• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // test_negative_binomial.cpp
2 
3 // Copyright Paul A. Bristow 2007.
4 // Copyright John Maddock 2006.
5 
6 // Use, modification and distribution are subject to the
7 // Boost Software License, Version 1.0.
8 // (See accompanying file LICENSE_1_0.txt
9 // or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 // Tests for Negative Binomial Distribution.
12 
13 // Note that these defines must be placed BEFORE #includes.
14 #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
15 // because several tests overflow & underflow by design.
16 #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
17 
18 #ifdef _MSC_VER
19 #  pragma warning(disable: 4127) // conditional expression is constant.
20 #endif
21 
22 #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
23 #  define TEST_FLOAT
24 #  define TEST_DOUBLE
25 #  define TEST_LDOUBLE
26 #  define TEST_REAL_CONCEPT
27 #endif
28 
29 #include <boost/math/tools/test.hpp> // for real_concept
30 #include <boost/math/concepts/real_concept.hpp> // for real_concept
31 using ::boost::math::concepts::real_concept;
32 
33 #include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
34 using boost::math::negative_binomial_distribution;
35 
36 #include <boost/math/special_functions/gamma.hpp>
37   using boost::math::lgamma;  // log gamma
38 
39 #define BOOST_TEST_MAIN
40 #include <boost/test/unit_test.hpp> // for test_main
41 #include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
42 #include "table_type.hpp"
43 #include "test_out_of_range.hpp"
44 
45 #include <iostream>
46 using std::cout;
47 using std::endl;
48 using std::setprecision;
49 using std::showpoint;
50 #include <limits>
51 using std::numeric_limits;
52 
53 template <class RealType>
test_spot(RealType N,RealType k,RealType p,RealType P,RealType Q,RealType tol)54 void test_spot( // Test a single spot value against 'known good' values.
55                RealType N,    // Number of successes.
56                RealType k,    // Number of failures.
57                RealType p,    // Probability of success_fraction.
58                RealType P,    // CDF probability.
59                RealType Q,    // Complement of CDF.
60                RealType tol)  // Test tolerance.
61 {
62    boost::math::negative_binomial_distribution<RealType> bn(N, p);
63    BOOST_CHECK_EQUAL(N, bn.successes());
64    BOOST_CHECK_EQUAL(p, bn.success_fraction());
65    BOOST_CHECK_CLOSE(
66      cdf(bn, k), P, tol);
67 
68   if((P < 0.99) && (Q < 0.99))
69   {
70     // We can only check this if P is not too close to 1,
71     // so that we can guarantee that Q is free of error:
72     //
73     BOOST_CHECK_CLOSE(
74       cdf(complement(bn, k)), Q, tol);
75     if(k != 0)
76     {
77       BOOST_CHECK_CLOSE(
78         quantile(bn, P), k, tol);
79     }
80     else
81     {
82       // Just check quantile is very small:
83       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
84         && (boost::is_floating_point<RealType>::value))
85       {
86         // Limit where this is checked: if exponent range is very large we may
87         // run out of iterations in our root finding algorithm.
88         BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
89       }
90     }
91     if(k != 0)
92     {
93       BOOST_CHECK_CLOSE(
94         quantile(complement(bn, Q)), k, tol);
95     }
96     else
97     {
98       // Just check quantile is very small:
99       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
100         && (boost::is_floating_point<RealType>::value))
101       {
102         // Limit where this is checked: if exponent range is very large we may
103         // run out of iterations in our root finding algorithm.
104         BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
105       }
106     }
107     // estimate success ratio:
108     BOOST_CHECK_CLOSE(
109       negative_binomial_distribution<RealType>::find_lower_bound_on_p(
110       N+k, N, P),
111       p, tol);
112     // Note we bump up the sample size here, purely for the sake of the test,
113     // internally the function has to adjust the sample size so that we get
114     // the right upper bound, our test undoes this, so we can verify the result.
