> 14303 gcd<boost::multiprecision::uint256_t> (adjacent Fibonacci numbers) 14304 </p> 14305 </td> 14306<td> 14307 <p> 14308 <span class="green">1.00<br> (4055238ns)</span> 14309 </p> 14310 </td> 14311<td> 14312 <p> 14313 <span class="red">3.74<br> (15153867ns)</span> 14314 </p> 14315 </td> 14316<td> 14317 <p> 14318 <span class="red">3.14<br> (12714485ns)</span> 14319 </p> 14320 </td> 14321<td> 14322 <p> 14323 <span class="red">2.78<br> (11263817ns)</span> 14324 </p> 14325 </td> 14326<td> 14327 <p> 14328 <span class="blue">1.83<br> (7405233ns)</span> 14329 </p> 14330 </td> 14331<td> 14332 <p> 14333 <span class="red">3.79<br> (15349360ns)</span> 14334 </p> 14335 </td> 14336</tr> 14337<tr> 14338<td> 14339 <p> 14340 gcd<boost::multiprecision::uint256_t> (permutations of Fibonacci 14341 numbers) 14342 </p> 14343 </td> 14344<td> 14345 <p> 14346 <span class="green">1.00<br> (2188053200ns)</span> 14347 </p> 14348 </td> 14349<td> 14350 <p> 14351 <span class="red">2.24<br> (4905530400ns)</span> 14352 </p> 14353 </td> 14354<td> 14355 <p> 14356 <span class="red">3.53<br> (7720779699ns)</span> 14357 </p> 14358 </td> 14359<td> 14360 <p> 14361 <span class="red">2.26<br> (4951713400ns)</span> 14362 </p> 14363 </td> 14364<td> 14365 <p> 14366 <span class="red">2.06<br> (4508168099ns)</span> 14367 </p> 14368 </td> 14369<td> 14370 <p> 14371 <span class="red">2.60<br> (5692910900ns)</span> 14372 </p> 14373 </td> 14374</tr> 14375<tr> 14376<td> 14377 <p> 14378 gcd<boost::multiprecision::uint256_t> (random prime number 14379 products) 14380 </p> 14381 </td> 14382<td> 14383 <p> 14384 <span class="green">1.00<br> (788189ns)</span> 14385 </p> 14386 </td> 14387<td> 14388 <p> 14389 <span class="blue">1.65<br> (1298322ns)</span> 14390 </p> 14391 </td> 14392<td> 14393 <p> 14394 <span class="red">4.56<br> (3592013ns)</span> 14395 </p> 14396 </td> 14397<td> 14398 <p> 14399 <span class="blue">1.51<br> (1186279ns)</span> 14400 </p> 14401 </td> 14402<td> 14403 <p> 14404 <span class="red">2.77<br> (2184586ns)</span> 14405 </p> 14406 </td> 14407<td> 14408 <p> 14409 <span class="blue">1.70<br> (1337848ns)</span> 14410 </p> 14411 </td> 14412</tr> 14413<tr> 14414<td> 14415 <p> 14416 gcd<boost::multiprecision::uint256_t> (uniform random numbers) 14417 </p> 14418 </td> 14419<td> 14420 <p> 14421 <span class="green">1.00<br> (5971862ns)</span> 14422 </p> 14423 </td> 14424<td> 14425 <p> 14426 <span class="red">2.75<br> (16440456ns)</span> 14427 </p> 14428 </td> 14429<td> 14430 <p> 14431 <span class="red">3.13<br> (18696806ns)</span> 14432 </p> 14433 </td> 14434<td> 14435 <p> 14436 <span class="red">2.48<br> (14818301ns)</span> 14437 </p> 14438 </td> 14439<td> 14440 <p> 14441 <span class="blue">1.65<br> (9829225ns)</span> 14442 </p> 14443 </td> 14444<td> 14445 <p> 14446 <span class="red">3.16<br> (18848609ns)</span> 14447 </p> 14448 </td> 14449</tr> 14450<tr> 14451<td> 14452 <p> 14453 gcd<boost::multiprecision::uint512_t> (Trivial cases) 14454 </p> 14455 </td> 14456<td> 14457 <p> 14458 <span class="green">1.00<br> (473ns)</span> 14459 </p> 14460 </td> 14461<td> 14462 <p> 14463 <span class="green">1.10<br> (522ns)</span> 14464 </p> 14465 </td> 14466<td> 14467 <p> 14468 <span class="red">2.35<br> (1113ns)</span> 14469 </p> 14470 </td> 14471<td> 14472 <p> 14473 <span class="red">2.54<br> (1201ns)</span> 14474 </p> 14475 </td> 14476<td> 14477 <p> 14478 <span class="blue">1.30<br> (617ns)</span> 14479 </p> 14480 </td> 14481<td> 14482 <p> 14483 <span class="green">1.05<br> (497ns)</span> 14484 </p> 14485 </td> 14486</tr> 14487<tr> 14488<td> 14489 <p> 14490 gcd<boost::multiprecision::uint512_t> (adjacent Fibonacci numbers) 14491 </p> 14492 </td> 14493<td> 14494 <p> 14495 <span class="green">1.00<br> (8919442ns)</span> 14496 </p> 14497 </td> 14498<td> 14499 <p> 14500 <span class="red">4.88<br> (43541675ns)</span> 14501 </p> 14502 </td> 14503<td> 14504 <p> 14505 <span class="red">4.74<br> (42250737ns)</span> 14506 </p> 14507 </td> 14508<td> 14509 <p> 14510 <span class="red">3.64<br> (32424337ns)</span> 14511 </p> 14512 </td> 14513<td> 14514 <p> 14515 <span class="blue">1.68<br> (14998360ns)</span> 14516 </p> 14517 </td> 14518<td> 14519 <p> 14520 <span class="red">4.90<br> (43720662ns)</span> 14521 </p> 14522 </td> 14523</tr> 14524<tr> 14525<td> 14526 <p> 14527 gcd<boost::multiprecision::uint512_t> (permutations of Fibonacci 14528 numbers) 14529 </p> 14530 </td> 14531<td> 14532 <p> 14533 <span class="green">1.00<br> (4874074099ns)</span> 14534 </p> 14535 </td> 14536<td> 14537 <p> 14538 <span class="blue">1.22<br> (5941210899ns)</span> 14539 </p> 14540 </td> 14541<td> 14542 <p> 14543 <span class="red">3.28<br> (15985377299ns)</span> 14544 </p> 14545 </td> 14546<td> 14547 <p> 14548 <span class="blue">1.50<br> (7304170300ns)</span> 14549 </p> 14550 </td> 14551<td> 14552 <p> 14553 <span class="blue">1.76<br> (8559919799ns)</span> 14554 </p> 14555 </td> 14556<td> 14557 <p> 14558 <span class="blue">1.23<br> (6002105200ns)</span> 14559 </p> 14560 </td> 14561</tr> 14562<tr> 14563<td> 14564 <p> 14565 gcd<boost::multiprecision::uint512_t> (random prime number 14566 products) 14567 </p> 14568 </td> 14569<td> 14570 <p> 14571 <span class="green">1.00<br> (829159ns)</span> 14572 </p> 14573 </td> 14574<td> 14575 <p> 14576 <span class="blue">1.59<br> (1318798ns)</span> 14577 </p> 14578 </td> 14579<td> 14580 <p> 14581 <span class="red">8.12<br> (6731670ns)</span> 14582 </p> 14583 </td> 14584<td> 14585 <p> 14586 <span class="blue">1.91<br> (1581731ns)</span> 14587 </p> 14588 </td> 14589<td> 14590 <p> 14591 <span class="red">3.08<br> (2551970ns)</span> 14592 </p> 14593 </td> 14594<td> 14595 <p> 14596 <span class="blue">1.58<br> (1308443ns)</span> 14597 </p> 14598 </td> 14599</tr> 14600<tr> 14601<td> 14602 <p> 14603 gcd<boost::multiprecision::uint512_t> (uniform random numbers) 14604 </p> 14605 </td> 14606<td> 14607 <p> 14608 <span class="green">1.00<br> (18120096ns)</span> 14609 </p> 14610 </td> 14611<td> 14612 <p> 14613 <span class="red">2.35<br> (42631487ns)</span> 14614 </p> 14615 </td> 14616<td> 14617 <p> 14618 <span class="red">3.97<br> (71846612ns)</span> 14619 </p> 14620 </td> 14621<td> 14622 <p> 14623 <span class="red">3.10<br> (56237574ns)</span> 14624 </p> 14625 </td> 14626<td> 14627 <p> 14628 <span class="blue">1.49<br> (27081093ns)</span> 14629 </p> 14630 </td> 14631<td> 14632 <p> 14633 <span class="red">2.66<br> (48247731ns)</span> 14634 </p> 14635 </td> 14636</tr> 14637<tr> 14638<td> 14639 <p> 14640 gcd<unsigned long long> (Trivial cases) 14641 </p> 14642 </td> 14643<td> 14644 <p> 14645 <span class="blue">1.85<br> (109ns)</span> 14646 </p> 14647 </td> 14648<td> 14649 <p> 14650 <span class="red">2.44<br> (144ns)</span> 14651 </p> 14652 </td> 14653<td> 14654 <p> 14655 <span class="green">1.00<br> (59ns)</span> 14656 </p> 14657 </td> 14658<td> 14659 <p> 14660 <span class="blue">1.88<br> (111ns)</span> 14661 </p> 14662 </td> 14663<td> 14664 <p> 14665 <span class="blue">1.68<br> (99ns)</span> 14666 </p> 14667 </td> 14668<td> 14669 <p> 14670 <span class="red">2.08<br> (123ns)</span> 14671 </p> 14672 </td> 14673</tr> 14674<tr> 14675<td> 14676 <p> 14677 gcd<unsigned long long> (adjacent Fibonacci numbers) 14678 </p> 14679 </td> 14680<td> 14681 <p> 14682 <span class="red">2.98<br> (17394ns)</span> 14683 </p> 14684 </td> 14685<td> 14686 <p> 14687 <span class="red">14.61<br> (85221ns)</span> 14688 </p> 14689 </td> 14690<td> 14691 <p> 14692 <span class="green">1.00<br> (5832ns)</span> 14693 </p> 14694 </td> 14695<td> 14696 <p> 14697 <span class="red">2.98<br> (17351ns)</span> 14698 </p> 14699 </td> 14700<td> 14701 <p> 14702 <span class="red">2.20<br> (12805ns)</span> 14703 </p> 14704 </td> 14705<td> 14706 <p> 14707 <span class="red">14.60<br> (85125ns)</span> 14708 </p> 14709 </td> 14710</tr> 14711<tr> 14712<td> 14713 <p> 14714 gcd<unsigned long long> (permutations of Fibonacci numbers) 14715 </p> 14716 </td> 14717<td> 14718 <p> 14719 <span class="green">1.04<br> (1203049ns)</span> 14720 </p> 14721 </td> 14722<td> 14723 <p> 14724 <span class="blue">1.30<br> (1508607ns)</span> 14725 </p> 14726 </td> 14727<td> 14728 <p> 14729 <span class="green">1.13<br> (1307113ns)</span> 14730 </p> 14731 </td> 14732<td> 14733 <p> 14734 <span class="green">1.00<br> (1159442ns)</span> 14735 </p> 14736 </td> 14737<td> 14738 <p> 14739 <span class="red">2.23<br> (2585039ns)</span> 14740 </p> 14741 </td> 14742<td> 14743 <p> 14744 <span class="blue">1.26<br> (1455556ns)</span> 14745 </p> 14746 </td> 14747</tr> 14748<tr> 14749<td> 14750 <p> 14751 gcd<unsigned long long> (random prime number products) 14752 </p> 14753 </td> 14754<td> 14755 <p> 14756 <span class="green">1.14<br> (267158ns)</span> 14757 </p> 14758 </td> 14759<td> 14760 <p> 14761 <span class="blue">1.88<br> (441001ns)</span> 14762 </p> 14763 </td> 14764<td> 14765 <p> 14766 <span class="green">1.00<br> (234725ns)</span> 14767 </p> 14768 </td> 14769<td> 14770 <p> 14771 <span class="green">1.07<br> (249997ns)</span> 14772 </p> 14773 </td> 14774<td> 14775 <p> 14776 <span class="red">2.02<br> (473466ns)</span> 14777 </p> 14778 </td> 14779<td> 14780 <p> 14781 <span class="blue">1.78<br> (418669ns)</span> 14782 </p> 14783 </td> 14784</tr> 14785<tr> 14786<td> 14787 <p> 14788 gcd<unsigned long long> (uniform random numbers) 14789 </p> 14790 </td> 14791<td> 14792 <p> 14793 <span class="blue">1.39<br> (507147ns)</span> 14794 </p> 14795 </td> 14796<td> 14797 <p> 14798 <span class="red">2.14<br> (784228ns)</span> 14799 </p> 14800 </td> 14801<td> 14802 <p> 14803 <span class="green">1.00<br> (365889ns)</span> 14804 </p> 14805 </td> 14806<td> 14807 <p> 14808 <span class="blue">1.33<br> (488432ns)</span> 14809 </p> 14810 </td> 14811<td> 14812 <p> 14813 <span class="blue">1.75<br> (641184ns)</span> 14814 </p> 14815 </td> 14816<td> 14817 <p> 14818 <span class="red">2.08<br> (760185ns)</span> 14819 </p> 14820 </td> 14821</tr> 14822<tr> 14823<td> 14824 <p> 14825 gcd<unsigned long> (Trivial cases) 14826 </p> 14827 </td> 14828<td> 14829 <p> 14830 <span class="blue">1.23<br> (70ns)</span> 14831 </p> 14832 </td> 14833<td> 14834 <p> 14835 <span class="green">1.16<br> (66ns)</span> 14836 </p> 14837 </td> 14838<td> 14839 <p> 14840 <span class="green">1.00<br> (57ns)</span> 14841 </p> 14842 </td> 14843<td> 14844 <p> 14845 <span class="green">1.19<br> (68ns)</span> 14846 </p> 14847 </td> 14848<td> 14849 <p> 14850 <span class="blue">1.63<br> (93ns)</span> 14851 </p> 14852 </td> 14853<td> 14854 <p> 14855 <span class="green">1.12<br> (64ns)</span> 14856 </p> 14857 </td> 14858</tr> 14859<tr> 14860<td> 14861 <p> 14862 gcd<unsigned long> (adjacent Fibonacci numbers) 14863 </p> 14864 </td> 14865<td> 14866 <p> 14867 <span class="blue">1.79<br> (2678ns)</span> 14868 </p> 14869 </td> 14870<td> 14871 <p> 14872 <span class="red">10.20<br> (15231ns)</span> 14873 </p> 14874 </td> 14875<td> 14876 <p> 14877 <span class="green">1.00<br> (1493ns)</span> 14878 </p> 14879 </td> 14880<td> 14881 <p> 14882 <span class="blue">1.85<br> (2765ns)</span> 14883 </p> 14884 </td> 14885<td> 14886 <p> 14887 <span class="red">2.07<br> (3093ns)</span> 14888 </p> 14889 </td> 14890<td> 14891 <p> 14892 <span class="red">9.50<br> (14177ns)</span> 14893 </p> 14894 </td> 14895</tr> 14896<tr> 14897<td> 14898 <p> 14899 gcd<unsigned long> (permutations of Fibonacci numbers) 14900 </p> 14901 </td> 14902<td> 14903 <p> 14904 <span class="green">1.00<br> (130874ns)</span> 14905 </p> 14906 </td> 14907<td> 14908 <p> 14909 <span class="blue">1.43<br> (187180ns)</span> 14910 </p> 14911 </td> 14912<td> 14913 <p> 14914 <span class="blue">1.31<br> (171288ns)</span> 14915 </p> 14916 </td> 14917<td> 14918 <p> 14919 <span