115     BOOST_CHECK_CLOSE(
116       negative_binomial_distribution<RealType>::find_upper_bound_on_p(
117       N+k+1, N, Q),
118       p, tol);
119 
120     if(Q < P)
121     {
122        //
123        // We check two things here, that the upper and lower bounds
124        // are the right way around, and that they do actually bracket
125        // the naive estimate of p = successes / (sample size)
126        //
127       BOOST_CHECK(
128         negative_binomial_distribution<RealType>::find_lower_bound_on_p(
129         N+k, N, Q)
130         <=
131         negative_binomial_distribution<RealType>::find_upper_bound_on_p(
132         N+k, N, Q)
133         );
134       BOOST_CHECK(
135         negative_binomial_distribution<RealType>::find_lower_bound_on_p(
136         N+k, N, Q)
137         <=
138         N / (N+k)
139         );
140       BOOST_CHECK(
141         N / (N+k)
142         <=
143         negative_binomial_distribution<RealType>::find_upper_bound_on_p(
144         N+k, N, Q)
145         );
146     }
147     else
148     {
149        // As above but when P is small.
150       BOOST_CHECK(
151         negative_binomial_distribution<RealType>::find_lower_bound_on_p(
152         N+k, N, P)
153         <=
154         negative_binomial_distribution<RealType>::find_upper_bound_on_p(
155         N+k, N, P)
156         );
157       BOOST_CHECK(
158         negative_binomial_distribution<RealType>::find_lower_bound_on_p(
159         N+k, N, P)
160         <=
161         N / (N+k)
162         );
163       BOOST_CHECK(
164         N / (N+k)
165         <=
166         negative_binomial_distribution<RealType>::find_upper_bound_on_p(
167         N+k, N, P)
168         );
169     }
170 
171     // Estimate sample size:
172     BOOST_CHECK_CLOSE(
173       negative_binomial_distribution<RealType>::find_minimum_number_of_trials(
174       k, p, P),
175       N+k, tol);
176     BOOST_CHECK_CLOSE(
177       negative_binomial_distribution<RealType>::find_maximum_number_of_trials(
178          k, p, Q),
179       N+k, tol);
180 
181     // Double check consistency of CDF and PDF by computing the finite sum:
182     RealType sum = 0;
183     for(unsigned i = 0; i <= k; ++i)
184     {
185       sum += pdf(bn, RealType(i));
186     }
187     BOOST_CHECK_CLOSE(sum, P, tol);
188 
189     // Complement is not possible since sum is to infinity.
190   } //
191 } // test_spot
192 
193 template <class RealType> // Any floating-point type RealType.
test_spots(RealType)194 void test_spots(RealType)
195 {
196   // Basic sanity checks, test data is to double precision only
197   // so set tolerance to 1000 eps expressed as a percent, or
198   // 1000 eps of type double expressed as a percent, whichever
199   // is the larger.
200 
201   RealType tolerance = (std::max)
202     (boost::math::tools::epsilon<RealType>(),
203     static_cast<RealType>(std::numeric_limits<double>::epsilon()));
204   tolerance *= 100 * 100000.0f;
205 
206   cout << "Tolerance = " << tolerance << "%." << endl;
207 
208   RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
209   //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
210   RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
211   cout << "Tolerance 5 eps = " << tol5eps << "%." << endl;
212 
213   // Sources of spot test values:
214 
215   // MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
216   // returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
217   // 0 <= k
218   // r > 0
219   // 0 <= p <= 1
220   // P = pbinom(30, 500, 0.05) = 0.869147702104609
221 
222   // And functions.wolfram.com
223 
224   using boost::math::negative_binomial_distribution;
225   using  ::boost::math::negative_binomial;
226   using  ::boost::math::cdf;
227   using  ::boost::math::pdf;
228 
229   // Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
230   // These test quantiles and complements as well.
231 
232   test_spot(  // pnbinom(1,2,0.5) = 0.5
233   static_cast<RealType>(2),   // successes r
234   static_cast<RealType>(1),   // Number of failures, k
235   static_cast<RealType>(0.5), // Probability of success as fraction, p
236   static_cast<RealType>(0.5), // Probability of result (CDF), P
237   static_cast<RealType>(0.5),  // complement CCDF Q = 1 - P
238   tolerance);
239 
240   test_spot( // pbinom(0, 2, 0.25)
241   static_cast<RealType>(2),    // successes r
242   static_cast<RealType>(0),    // Number of failures, k
243   static_cast<RealType>(0.25),
244   static_cast<RealType>(0.0625),                    // Probability of result (CDF), P
245   static_cast<RealType>(0.9375),                    // Q = 1 - P
246   tolerance);
247 
248   test_spot(  // pbinom(48,8,0.25)
249   static_cast<RealType>(8),     // successes r
250   static_cast<RealType>(48),    // Number of failures, k
251   static_cast<RealType>(0.25),                    // Probability of success, p
252   static_cast<RealType>(9.826582228110670E-1),     // Probability of result (CDF), P
253   static_cast<RealType>(1 - 9.826582228110670E-1),   // Q = 1 - P
254   tolerance);
255 
256   test_spot(  // pbinom(2,5,0.4)
257   static_cast<RealType>(5),     // successes r
258   static_cast<RealType>(2),     // Number of failures, k
259   static_cast<RealType>(0.4),                    // Probability of success, p
260   static_cast<RealType>(9.625600000000020E-2),     // Probability of result (CDF), P
261   static_cast<RealType>(1 - 9.625600000000020E-2),   // Q = 1 - P
262   tolerance);
263 
264   test_spot(  // pbinom(10,100,0.9)
265   static_cast<RealType>(100),     // successes r
266   static_cast<RealType>(10),     // Number of failures, k
267   static_cast<RealType>(0.9),                    // Probability of success, p
268   static_cast<RealType>(4.535522887695670E-1),     // Probability of result (CDF), P
269   static_cast<RealType>(1 - 4.535522887695670E-1),   // Q = 1 - P
270   tolerance);
271 
272   test_spot(  // pbinom(1,100,0.991)
273   static_cast<RealType>(100),     // successes r
274   static_cast<RealType>(1),     // Number of failures, k
275   static_cast<RealType>(0.991),                    // Probability of success, p
276   static_cast<RealType>(7.693413044217000E-1),     // Probability of result (CDF), P
277   static_cast<RealType>(1 - 7.693413044217000E-1),   // Q = 1 - P
278   tolerance);
279 
280   test_spot(  // pbinom(10,100,0.991)
281   static_cast<RealType>(100),     // successes r
282   static_cast<RealType>(10),     // Number of failures, k
283   static_cast<RealType>(0.991),                    // Probability of success, p
284   static_cast<RealType>(9.999999940939000E-1),     // Probability of result (CDF), P
285   static_cast<RealType>(1 - 9.999999940939000E-1),   // Q = 1 - P
286   tolerance);
287 
288 if(std::numeric_limits<RealType>::is_specialized)
289 { // An extreme value test that takes 3 minutes using the real concept type
290   // for which numeric_limits<RealType>::is_specialized == false, deliberately
291   // and for which there is no Lanczos approximation defined (also deliberately)
292   // giving a very slow computation, but with acceptable accuracy.
293   // A possible enhancement might be to use a normal approximation for
294   // extreme values, but this is not implemented.
295   test_spot(  // pbinom(100000,100,0.001)
296   static_cast<RealType>(100),     // successes r
297   static_cast<RealType>(100000),     // Number of failures, k
298   static_cast<RealType>(0.001),                    // Probability of success, p
299   static_cast<RealType>(5.173047534260320E-1),     // Probability of result (CDF), P
300   static_cast<RealType>(1 - 5.173047534260320E-1),   // Q = 1 - P
301   tolerance*1000); // *1000 is OK 0.51730475350664229  versus
302 
303   // functions.wolfram.com
304   //   for I[0.001](100, 100000+1) gives:
305   // Wolfram       0.517304753506834882009032744488738352004003696396461766326713
306   // JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
307   // MathCAD       0.51730475342603199 differs at 10th decimal digit.
308 
309   // Error tests:
310   check_out_of_range<negative_binomial_distribution<RealType> >(20, 0.5);
311   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(0, 0.5), std::domain_error);
312   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(-2, 0.5), std::domain_error);
313   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, -0.5), std::domain_error);
314   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, 1.5), std::domain_error);
315 }
316  // End of single spot tests using RealType
317 
318 
319   // Tests on PDF:
320   BOOST_CHECK_CLOSE(
321   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
322   static_cast<RealType>(0) ),  // k = 0.
323   static_cast<RealType>(0.25), // 0
324   tolerance);
325 
326   BOOST_CHECK_CLOSE(
327   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)),
328   static_cast<RealType>(0)),  // k = 0.
329   static_cast<RealType>(0.0625), // exact 1/16
330   tolerance);
331 
332   BOOST_CHECK_CLOSE(
333   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
334   static_cast<RealType>(0)),  // k = 0
335   static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
336   tolerance);
337 
338   BOOST_CHECK_CLOSE(
339   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)),
340   static_cast<RealType>(0)),  // k = 0
341   static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
342   tolerance);
343 
344   BOOST_CHECK_CLOSE(
345   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)),
346   static_cast<RealType>(0)),  // k = 0.