class="green">1.01<br> (132289ns)</span> 14920 </p> 14921 </td> 14922<td> 14923 <p> 14924 <span class="red">2.45<br> (321281ns)</span> 14925 </p> 14926 </td> 14927<td> 14928 <p> 14929 <span class="blue">1.30<br> (169852ns)</span> 14930 </p> 14931 </td> 14932</tr> 14933<tr> 14934<td> 14935 <p> 14936 gcd<unsigned long> (random prime number products) 14937 </p> 14938 </td> 14939<td> 14940 <p> 14941 <span class="green">1.02<br> (132073ns)</span> 14942 </p> 14943 </td> 14944<td> 14945 <p> 14946 <span class="blue">1.56<br> (202025ns)</span> 14947 </p> 14948 </td> 14949<td> 14950 <p> 14951 <span class="green">1.11<br> (143913ns)</span> 14952 </p> 14953 </td> 14954<td> 14955 <p> 14956 <span class="green">1.00<br> (129448ns)</span> 14957 </p> 14958 </td> 14959<td> 14960 <p> 14961 <span class="red">2.03<br> (263053ns)</span> 14962 </p> 14963 </td> 14964<td> 14965 <p> 14966 <span class="blue">1.40<br> (181659ns)</span> 14967 </p> 14968 </td> 14969</tr> 14970<tr> 14971<td> 14972 <p> 14973 gcd<unsigned long> (uniform random numbers) 14974 </p> 14975 </td> 14976<td> 14977 <p> 14978 <span class="green">1.14<br> (209599ns)</span> 14979 </p> 14980 </td> 14981<td> 14982 <p> 14983 <span class="blue">1.61<br> (296090ns)</span> 14984 </p> 14985 </td> 14986<td> 14987 <p> 14988 <span class="green">1.00<br> (183672ns)</span> 14989 </p> 14990 </td> 14991<td> 14992 <p> 14993 <span class="green">1.17<br> (214530ns)</span> 14994 </p> 14995 </td> 14996<td> 14997 <p> 14998 <span class="blue">1.76<br> (322600ns)</span> 14999 </p> 15000 </td> 15001<td> 15002 <p> 15003 <span class="blue">1.55<br> (284838ns)</span> 15004 </p> 15005 </td> 15006</tr> 15007<tr> 15008<td> 15009 <p> 15010 gcd<unsigned short> (Trivial cases) 15011 </p> 15012 </td> 15013<td> 15014 <p> 15015 <span class="green">1.19<br> (74ns)</span> 15016 </p> 15017 </td> 15018<td> 15019 <p> 15020 <span class="green">1.05<br> (65ns)</span> 15021 </p> 15022 </td> 15023<td> 15024 <p> 15025 <span class="green">1.00<br> (62ns)</span> 15026 </p> 15027 </td> 15028<td> 15029 <p> 15030 <span class="blue">1.29<br> (80ns)</span> 15031 </p> 15032 </td> 15033<td> 15034 <p> 15035 <span class="blue">1.53<br> (95ns)</span> 15036 </p> 15037 </td> 15038<td> 15039 <p> 15040 <span class="green">1.08<br> (67ns)</span> 15041 </p> 15042 </td> 15043</tr> 15044<tr> 15045<td> 15046 <p> 15047 gcd<unsigned short> (adjacent Fibonacci numbers) 15048 </p> 15049 </td> 15050<td> 15051 <p> 15052 <span class="blue">1.55<br> (694ns)</span> 15053 </p> 15054 </td> 15055<td> 15056 <p> 15057 <span class="red">6.51<br> (2915ns)</span> 15058 </p> 15059 </td> 15060<td> 15061 <p> 15062 <span class="green">1.00<br> (448ns)</span> 15063 </p> 15064 </td> 15065<td> 15066 <p> 15067 <span class="blue">1.65<br> (737ns)</span> 15068 </p> 15069 </td> 15070<td> 15071 <p> 15072 <span class="blue">1.42<br> (634ns)</span> 15073 </p> 15074 </td> 15075<td> 15076 <p> 15077 <span class="red">6.06<br> (2716ns)</span> 15078 </p> 15079 </td> 15080</tr> 15081<tr> 15082<td> 15083 <p> 15084 gcd<unsigned short> (permutations of Fibonacci numbers) 15085 </p> 15086 </td> 15087<td> 15088 <p> 15089 <span class="blue">1.31<br> (10776ns)</span> 15090 </p> 15091 </td> 15092<td> 15093 <p> 15094 <span class="red">2.35<br> (19287ns)</span> 15095 </p> 15096 </td> 15097<td> 15098 <p> 15099 <span class="green">1.00<br> (8206ns)</span> 15100 </p> 15101 </td> 15102<td> 15103 <p> 15104 <span class="blue">1.41<br> (11598ns)</span> 15105 </p> 15106 </td> 15107<td> 15108 <p> 15109 <span class="blue">1.63<br> (13337ns)</span> 15110 </p> 15111 </td> 15112<td> 15113 <p> 15114 <span class="red">2.21<br> (18163ns)</span> 15115 </p> 15116 </td> 15117</tr> 15118<tr> 15119<td> 15120 <p> 15121 gcd<unsigned short> (random prime number products) 15122 </p> 15123 </td> 15124<td> 15125 <p> 15126 <span class="green">1.04<br> (48625ns)</span> 15127 </p> 15128 </td> 15129<td> 15130 <p> 15131 <span class="blue">1.82<br> (84692ns)</span> 15132 </p> 15133 </td> 15134<td> 15135 <p> 15136 <span class="green">1.03<br> (47933ns)</span> 15137 </p> 15138 </td> 15139<td> 15140 <p> 15141 <span class="green">1.00<br> (46539ns)</span> 15142 </p> 15143 </td> 15144<td> 15145 <p> 15146 <span class="red">2.94<br> (136663ns)</span> 15147 </p> 15148 </td> 15149<td> 15150 <p> 15151 <span class="blue">1.68<br> (78386ns)</span> 15152 </p> 15153 </td> 15154</tr> 15155<tr> 15156<td> 15157 <p> 15158 gcd<unsigned short> (uniform random numbers) 15159 </p> 15160 </td> 15161<td> 15162 <p> 15163 <span class="green">1.05<br> (73231ns)</span> 15164 </p> 15165 </td> 15166<td> 15167 <p> 15168 <span class="blue">1.72<br> (120140ns)</span> 15169 </p> 15170 </td> 15171<td> 15172 <p> 15173 <span class="green">1.00<br> (69680ns)</span> 15174 </p> 15175 </td> 15176<td> 15177 <p> 15178 <span class="green">1.04<br> (72636ns)</span> 15179 </p> 15180 </td> 15181<td> 15182 <p> 15183 <span class="red">2.51<br> (175204ns)</span> 15184 </p> 15185 </td> 15186<td> 15187 <p> 15188 <span class="blue">1.70<br> (118679ns)</span> 15189 </p> 15190 </td> 15191</tr> 15192<tr> 15193<td> 15194 <p> 15195 gcd<unsigned> (Trivial cases) 15196 </p> 15197 </td> 15198<td> 15199 <p> 15200 <span class="blue">1.30<br> (73ns)</span> 15201 </p> 15202 </td> 15203<td> 15204 <p> 15205 <span class="green">1.14<br> (64ns)</span> 15206 </p> 15207 </td> 15208<td> 15209 <p> 15210 <span class="green">1.00<br> (56ns)</span> 15211 </p> 15212 </td> 15213<td> 15214 <p> 15215 <span class="blue">1.23<br> (69ns)</span> 15216 </p> 15217 </td> 15218<td> 15219 <p> 15220 <span class="blue">1.62<br> (91ns)</span> 15221 </p> 15222 </td> 15223<td> 15224 <p> 15225 <span class="green">1.14<br> (64ns)</span> 15226 </p> 15227 </td> 15228</tr> 15229<tr> 15230<td> 15231 <p> 15232 gcd<unsigned> (adjacent Fibonacci numbers) 15233 </p> 15234 </td> 15235<td> 15236 <p> 15237 <span class="blue">1.81<br> (2689ns)</span> 15238 </p> 15239 </td> 15240<td> 15241 <p> 15242 <span class="red">10.14<br> (15051ns)</span> 15243 </p> 15244 </td> 15245<td> 15246 <p> 15247 <span class="green">1.00<br> (1485ns)</span> 15248 </p> 15249 </td> 15250<td> 15251 <p> 15252 <span class="blue">1.92<br> (2845ns)</span> 15253 </p> 15254 </td> 15255<td> 15256 <p> 15257 <span class="red">2.10<br> (3117ns)</span> 15258 </p> 15259 </td> 15260<td> 15261 <p> 15262 <span class="red">9.74<br> (14464ns)</span> 15263 </p> 15264 </td> 15265</tr> 15266<tr> 15267<td> 15268 <p> 15269 gcd<unsigned> (permutations of Fibonacci numbers) 15270 </p> 15271 </td> 15272<td> 15273 <p> 15274 <span class="green">1.00<br> (125228ns)</span> 15275 </p> 15276 </td> 15277<td> 15278 <p> 15279 <span class="blue">1.45<br> (182101ns)</span> 15280 </p> 15281 </td> 15282<td> 15283 <p> 15284 <span class="blue">1.36<br> (169753ns)</span> 15285 </p> 15286 </td> 15287<td> 15288 <p> 15289 <span class="green">1.04<br> (130303ns)</span> 15290 </p> 15291 </td> 15292<td> 15293 <p> 15294 <span class="red">2.50<br> (312889ns)</span> 15295 </p> 15296 </td> 15297<td> 15298 <p> 15299 <span class="blue">1.41<br> (176940ns)</span> 15300 </p> 15301 </td> 15302</tr> 15303<tr> 15304<td> 15305 <p> 15306 gcd<unsigned> (random prime number products) 15307 </p> 15308 </td> 15309<td> 15310 <p> 15311 <span class="green">1.04<br> (133297ns)</span> 15312 </p> 15313 </td> 15314<td> 15315 <p> 15316 <span class="blue">1.55<br> (199022ns)</span> 15317 </p> 15318 </td> 15319<td> 15320 <p> 15321 <span class="green">1.05<br> (134178ns)</span> 15322 </p> 15323 </td> 15324<td> 15325 <p> 15326 <span class="green">1.00<br> (128319ns)</span> 15327 </p> 15328 </td> 15329<td> 15330 <p> 15331 <span class="red">2.03<br> (260550ns)</span> 15332 </p> 15333 </td> 15334<td> 15335 <p> 15336 <span class="blue">1.53<br> (196665ns)</span> 15337 </p> 15338 </td> 15339</tr> 15340<tr> 15341<td> 15342 <p> 15343 gcd<unsigned> (uniform random numbers) 15344 </p> 15345 </td> 15346<td> 15347 <p> 15348 <span class="green">1.15<br> (212670ns)</span> 15349 </p> 15350 </td> 15351<td> 15352 <p> 15353 <span class="blue">1.61<br> (298254ns)</span> 15354 </p> 15355 </td> 15356<td> 15357 <p> 15358 <span class="green">1.00<br> (184955ns)</span> 15359 </p> 15360 </td> 15361<td> 15362 <p> 15363 <span class="green">1.17<br> (216091ns)</span> 15364 </p> 15365 </td> 15366<td> 15367 <p> 15368 <span class="blue">1.80<br> (332689ns)</span> 15369 </p> 15370 </td> 15371<td> 15372 <p> 15373 <span class="blue">1.62<br> (299958ns)</span> 15374 </p> 15375 </td> 15376</tr> 15377</tbody> 15378</table></div> 15379</div> 15380<br class="table-break"> 15381</div> 15382<div class="section"> 15383<div class="titlepage"><div><div><h2 class="title" style="clear: both"> 15384<a name="special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><a class="link" href="index.html#special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64" title="gcd method comparison with Microsoft Visual C++ version 14.2 on Windows x64">gcd 15385 method comparison with Microsoft Visual C++ version 14.2 on Windows x64</a> 15386</h2></div></div></div> 15387<div class="table"> 15388<a name="special_function_and_distributio.section_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64.table_gcd_method_comparison_with_Microsoft_Visual_C_version_14_2_on_Windows_x64"></a><p class="title"><b>Table 16. gcd method comparison with Microsoft Visual C++ version 14.2 on Windows 15389 x64</b></p> 15390<div class="table-contents"><table class="table" summary="gcd method comparison with Microsoft Visual C++ version 14.2 on Windows 15391 x64"> 15392<colgroup> 15393<col> 15394<col> 15395<col> 15396<col> 15397<col> 15398<col> 15399<col> 15400</colgroup> 15401<thead><tr> 15402<th> 15403 <p> 15404 Function 15405 </p> 15406 </th> 15407<th> 15408 <p> 15409 gcd boost 1.73 15410 </p> 15411 </th> 15412<th> 15413 <p> 15414 Euclid_gcd boost 1.73 15415 </p> 15416 </th> 15417<th> 15418 <p> 15419 Stein_gcd boost 1.73 15420 </p> 15421 </th> 15422<th> 15423 <p> 15424 mixed_binary_gcd boost 1.73 15425 </p> 15426 </th> 15427<th> 15428 <p> 15429 Stein_gcd_textbook boost 1.73 15430 </p> 15431 </th> 15432<th> 15433 <p> 15434 gcd_euclid_textbook boost 1.73 15435 </p> 15436 </th> 15437</tr></thead> 15438<tbody> 15439<tr> 15440<td> 15441 <p> 15442 gcd<boost::multiprecision::uint1024_t> (Trivial cases) 15443 </p> 15444 </td> 15445<td> 15446 <p> 15447 <span class="green">1.01<br> (811ns)</span> 15448 </p> 15449 </td> 15450<td> 15451 <p> 15452 <span class="green">1.00<br> (806ns)</span> 15453 </p> 15454 </td> 15455<td> 15456 <p> 15457 <span class="red">4.49<br> (3619ns)</span> 15458 </p> 15459 </td> 15460<td> 15461 <p> 15462 <span class="red">4.37<br> (3524ns)</span> 15463 </p> 15464 </td> 15465<td> 15466 <p> 15467 <span class="blue">1.54<br> (1240ns)</span> 15468 </p> 15469 </td> 15470<td> 15471 <p> 15472 <span class="green">1.17<br> (947ns)</span> 15473 </p> 15474 </td> 15475</tr> 15476<tr> 15477<td> 15478 <p> 15479 gcd<boost::multiprecision::uint1024_t> (adjacent Fibonacci 15480 numbers) 15481 </p> 15482 </td> 15483<td> 15484 <p> 15485 <span class="green">1.00<br> (17221009ns)</span> 15486 </p> 15487 </td> 15488<td> 15489 <p> 15490 <span class="red">3.10<br> (53378856ns)</span> 15491 </p> 15492 </td> 15493<td> 15494 <p> 15495 <span class="red">3.49<br> (60085356ns)</span> 15496 </p> 15497 </td> 15498<td> 15499 <p> 15500 <span class="red">2.71<br> (46662362ns)</span> 15501 </p> 15502 </td> 15503<td> 15504 <p> 15505 <span class="blue">1.43<br> (24687809ns)</span> 15506 </p> 15507 </td> 15508<td> 15509 <p> 15510 <span class="red">3.60<br> (62017387ns)</span> 15511 </p> 15512 </td> 15513</tr> 15514<tr> 15515<td> 15516 <p> 15517 gcd<boost::multiprecision::uint1024_t> (permutations of Fibonacci 15518 numbers) 15519 </p> 15520 </td> 15521<td> 15522 <p> 15523 <span class="red">4.79<br> (8947276300ns)</span> 15524 </p> 15525 </td> 15526<td> 15527 <p> 15528 <span class="green">1.00<br> (1869827499ns)</span> 15529 </p> 15530 </td> 15531<td> 15532 <p> 15533 <span class="red">16.49<br> (30836050300ns)</span> 15534 </p> 15535 </td> 15536<td> 15537 <p> 15538 <span class="red">2.95<br> (5512590399ns)</span> 15539 </p> 15540 </td> 15541<td> 15542 <p> 15543 <span class="red">9.35<br> (17476759399ns)</span> 15544 </p> 15545 </td> 15546<td> 15547 <p> 15548 <span class="blue">1.59<br> (2969003299ns)</span> 15549 </p> 15550 </td> 15551</tr> 15552<tr> 15553<td> 15554 <p> 15555 gcd<boost::multiprecision::uint1024_t> (random prime number 15556 products) 15557 </p> 15558 </td> 15559<td> 15560 <p> 15561 <span class="green">1.15<br> (1366950ns)</span> 15562 </p> 15563 </td> 15564<td> 15565 <p> 15566 <span class="green">1.00<br> (1184715ns)</span> 15567 </p> 15568 </td> 15569<td> 15570 <p> 15571 <span class="red">6.07<br> (7192390ns)</span> 15572 </p> 15573 </td> 15574<td> 15575 <p> 15576 <span class="blue">1.69<br> (2004764ns)</span> 15577 </p> 15578 </td> 15579<td> 15580 <p> 15581 <span class="red">2.88<br> (3414226ns)</span> 15582 </p> 15583 </td> 15584<td> 15585 <p> 15586 <span class="green">1.03<br> (1223450ns)</span> 15587 </p> 15588 </td> 15589</tr> 15590<tr> 15591<td> 15592 <p> 15593 gcd<boost::multiprecision::uint1024_t> (uniform random numbers) 15594 </p> 15595 </td> 15596<td> 15597 <p> 15598 <span class="green">1.13<br> (94422587ns)</span> 15599 </p> 15600 </td> 15601<td> 15602 <p> 15603 <span class="green">1.10<br> (91927462ns)</span> 15604 </p> 15605 </td> 15606<td> 15607 <p> 15608 <span class="red">2.46<br> (205656225ns)</span> 15609 </p> 15610 </td> 15611<td> 15612 <p> 15613 <span class="blue">1.79<br> (150321950ns)</span> 15614 </p> 15615 </td> 15616<td> 15617 <p> 15618 <span class="blue">1.26<br> (105849675ns)</span> 15619 </p> 15620 </td> 15621<td> 15622 <p> 15623 <span class="green">1.00<br> (83747287ns)</span> 15624 </p> 15625 </td> 15626</tr> 15627<tr> 15628<td> 15629 <p> 15630 gcd<boost::multiprecision::uint256_t> (Trivial cases) 15631 </p> 15632 </td> 15633<td> 15634 <p> 15635 <span class="green">1.12<br> (529ns)</span> 15636 </p> 15637 </td> 15638<td> 15639 <p> 15640 <span class="blue">1.22<br> (578ns)</span> 15641 </p> 15642 </td> 15643<td> 15644 <p> 15645 <span class="red">5.71<br> (2706ns)</span> 15646 </p> 15647 </td> 15648<td> 15649 <p> 15650 <span class="red">5.01<br> (2376ns)</span> 15651 </p> 15652 </td> 15653<td> 15654 <p> 15655 <span class="blue">1.62<br> (768ns)</span> 15656 </p> 15657 </td> 15658<td> 15659 <p> 15660 <span class="green">1.00<br> (474ns)</span> 15661 </p> 15662 </td> 15663</tr> 15664<tr> 15665<td> 15666 <p> 15667 gcd<boost::multiprecision::uint256_t> (adjacent Fibonacci numbers) 15668 </p> 15669 </td> 15670<td> 15671 <p> 15672 <span class="green">1.00<br> (6910946ns)</span> 15673 </p> 15674 </td> 15675<td> 15676 <p> 15677 <span class="red">2.03<br> (14038607ns)</span> 15678 </p> 15679 </td> 15680<td> 15681 <p> 15682 <span class="red">4.15<br> (28656946ns)</span> 15683 </p> 15684 </td> 15685<td> 15686 <p> 15687 <span class="red">2.36<br> (16280003ns)</span> 15688 </p> 15689 </td> 15690<td> 15691 <p> 15692 <span class="blue">1.83<br> (12632765ns)</span> 15693 </p> 15694 </td> 15695<td> 15696 <p> 15697 <span class="blue">1.79<br> (12358175ns)</span> 15698 </p> 15699 </td> 15700</tr> 15701<tr> 15702<td> 15703 <p> 15704 gcd<boost::multiprecision::uint256_t> (permutations of Fibonacci 15705 numbers) 15706 </p> 15707 </td> 15708<td> 15709 <p> 15710 <span class="green">1.00<br> (3546690299ns)</span> 15711 </p> 15712 </td> 15713<td> 15714 <p> 15715 <span class="blue">1.24<br> (4410071600ns)</span> 15716 </p> 15717 </td> 15718<td> 15719 <p> 15720 <span class="red">4.54<br> (16088449000ns)</span> 15721 </p> 15722 </td> 15723<td> 15724 <p> 15725 <span class="red">2.08<br> (7376147399ns)</span> 15726 </p> 15727 </td> 15728<td> 15729 <p> 15730 <span class="blue">1.87<br> (6630678299ns)</span> 15731 </p> 15732 </td> 15733<td> 15734 <p> 15735 <span class="green">1.11<br> (3921678899ns)</span> 15736 </p> 15737 </td> 15738</tr> 15739<tr> 15740<td> 15741 <p> 15742 gcd<boost::multiprecision::uint256_t> (random prime number 15743 products) 15744 </p> 15745 </td> 15746<td> 15747 <p> 15748 <span class="blue">1.24<br> (1402017ns)</span> 15749 </p> 15750 </td> 15751<td> 15752 <p> 15753 <span class="green">1.19<br> (1342771ns)</span> 15754 </p> 15755 </td> 15756<td> 15757 <p> 15758 <span class="red">10.57<br> (11937009ns)</span> 15759 </p> 15760 </td> 15761<td> 15762 <p> 15763 <span class="red">2.30<br> (2592407ns)</span> 15764 </p> 15765 </td> 15766<td> 15767 <p> 15768 <span class="red">3.17<br> (3578886ns)</span> 15769 </p> 15770 </td> 15771<td> 15772 <p> 15773 <span class="green">1.00<br> (1129228ns)</span> 15774 </p> 15775 </td> 15776</tr> 15777<tr> 15778<td> 15779 <p> 15780 gcd<boost::multiprecision::uint256_t> (uniform random numbers) 15781 </p> 15782 </td> 15783<td> 15784 <p> 15785 <span class="green">1.00<br> (9555357ns)</span> 15786 </p> 15787 </td> 15788<td> 15789 <p> 15790 <span class="blue">1.38<br> (13230160ns)</span> 15791 </p> 15792 </td> 15793<td> 15794 <p> 15795 <span class="red">3.58<br> (34160918ns)</span> 15796 </p> 15797 </td> 15798<td> 15799 <p> 15800 <span class="red">2.17<br> (20739521ns)</span> 15801 </p> 15802 </td> 15803<td> 15804 <p> 15805 <span class="blue">1.66<br> (15830168ns)</span> 15806 </p> 15807 </td> 15808<td> 15809 <p> 15810 <span class="blue">1.25<br> (11919907ns)</span> 15811 </p> 15812 </td> 15813</tr> 15814<tr> 15815<td> 15816 <p> 15817 gcd<boost::multiprecision::uint512_t> (Trivial cases) 15818 </p> 15819 </td> 15820<td> 15821 <p> 15822 <span class="green">1.09<br> (610ns)</span> 