347   static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
348   tolerance);
349 
350   BOOST_CHECK_CLOSE(
351   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)),
352   static_cast<RealType>(0)),  // k = 0.
353   static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
354   tolerance);
355 
356 
357   BOOST_CHECK_CLOSE( // .
358   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)),
359   static_cast<RealType>(0)),  // k.
360   static_cast<RealType>(1.215766545905690E-1), // k=20  p = 0.9
361   tolerance);
362 
363   // Tests on cdf:
364   // MathCAD pbinom k, r, p) == failures, successes, probability.
365 
366   BOOST_CHECK_CLOSE(cdf(
367     negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
368     static_cast<RealType>(0) ), // k = 0
369     static_cast<RealType>(0.25), // probability 1/4
370     tolerance);
371 
372   BOOST_CHECK_CLOSE(cdf(complement(
373     negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
374     static_cast<RealType>(0) )), // k = 0
375     static_cast<RealType>(0.75), // probability 3/4
376     tolerance);
377   BOOST_CHECK_CLOSE( // k = 1.
378   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
379   static_cast<RealType>(1)),  // k =1.
380   static_cast<RealType>(1.455191522836700E-11),
381   tolerance);
382 
383   BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
384   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
385   static_cast<RealType>(1)) -
386   static_cast<RealType>(1.455191522836700E-11),
387   tolerance );
388 
389   // Some exact (probably - judging by trailing zeros) values.
390   BOOST_CHECK_CLOSE(
391   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
392   static_cast<RealType>(0)),  // k.
393   static_cast<RealType>(1.525878906250000E-5),
394   tolerance);
395 
396   BOOST_CHECK_CLOSE(
397   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
398   static_cast<RealType>(0)),  // k.
399   static_cast<RealType>(1.525878906250000E-5),
400   tolerance);
401 
402   BOOST_CHECK_SMALL(
403   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
404   static_cast<RealType>(0)) -
405   static_cast<RealType>(1.525878906250000E-5),
406   tolerance );
407 
408   BOOST_CHECK_CLOSE( // k = 1.
409   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
410   static_cast<RealType>(1)),  // k.
411   static_cast<RealType>(1.068115234375010E-4),
412   tolerance);
413 
414   BOOST_CHECK_CLOSE( // k = 2.
415   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
416   static_cast<RealType>(2)),  // k.
417   static_cast<RealType>(4.158020019531300E-4),
418   tolerance);
419 
420   BOOST_CHECK_CLOSE( // k = 3.
421   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
422   static_cast<RealType>(3)),  // k.bristow
423   static_cast<RealType>(1.188278198242200E-3),
424   tolerance);
425 
426   BOOST_CHECK_CLOSE( // k = 4.
427   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
428   static_cast<RealType>(4)),  // k.
429   static_cast<RealType>(2.781510353088410E-3),
430   tolerance);
431 
432   BOOST_CHECK_CLOSE( // k = 5.
433   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
434   static_cast<RealType>(5)),  // k.
435   static_cast<RealType>(5.649328231811500E-3),
436   tolerance);
437 
438   BOOST_CHECK_CLOSE( // k = 6.
439   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
440   static_cast<RealType>(6)),  // k.
441   static_cast<RealType>(1.030953228473680E-2),
442   tolerance);
443 
444   BOOST_CHECK_CLOSE( // k = 7.
445   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
446   static_cast<RealType>(7)),  // k.
447   static_cast<RealType>(1.729983836412430E-2),
448   tolerance);
449 
450   BOOST_CHECK_CLOSE( // k = 8.
451   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
452   static_cast<RealType>(8)),  // k = n.
453   static_cast<RealType>(2.712995628826370E-2),
454   tolerance);
455 
456   BOOST_CHECK_CLOSE( //
457   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
458   static_cast<RealType>(48)),  // k
459   static_cast<RealType>(9.826582228110670E-1),
460   tolerance);
461 
462   BOOST_CHECK_CLOSE( //
463   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
464   static_cast<RealType>(64)),  // k
465   static_cast<RealType>(9.990295004935590E-1),
466   tolerance);
467 
468   BOOST_CHECK_CLOSE( //
469   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
470   static_cast<RealType>(26)),  // k
471   static_cast<RealType>(9.989686246611190E-1),
472   tolerance);
473 
474   BOOST_CHECK_CLOSE( //
475   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
476   static_cast<RealType>(2)),  // k failures
477   static_cast<RealType>(9.625600000000020E-2),
478   tolerance);
479 
480   BOOST_CHECK_CLOSE( //
481   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)),
482   static_cast<RealType>(20)),  // k
483   static_cast<RealType>(9.999970854144170E-1),
484   tolerance);
485 
486   BOOST_CHECK_CLOSE( //
487   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)),
488   static_cast<RealType>(200)),  // k
489   static_cast<RealType>(2.172846379930550E-1),
490   tolerance* 2);
491 
492   BOOST_CHECK_CLOSE( //
493   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)),
494   static_cast<RealType>(20)),  // k
495   static_cast<RealType>(4.550203671301790E-1),
496   tolerance);
497 
498   // Tests of other functions, mean and other moments ...
499 
500   negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
501   using namespace std; // ADL of std names.
502   // mean:
503   BOOST_CHECK_CLOSE(
504     mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps);
505   BOOST_CHECK_CLOSE(
506     mode(dist), static_cast<RealType>(21), tol1eps);
507   // variance:
508   BOOST_CHECK_CLOSE(
509     variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps);
510   // std deviation:
511   BOOST_CHECK_CLOSE(
512     standard_deviation(dist), // 9.79795897113271239270
513     static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
514     //                              9.79795897113271152534  == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
515     tol5eps * 100);
516   BOOST_CHECK_CLOSE(
517     skewness(dist), //
518     static_cast<RealType>(0.71443450831176036),
519     // using http://mathworld.wolfram.com/skewness.html
520     tolerance);
521   BOOST_CHECK_CLOSE(
522     kurtosis_excess(dist), //
523     static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
524     tol5eps * 100);
525   BOOST_CHECK_CLOSE(
526     kurtosis(dist), // true
527     static_cast<RealType>(3.76041666666666666666666666666666666666666L), //
528     tol5eps * 100);
529   // hazard:
530   RealType x = static_cast<RealType>(0.125);
531   BOOST_CHECK_CLOSE(
532   hazard(dist, x)
533   , pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
534   // cumulative hazard:
535   BOOST_CHECK_CLOSE(
536   chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
537   // coefficient_of_variation:
538   BOOST_CHECK_CLOSE(
539   coefficient_of_variation(dist)
540   , standard_deviation(dist) / mean(dist), tol5eps);
541 
542   // Special cases for PDF:
543   BOOST_CHECK_EQUAL(
544   pdf(
545   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
546   static_cast<RealType>(0)),
547   static_cast<RealType>(0) );
548 
549   BOOST_CHECK_EQUAL(
550   pdf(
551   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
552   static_cast<RealType>(0.0001)),
553   static_cast<RealType>(0) );
554 
555   BOOST_CHECK_EQUAL(
556   pdf(
557   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
558   static_cast<RealType>(0.001)),
559   static_cast<RealType>(0) );
560 
561   BOOST_CHECK_EQUAL(
562   pdf(
563   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
564   static_cast<RealType>(8)),
565   static_cast<RealType>(0) );
566 
567   BOOST_CHECK_SMALL(
568   pdf(
569    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)),
570   static_cast<RealType>(0))-
571   static_cast<RealType>(0.0625),
572   2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
573   // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
574 
575   // Quantile boundary cases checks:
576   BOOST_CHECK_EQUAL(
577   quantile(  // zero P < cdf(0) so should be exactly zero.
578   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
579   static_cast<RealType>(0)),
580   static_cast<RealType>(0));
581 
582   BOOST_CHECK_EQUAL(
583   quantile(  // min P < cdf(0) so should be exactly zero.
584   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
585   static_cast<RealType>(boost::math::tools::min_value<RealType>())),
586   static_cast<RealType>(0));
587 
588   BOOST_CHECK_CLOSE_FRACTION(
589   quantile(  // Small P < cdf(0) so should be near zero.
590   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
591   static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
592   static_cast<RealType>(0),
593     tol5eps);
594 
595   BOOST_CHECK_CLOSE(
596   quantile(  // Small P < cdf(0) so should be exactly zero.
597   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
598   static_cast<RealType>(0.0001)),
599   static_cast<RealType>(0.95854156929288470),
600     tolerance);
601 
602   //BOOST_CHECK(  // Fails with overflow for real_concept
603   //quantile(  // Small P near 1 so k failures should be big.