15823 </p> 15824 </td> 15825<td> 15826 <p> 15827 <span class="green">1.05<br> (586ns)</span> 15828 </p> 15829 </td> 15830<td> 15831 <p> 15832 <span class="red">4.52<br> (2524ns)</span> 15833 </p> 15834 </td> 15835<td> 15836 <p> 15837 <span class="red">5.42<br> (3032ns)</span> 15838 </p> 15839 </td> 15840<td> 15841 <p> 15842 <span class="blue">1.53<br> (858ns)</span> 15843 </p> 15844 </td> 15845<td> 15846 <p> 15847 <span class="green">1.00<br> (559ns)</span> 15848 </p> 15849 </td> 15850</tr> 15851<tr> 15852<td> 15853 <p> 15854 gcd<boost::multiprecision::uint512_t> (adjacent Fibonacci numbers) 15855 </p> 15856 </td> 15857<td> 15858 <p> 15859 <span class="green">1.00<br> (15008157ns)</span> 15860 </p> 15861 </td> 15862<td> 15863 <p> 15864 <span class="red">2.19<br> (32823187ns)</span> 15865 </p> 15866 </td> 15867<td> 15868 <p> 15869 <span class="red">3.54<br> (53103662ns)</span> 15870 </p> 15871 </td> 15872<td> 15873 <p> 15874 <span class="red">2.51<br> (37681662ns)</span> 15875 </p> 15876 </td> 15877<td> 15878 <p> 15879 <span class="blue">1.67<br> (25128434ns)</span> 15880 </p> 15881 </td> 15882<td> 15883 <p> 15884 <span class="red">2.06<br> (30897006ns)</span> 15885 </p> 15886 </td> 15887</tr> 15888<tr> 15889<td> 15890 <p> 15891 gcd<boost::multiprecision::uint512_t> (permutations of Fibonacci 15892 numbers) 15893 </p> 15894 </td> 15895<td> 15896 <p> 15897 <span class="blue">1.70<br> (7824618799ns)</span> 15898 </p> 15899 </td> 15900<td> 15901 <p> 15902 <span class="green">1.06<br> (4905917200ns)</span> 15903 </p> 15904 </td> 15905<td> 15906 <p> 15907 <span class="red">6.42<br> (29578499900ns)</span> 15908 </p> 15909 </td> 15910<td> 15911 <p> 15912 <span class="blue">1.96<br> (9014054500ns)</span> 15913 </p> 15914 </td> 15915<td> 15916 <p> 15917 <span class="red">2.82<br> (12972133700ns)</span> 15918 </p> 15919 </td> 15920<td> 15921 <p> 15922 <span class="green">1.00<br> (4607798200ns)</span> 15923 </p> 15924 </td> 15925</tr> 15926<tr> 15927<td> 15928 <p> 15929 gcd<boost::multiprecision::uint512_t> (random prime number 15930 products) 15931 </p> 15932 </td> 15933<td> 15934 <p> 15935 <span class="green">1.20<br> (1429033ns)</span> 15936 </p> 15937 </td> 15938<td> 15939 <p> 15940 <span class="green">1.00<br> (1192363ns)</span> 15941 </p> 15942 </td> 15943<td> 15944 <p> 15945 <span class="red">6.71<br> (8006331ns)</span> 15946 </p> 15947 </td> 15948<td> 15949 <p> 15950 <span class="blue">1.66<br> (1983967ns)</span> 15951 </p> 15952 </td> 15953<td> 15954 <p> 15955 <span class="red">3.05<br> (3641579ns)</span> 15956 </p> 15957 </td> 15958<td> 15959 <p> 15960 <span class="green">1.00<br> (1193514ns)</span> 15961 </p> 15962 </td> 15963</tr> 15964<tr> 15965<td> 15966 <p> 15967 gcd<boost::multiprecision::uint512_t> (uniform random numbers) 15968 </p> 15969 </td> 15970<td> 15971 <p> 15972 <span class="green">1.00<br> (28993946ns)</span> 15973 </p> 15974 </td> 15975<td> 15976 <p> 15977 <span class="green">1.13<br> (32874618ns)</span> 15978 </p> 15979 </td> 15980<td> 15981 <p> 15982 <span class="red">3.71<br> (107613600ns)</span> 15983 </p> 15984 </td> 15985<td> 15986 <p> 15987 <span class="red">2.24<br> (64869562ns)</span> 15988 </p> 15989 </td> 15990<td> 15991 <p> 15992 <span class="blue">1.39<br> (40246987ns)</span> 15993 </p> 15994 </td> 15995<td> 15996 <p> 15997 <span class="blue">1.26<br> (36427993ns)</span> 15998 </p> 15999 </td> 16000</tr> 16001<tr> 16002<td> 16003 <p> 16004 gcd<unsigned long long> (Trivial cases) 16005 </p> 16006 </td> 16007<td> 16008 <p> 16009 <span class="blue">1.61<br> (143ns)</span> 16010 </p> 16011 </td> 16012<td> 16013 <p> 16014 <span class="blue">1.88<br> (167ns)</span> 16015 </p> 16016 </td> 16017<td> 16018 <p> 16019 <span class="green">1.09<br> (97ns)</span> 16020 </p> 16021 </td> 16022<td> 16023 <p> 16024 <span class="blue">1.66<br> (148ns)</span> 16025 </p> 16026 </td> 16027<td> 16028 <p> 16029 <span class="green">1.00<br> (89ns)</span> 16030 </p> 16031 </td> 16032<td> 16033 <p> 16034 <span class="blue">1.25<br> (111ns)</span> 16035 </p> 16036 </td> 16037</tr> 16038<tr> 16039<td> 16040 <p> 16041 gcd<unsigned long long> (adjacent Fibonacci numbers) 16042 </p> 16043 </td> 16044<td> 16045 <p> 16046 <span class="blue">1.65<br> (18657ns)</span> 16047 </p> 16048 </td> 16049<td> 16050 <p> 16051 <span class="red">9.12<br> (102852ns)</span> 16052 </p> 16053 </td> 16054<td> 16055 <p> 16056 <span class="green">1.00<br> (11278ns)</span> 16057 </p> 16058 </td> 16059<td> 16060 <p> 16061 <span class="blue">1.65<br> (18642ns)</span> 16062 </p> 16063 </td> 16064<td> 16065 <p> 16066 <span class="blue">1.36<br> (15386ns)</span> 16067 </p> 16068 </td> 16069<td> 16070 <p> 16071 <span class="red">7.61<br> (85867ns)</span> 16072 </p> 16073 </td> 16074</tr> 16075<tr> 16076<td> 16077 <p> 16078 gcd<unsigned long long> (permutations of Fibonacci numbers) 16079 </p> 16080 </td> 16081<td> 16082 <p> 16083 <span class="green">1.18<br> (1759315ns)</span> 16084 </p> 16085 </td> 16086<td> 16087 <p> 16088 <span class="blue">1.23<br> (1829739ns)</span> 16089 </p> 16090 </td> 16091<td> 16092 <p> 16093 <span class="red">2.48<br> (3696867ns)</span> 16094 </p> 16095 </td> 16096<td> 16097 <p> 16098 <span class="green">1.20<br> (1792095ns)</span> 16099 </p> 16100 </td> 16101<td> 16102 <p> 16103 <span class="blue">1.92<br> (2869829ns)</span> 16104 </p> 16105 </td> 16106<td> 16107 <p> 16108 <span class="green">1.00<br> (1493466ns)</span> 16109 </p> 16110 </td> 16111</tr> 16112<tr> 16113<td> 16114 <p> 16115 gcd<unsigned long long> (random prime number products) 16116 </p> 16117 </td> 16118<td> 16119 <p> 16120 <span class="green">1.03<br> (419624ns)</span> 16121 </p> 16122 </td> 16123<td> 16124 <p> 16125 <span class="blue">1.26<br> (513559ns)</span> 16126 </p> 16127 </td> 16128<td> 16129 <p> 16130 <span class="blue">1.66<br> (677592ns)</span> 16131 </p> 16132 </td> 16133<td> 16134 <p> 16135 <span class="green">1.00<br> (407357ns)</span> 16136 </p> 16137 </td> 16138<td> 16139 <p> 16140 <span class="blue">1.24<br> (505557ns)</span> 16141 </p> 16142 </td> 16143<td> 16144 <p> 16145 <span class="green">1.05<br> (426446ns)</span> 16146 </p> 16147 </td> 16148</tr> 16149<tr> 16150<td> 16151 <p> 16152 gcd<unsigned long long> (uniform random numbers) 16153 </p> 16154 </td> 16155<td> 16156 <p> 16157 <span class="green">1.15<br> (802062ns)</span> 16158 </p> 16159 </td> 16160<td> 16161 <p> 16162 <span class="blue">1.29<br> (895731ns)</span> 16163 </p> 16164 </td> 16165<td> 16166 <p> 16167 <span class="blue">1.38<br> (959675ns)</span> 16168 </p> 16169 </td> 16170<td> 16171 <p> 16172 <span class="green">1.16<br> (810488ns)</span> 16173 </p> 16174 </td> 16175<td> 16176 <p> 16177 <span class="green">1.00<br> (696259ns)</span> 16178 </p> 16179 </td> 16180<td> 16181 <p> 16182 <span class="green">1.10<br> (768043ns)</span> 16183 </p> 16184 </td> 16185</tr> 16186<tr> 16187<td> 16188 <p> 16189 gcd<unsigned long> (Trivial cases) 16190 </p> 16191 </td> 16192<td> 16193 <p> 16194 <span class="red">2.05<br> (115ns)</span> 16195 </p> 16196 </td> 16197<td> 16198 <p> 16199 <span class="blue">1.61<br> (90ns)</span> 16200 </p> 16201 </td> 16202<td> 16203 <p> 16204 <span class="blue">1.80<br> (101ns)</span> 16205 </p> 16206 </td> 16207<td> 16208 <p> 16209 <span class="blue">1.98<br> (111ns)</span> 16210 </p> 16211 </td> 16212<td> 16213 <p> 16214 <span class="blue">1.55<br> (87ns)</span> 16215 </p> 16216 </td> 16217<td> 16218 <p> 16219 <span class="green">1.00<br> (56ns)</span> 16220 </p> 16221 </td> 16222</tr> 16223<tr> 16224<td> 16225 <p> 16226 gcd<unsigned long> (adjacent Fibonacci numbers) 16227 </p> 16228 </td> 16229<td> 16230 <p> 16231 <span class="blue">1.26<br> (3438ns)</span> 16232 </p> 16233 </td> 16234<td> 16235 <p> 16236 <span class="red">8.19<br> (22429ns)</span> 16237 </p> 16238 </td> 16239<td> 16240 <p> 16241 <span class="green">1.00<br> (2739ns)</span> 16242 </p> 16243 </td> 16244<td> 16245 <p> 16246 <span class="blue">1.30<br> (3567ns)</span> 16247 </p> 16248 </td> 16249<td> 16250 <p> 16251 <span class="green">1.15<br> (3146ns)</span> 16252 </p> 16253 </td> 16254<td> 16255 <p> 16256 <span class="red">5.44<br> (14903ns)</span> 16257 </p> 16258 </td> 16259</tr> 16260<tr> 16261<td> 16262 <p> 16263 gcd<unsigned long> (permutations of Fibonacci numbers) 16264 </p> 16265 </td> 16266<td> 16267 <p> 16268 <span class="green">1.17<br> (205858ns)</span> 16269 </p> 16270 </td> 16271<td> 16272 <p> 16273 <span class="blue">1.52<br> (268100ns)</span> 16274 </p> 16275 </td> 16276<td> 16277 <p> 16278 <span class="red">2.43<br> (427978ns)</span> 16279 </p> 16280 </td> 16281<td> 16282 <p> 16283 <span class="green">1.13<br> (198590ns)</span> 16284 </p> 16285 </td> 16286<td> 16287 <p> 16288 <span class="red">2.02<br> (356193ns)</span> 16289 </p> 16290 </td> 16291<td> 16292 <p> 16293 <span class="green">1.00<br> (175939ns)</span> 16294 </p> 16295 </td> 16296</tr> 16297<tr> 16298<td> 16299 <p> 16300 gcd<unsigned long> (random prime number products) 16301 </p> 16302 </td> 16303<td> 16304 <p> 16305 <span class="green">1.01<br> (214230ns)</span> 16306 </p> 16307 </td> 16308<td> 16309 <p> 16310 <span class="blue">1.32<br> (278903ns)</span> 16311 </p> 16312 </td> 16313<td> 16314 <p> 16315 <span class="blue">1.93<br> (406951ns)</span> 16316 </p> 16317 </td> 16318<td> 16319 <p> 16320 <span class="green">1.12<br> (237142ns)</span> 16321 </p> 16322 </td> 16323<td> 16324 <p> 16325 <span class="blue">1.70<br> (358996ns)</span> 16326 </p> 16327 </td> 16328<td> 16329 <p> 16330 <span class="green">1.00<br> (211247ns)</span> 16331 </p> 16332 </td> 16333</tr> 16334<tr> 16335<td> 16336 <p> 16337 gcd<unsigned long> (uniform random numbers) 16338 </p> 16339 </td> 16340<td> 16341 <p> 16342 <span class="blue">1.29<br> (382560ns)</span> 16343 </p> 16344 </td> 16345<td> 16346 <p> 16347 <span class="blue">1.46<br> (431960ns)</span> 16348 </p> 16349 </td> 16350<td> 16351 <p> 16352 <span class="blue">1.77<br> (524430ns)</span> 16353 </p> 16354 </td> 16355<td> 16356 <p> 16357 <span class="blue">1.26<br> (373023ns)</span> 16358 </p> 16359 </td> 16360<td> 16361 <p> 16362 <span class="blue">1.27<br> (377903ns)</span> 16363 </p> 16364 </td> 16365<td> 16366 <p> 16367 <span class="green">1.00<br> (296476ns)</span> 16368 </p> 16369 </td> 16370</tr> 16371<tr> 16372<td> 16373 <p> 16374 gcd<unsigned short> (Trivial cases) 16375 </p> 16376 </td> 16377<td> 16378 <p> 16379 <span class="blue">1.79<br> (118ns)</span> 16380 </p> 16381 </td> 16382<td> 16383 <p> 16384 <span class="blue">1.41<br> (93ns)</span> 16385 </p> 16386 </td> 16387<td> 16388 <p> 16389 <span class="blue">1.47<br> (97ns)</span> 16390 </p> 16391 </td> 16392<td> 16393 <p> 16394 <span class="blue">1.73<br> (114ns)</span> 16395 </p> 16396 </td> 16397<td> 16398 <p> 16399 <span class="blue">1.42<br> (94ns)</span> 16400 </p> 16401 </td> 16402<td> 16403 <p> 16404 <span class="green">1.00<br> (66ns)</span> 16405 </p> 16406 </td> 16407</tr> 16408<tr> 16409<td> 16410 <p> 16411 gcd<unsigned short> (adjacent Fibonacci numbers) 16412 </p> 16413 </td> 16414<td> 16415 <p> 16416 <span class="green">1.16<br> (821ns)</span> 16417 </p> 16418 </td> 16419<td> 16420 <p> 16421 <span class="red">7.62<br> (5377ns)</span> 16422 </p> 16423 </td> 16424<td> 16425 <p> 16426 <span class="green">1.00<br> (706ns)</span> 16427 </p> 16428 </td> 16429<td> 16430 <p> 16431 <span class="green">1.17<br> (823ns)</span> 16432 </p> 16433 </td> 16434<td> 16435 <p> 16436 <span class="green">1.15<br> (810ns)</span> 16437 </p> 16438 </td> 16439<td> 16440 <p> 16441 <span class="red">5.04<br> (3557ns)</span> 16442 </p> 16443 </td> 16444</tr> 16445<tr> 16446<td> 16447 <p> 16448 gcd<unsigned