604   //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
605   //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
606   //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
607   //);
608 
609   if(std::numeric_limits<RealType>::has_infinity)
610   { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
611     // Note that infinity is not implemented for real_concept, so these tests
612     // are only done for types, like built-in float, double.. that have infinity.
613     // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
614     // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
615     // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
616     //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
617 
618     BOOST_CHECK(
619     quantile(  // At P == 1 so k failures should be infinite.
620     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
621     static_cast<RealType>(1)) ==
622     //static_cast<RealType>(boost::math::tools::infinity<RealType>())
623     static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
624 
625     BOOST_CHECK_EQUAL(
626     quantile(  // At 1 == P  so should be infinite.
627     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
628     static_cast<RealType>(1)), //
629     std::numeric_limits<RealType>::infinity() );
630 
631     BOOST_CHECK_EQUAL(
632     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
633     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
634     static_cast<RealType>(0))),
635     std::numeric_limits<RealType>::infinity() );
636    } // test for infinity using std::numeric_limits<>::infinity()
637   else
638   { // real_concept case, so check it throws rather than returning infinity.
639     BOOST_CHECK_EQUAL(
640     quantile(  // At P == 1 so k failures should be infinite.
641     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
642     static_cast<RealType>(1)),
643     boost::math::tools::max_value<RealType>() );
644 
645     BOOST_CHECK_EQUAL(
646     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
647     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
648     static_cast<RealType>(0))),
649     boost::math::tools::max_value<RealType>());
650   }
651   BOOST_CHECK( // Should work for built-in and real_concept.
652   quantile(complement(  // Q very near to 1 so P nearly 1  < so should be large > 384.
653   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
654   static_cast<RealType>(boost::math::tools::min_value<RealType>())))
655    >= static_cast<RealType>(384) );
656 
657   BOOST_CHECK_EQUAL(
658   quantile(  //  P ==  0 < cdf(0) so should be zero.
659   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
660   static_cast<RealType>(0)),
661   static_cast<RealType>(0));
662 
663   // Quantile Complement boundary cases:
664 
665   BOOST_CHECK_EQUAL(
666   quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
667   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
668   static_cast<RealType>(1))),
669   static_cast<RealType>(0)
670   );
671 
672   BOOST_CHECK_EQUAL(
673   quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
674   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
675   static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
676   static_cast<RealType>(0)
677   );
678 
679   // Check that duff arguments throw domain_error:
680   BOOST_MATH_CHECK_THROW(
681   pdf( // Negative successes!
682   negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
683   static_cast<RealType>(0)), std::domain_error
684   );
685   BOOST_MATH_CHECK_THROW(
686   pdf( // Negative success_fraction!
687   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
688   static_cast<RealType>(0)), std::domain_error
689   );
690   BOOST_MATH_CHECK_THROW(
691   pdf( // Success_fraction > 1!
692   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
693   static_cast<RealType>(0)),
694   std::domain_error
695   );
696   BOOST_MATH_CHECK_THROW(
697   pdf( // Negative k argument !
698   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
699   static_cast<RealType>(-1)),
700   std::domain_error
701   );
702   //BOOST_MATH_CHECK_THROW(
703   //pdf( // Unlike binomial there is NO limit on k (failures)
704   //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
705   //static_cast<RealType>(9)), std::domain_error
706   //);
707   BOOST_MATH_CHECK_THROW(
708   cdf(  // Negative k argument !
709   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
710   static_cast<RealType>(-1)),
711   std::domain_error
712   );
713   BOOST_MATH_CHECK_THROW(
714   cdf( // Negative success_fraction!
715   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
716   static_cast<RealType>(0)), std::domain_error
717   );
718   BOOST_MATH_CHECK_THROW(
719   cdf( // Success_fraction > 1!
720   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
721   static_cast<RealType>(0)), std::domain_error
722   );
723   BOOST_MATH_CHECK_THROW(
724   quantile(  // Negative success_fraction!
725   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
726   static_cast<RealType>(0)), std::domain_error
727   );
728   BOOST_MATH_CHECK_THROW(
729   quantile( // Success_fraction > 1!
730   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
731   static_cast<RealType>(0)), std::domain_error
732   );
733   // End of check throwing 'duff' out-of-domain values.
734 
735 #define T RealType
736 #include "negative_binomial_quantile.ipp"
737 
738   for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i)
739   {
740      using namespace boost::math::policies;
741      typedef policy<discrete_quantile<boost::math::policies::real> > P1;
742      typedef policy<discrete_quantile<integer_round_down> > P2;
743      typedef policy<discrete_quantile<integer_round_up> > P3;
744      typedef policy<discrete_quantile<integer_round_outwards> > P4;
745      typedef policy<discrete_quantile<integer_round_inwards> > P5;
746      typedef policy<discrete_quantile<integer_round_nearest> > P6;
747      RealType tol = boost::math::tools::epsilon<RealType>() * 700;
748      if(!boost::is_floating_point<RealType>::value)
749         tol *= 10;  // no lanczos approximation implies less accuracy
750      //
751      // Check full real value first:
752      //
753      negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
754      RealType x = quantile(p1, negative_binomial_quantile_data[i][2]);
755      BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol);
756      x = quantile(complement(p1, negative_binomial_quantile_data[i][2]));
757      BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol);
758      //
759      // Now with round down to integer:
760      //
761      negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
762      x = quantile(p2, negative_binomial_quantile_data[i][2]);
763      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3]));
764      x = quantile(complement(p2, negative_binomial_quantile_data[i][2]));
765      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4]));
766      //
767      // Now with round up to integer:
768      //
769      negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
770      x = quantile(p3, negative_binomial_quantile_data[i][2]);
771      BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3]));
772      x = quantile(complement(p3, negative_binomial_quantile_data[i][2]));
773      BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4]));
774      //
775      // Now with round to integer "outside":
776      //
777      negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
778      x = quantile(p4, negative_binomial_quantile_data[i][2]);
779      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3]));
780      x = quantile(complement(p4, negative_binomial_quantile_data[i][2]));
781      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4]));
782      //
783      // Now with round to integer "inside":
784      //
785      negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
786      x = quantile(p5, negative_binomial_quantile_data[i][2]);
787      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3]));
788      x = quantile(complement(p5, negative_binomial_quantile_data[i][2]));
789      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4]));
790      //
791      // Now with round to nearest integer:
792      //
793      negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
794      x = quantile(p6, negative_binomial_quantile_data[i][2]);
795      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f));
796      x = quantile(complement(p6, negative_binomial_quantile_data[i][2]));
797      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f));
798   }
799 
800   return;
801 } // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
802 
BOOST_AUTO_TEST_CASE(test_main)803 BOOST_AUTO_TEST_CASE( test_main )
804 {
805   // Check that can generate negative_binomial distribution using the two convenience methods:
806   using namespace boost::math;
807    negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
808    negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
809 
810   // Basic sanity-check spot values.
811 
812   // Test some simple double only examples.
813   negative_binomial_distribution<double> my8dist(8., 0.25);
814   // 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
815   // Note: double values (matching the distribution definition) avoid the need for any casting.
816 
817   // Check accessor functions return exact values for double at least.
818   BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8));
819   BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));
820 
821   // (Parameter value, arbitrarily zero, only communicates the floating point type).
822 #ifdef TEST_FLOAT
823   test_spots(0.0F); // Test float.
824 #endif
825 #ifdef TEST_DOUBLE
826   test_spots(0.0); // Test double.
827 #endif
828 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
829 #ifdef TEST_LDOUBLE
830   test_spots(0.0L); // Test long double.
831 #endif
832 #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
833 #ifdef TEST_REAL_CONCEPT
834     test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
835 #endif
836   #endif
837 #else
838    std::cout << "<note>The long double tests have been disabled on this platform "
839       "either because the long double overloads of the usual math functions are "
840       "not available at all, or because they are too inaccurate for these tests "
841       "to pass.</note>" << std::endl;
842 #endif
843 
844 
845 } // BOOST_AUTO_TEST_CASE( test_main )
846 
847 /*
848 
849 Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe"
850 Running 1 test case...
851 Tolerance = 0.0119209%.
852 Tolerance 5 eps = 5.96046e-007%.
853 Tolerance = 2.22045e-011%.
854 Tolerance 5 eps = 1.11022e-015%.
855 Tolerance = 2.22045e-011%.
856 Tolerance 5 eps = 1.11022e-015%.
857 Tolerance = 2.22045e-011%.
858 Tolerance 5 eps = 1.11022e-015%.
859 *** No errors detected
860 
861 */
862