short> (permutations of Fibonacci numbers) 16449 </p> 16450 </td> 16451<td> 16452 <p> 16453 <span class="green">1.00<br> (11485ns)</span> 16454 </p> 16455 </td> 16456<td> 16457 <p> 16458 <span class="red">3.82<br> (43640ns)</span> 16459 </p> 16460 </td> 16461<td> 16462 <p> 16463 <span class="green">1.16<br> (13294ns)</span> 16464 </p> 16465 </td> 16466<td> 16467 <p> 16468 <span class="green">1.00<br> (11428ns)</span> 16469 </p> 16470 </td> 16471<td> 16472 <p> 16473 <span class="red">2.19<br> (25029ns)</span> 16474 </p> 16475 </td> 16476<td> 16477 <p> 16478 <span class="red">2.11<br> (24145ns)</span> 16479 </p> 16480 </td> 16481</tr> 16482<tr> 16483<td> 16484 <p> 16485 gcd<unsigned short> (random prime number products) 16486 </p> 16487 </td> 16488<td> 16489 <p> 16490 <span class="blue">1.26<br> (123821ns)</span> 16491 </p> 16492 </td> 16493<td> 16494 <p> 16495 <span class="blue">1.92<br> (188438ns)</span> 16496 </p> 16497 </td> 16498<td> 16499 <p> 16500 <span class="red">2.21<br> (216289ns)</span> 16501 </p> 16502 </td> 16503<td> 16504 <p> 16505 <span class="green">1.12<br> (109274ns)</span> 16506 </p> 16507 </td> 16508<td> 16509 <p> 16510 <span class="blue">1.67<br> (163434ns)</span> 16511 </p> 16512 </td> 16513<td> 16514 <p> 16515 <span class="green">1.00<br> (97914ns)</span> 16516 </p> 16517 </td> 16518</tr> 16519<tr> 16520<td> 16521 <p> 16522 gcd<unsigned short> (uniform random numbers) 16523 </p> 16524 </td> 16525<td> 16526 <p> 16527 <span class="green">1.16<br> (169639ns)</span> 16528 </p> 16529 </td> 16530<td> 16531 <p> 16532 <span class="blue">1.44<br> (212132ns)</span> 16533 </p> 16534 </td> 16535<td> 16536 <p> 16537 <span class="blue">1.62<br> (237308ns)</span> 16538 </p> 16539 </td> 16540<td> 16541 <p> 16542 <span class="green">1.16<br> (170196ns)</span> 16543 </p> 16544 </td> 16545<td> 16546 <p> 16547 <span class="blue">1.30<br> (191524ns)</span> 16548 </p> 16549 </td> 16550<td> 16551 <p> 16552 <span class="green">1.00<br> (146827ns)</span> 16553 </p> 16554 </td> 16555</tr> 16556<tr> 16557<td> 16558 <p> 16559 gcd<unsigned> (Trivial cases) 16560 </p> 16561 </td> 16562<td> 16563 <p> 16564 <span class="blue">1.98<br> (117ns)</span> 16565 </p> 16566 </td> 16567<td> 16568 <p> 16569 <span class="blue">1.61<br> (95ns)</span> 16570 </p> 16571 </td> 16572<td> 16573 <p> 16574 <span class="blue">1.90<br> (112ns)</span> 16575 </p> 16576 </td> 16577<td> 16578 <p> 16579 <span class="blue">2.00<br> (118ns)</span> 16580 </p> 16581 </td> 16582<td> 16583 <p> 16584 <span class="blue">1.61<br> (95ns)</span> 16585 </p> 16586 </td> 16587<td> 16588 <p> 16589 <span class="green">1.00<br> (59ns)</span> 16590 </p> 16591 </td> 16592</tr> 16593<tr> 16594<td> 16595 <p> 16596 gcd<unsigned> (adjacent Fibonacci numbers) 16597 </p> 16598 </td> 16599<td> 16600 <p> 16601 <span class="blue">1.28<br> (3381ns)</span> 16602 </p> 16603 </td> 16604<td> 16605 <p> 16606 <span class="red">8.39<br> (22209ns)</span> 16607 </p> 16608 </td> 16609<td> 16610 <p> 16611 <span class="green">1.00<br> (2648ns)</span> 16612 </p> 16613 </td> 16614<td> 16615 <p> 16616 <span class="blue">1.30<br> (3436ns)</span> 16617 </p> 16618 </td> 16619<td> 16620 <p> 16621 <span class="blue">1.34<br> (3540ns)</span> 16622 </p> 16623 </td> 16624<td> 16625 <p> 16626 <span class="red">5.64<br> (14937ns)</span> 16627 </p> 16628 </td> 16629</tr> 16630<tr> 16631<td> 16632 <p> 16633 gcd<unsigned> (permutations of Fibonacci numbers) 16634 </p> 16635 </td> 16636<td> 16637 <p> 16638 <span class="green">1.08<br> (197785ns)</span> 16639 </p> 16640 </td> 16641<td> 16642 <p> 16643 <span class="blue">1.47<br> (269176ns)</span> 16644 </p> 16645 </td> 16646<td> 16647 <p> 16648 <span class="red">2.37<br> (435412ns)</span> 16649 </p> 16650 </td> 16651<td> 16652 <p> 16653 <span class="green">1.12<br> (205095ns)</span> 16654 </p> 16655 </td> 16656<td> 16657 <p> 16658 <span class="red">2.08<br> (382592ns)</span> 16659 </p> 16660 </td> 16661<td> 16662 <p> 16663 <span class="green">1.00<br> (183636ns)</span> 16664 </p> 16665 </td> 16666</tr> 16667<tr> 16668<td> 16669 <p> 16670 gcd<unsigned> (random prime number products) 16671 </p> 16672 </td> 16673<td> 16674 <p> 16675 <span class="green">1.09<br> (214890ns)</span> 16676 </p> 16677 </td> 16678<td> 16679 <p> 16680 <span class="blue">1.42<br> (279881ns)</span> 16681 </p> 16682 </td> 16683<td> 16684 <p> 16685 <span class="blue">1.99<br> (392760ns)</span> 16686 </p> 16687 </td> 16688<td> 16689 <p> 16690 <span class="green">1.05<br> (206420ns)</span> 16691 </p> 16692 </td> 16693<td> 16694 <p> 16695 <span class="blue">1.61<br> (317337ns)</span> 16696 </p> 16697 </td> 16698<td> 16699 <p> 16700 <span class="green">1.00<br> (197431ns)</span> 16701 </p> 16702 </td> 16703</tr> 16704<tr> 16705<td> 16706 <p> 16707 gcd<unsigned> (uniform random numbers) 16708 </p> 16709 </td> 16710<td> 16711 <p> 16712 <span class="blue">1.26<br> (385229ns)</span> 16713 </p> 16714 </td> 16715<td> 16716 <p> 16717 <span class="blue">1.35<br> (411167ns)</span> 16718 </p> 16719 </td> 16720<td> 16721 <p> 16722 <span class="blue">1.68<br> (512335ns)</span> 16723 </p> 16724 </td> 16725<td> 16726 <p> 16727 <span class="blue">1.23<br> (375323ns)</span> 16728 </p> 16729 </td> 16730<td> 16731 <p> 16732 <span class="blue">1.32<br> (402786ns)</span> 16733 </p> 16734 </td> 16735<td> 16736 <p> 16737 <span class="green">1.00<br> (305574ns)</span> 16738 </p> 16739 </td> 16740</tr> 16741</tbody> 16742</table></div> 16743</div> 16744<br class="table-break"> 16745</div> 16746</div> 16747<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> 16748<td align="left"><p><small>Last revised: April 03, 2020 at 11:57:28 GMT</small></p></td> 16749<td align="right"><div class="copyright-footer"></div></td> 16750</tr></table> 16751<hr> 16752<div class="spirit-nav"></div> 16753</body> 16754</html> 16755