• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4<title>Tutorial</title>
5<link rel="stylesheet" href="../../../../../doc/src/boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
7<link rel="home" href="../index.html" title="Chapter&#160;1.&#160;Boost.Optional">
8<link rel="up" href="../index.html" title="Chapter&#160;1.&#160;Boost.Optional">
9<link rel="prev" href="quick_start.html" title="Quick Start">
10<link rel="next" href="synopsis.html" title="Synopsis">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="quick_start.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="boost_optional.tutorial"></a><a class="link" href="tutorial.html" title="Tutorial">Tutorial</a>
28</h2></div></div></div>
29<div class="toc"><dl class="toc">
30<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.motivation">Motivation</a></span></dt>
31<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview">Design Overview</a></span></dt>
32</dl></div>
33<div class="section">
34<div class="titlepage"><div><div><h3 class="title">
35<a name="boost_optional.tutorial.motivation"></a><a class="link" href="tutorial.html#boost_optional.tutorial.motivation" title="Motivation">Motivation</a>
36</h3></div></div></div>
37<p>
38        Consider these functions which should return a value but which might not
39        have a value to return:
40      </p>
41<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
42<li class="listitem">
43            (A) <code class="computeroutput"><span class="keyword">double</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">n</span> <span class="special">);</span></code>
44          </li>
45<li class="listitem">
46            (B) <code class="computeroutput"><span class="keyword">char</span> <span class="identifier">get_async_input</span><span class="special">();</span></code>
47          </li>
48<li class="listitem">
49            (C) <code class="computeroutput"><span class="identifier">point</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span></code>
50          </li>
51</ul></div>
52<p>
53        There are different approaches to the issue of not having a value to return.
54      </p>
55<p>
56        A typical approach is to consider the existence of a valid return value as
57        a postcondition, so that if the function cannot compute the value to return,
58        it has either undefined behavior (and can use assert in a debug build) or
59        uses a runtime check and throws an exception if the postcondition is violated.
60        This is a reasonable choice for example, for function (A), because the lack
61        of a proper return value is directly related to an invalid parameter (out
62        of domain argument), so it is appropriate to require the callee to supply
63        only parameters in a valid domain for execution to continue normally.
64      </p>
65<p>
66        However, function (B), because of its asynchronous nature, does not fail
67        just because it can't find a value to return; so it is incorrect to consider
68        such a situation an error and assert or throw an exception. This function
69        must return, and somehow, must tell the callee that it is not returning a
70        meaningful value.
71      </p>
72<p>
73        A similar situation occurs with function (C): it is conceptually an error
74        to ask a <span class="emphasis"><em>null-area</em></span> polygon to return a point inside
75        itself, but in many applications, it is just impractical for performance
76        reasons to treat this as an error (because detecting that the polygon has
77        no area might be too expensive to be required to be tested previously), and
78        either an arbitrary point (typically at infinity) is returned, or some efficient
79        way to tell the callee that there is no such point is used.
80      </p>
81<p>
82        There are various mechanisms to let functions communicate that the returned
83        value is not valid. One such mechanism, which is quite common since it has
84        zero or negligible overhead, is to use a special value which is reserved
85        to communicate this. Classical examples of such special values are <code class="computeroutput"><span class="identifier">EOF</span></code>, <code class="computeroutput"><span class="identifier">string</span><span class="special">::</span><span class="identifier">npos</span></code>,
86        points at infinity, etc...
87      </p>
88<p>
89        When those values exist, i.e. the return type can hold all meaningful values
90        <span class="emphasis"><em>plus</em></span> the <span class="emphasis"><em>signal</em></span> value, this mechanism
91        is quite appropriate and well known. Unfortunately, there are cases when
92        such values do not exist. In these cases, the usual alternative is either
93        to use a wider type, such as <code class="computeroutput"><span class="keyword">int</span></code>
94        in place of <code class="computeroutput"><span class="keyword">char</span></code>; or a compound
95        type, such as <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>.
96      </p>
97<p>
98        Returning a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>, thus attaching a boolean flag to the
99        result which indicates if the result is meaningful, has the advantage that
100        can be turned into a consistent idiom since the first element of the pair
101        can be whatever the function would conceptually return. For example, the
102        last two functions could have the following interface:
103      </p>
104<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">get_async_input</span><span class="special">();</span>
105<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
106</pre>
107<p>
108        These functions use a consistent interface for dealing with possibly nonexistent
109        results:
110      </p>
111<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">poly</span><span class="special">.</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
112<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">p</span><span class="special">.</span><span class="identifier">second</span> <span class="special">)</span>
113    <span class="identifier">flood_fill</span><span class="special">(</span><span class="identifier">p</span><span class="special">.</span><span class="identifier">first</span><span class="special">);</span>
114</pre>
115<p>
116        However, not only is this quite a burden syntactically, it is also error
117        prone since the user can easily use the function result (first element of
118        the pair) without ever checking if it has a valid value.
119      </p>
120<p>
121        Clearly, we need a better idiom.
122      </p>
123</div>
124<div class="section">
125<div class="titlepage"><div><div><h3 class="title">
126<a name="boost_optional.tutorial.design_overview"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview" title="Design Overview">Design Overview</a>
127</h3></div></div></div>
128<div class="toc"><dl class="toc">
129<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_models">The
130        models</a></span></dt>
131<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_semantics">The
132        semantics</a></span></dt>
133<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_interface">The
134        Interface</a></span></dt>
135</dl></div>
136<div class="section">
137<div class="titlepage"><div><div><h4 class="title">
138<a name="boost_optional.tutorial.design_overview.the_models"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_models" title="The models">The
139        models</a>
140</h4></div></div></div>
141<p>
142          In C++, we can <span class="emphasis"><em>declare</em></span> an object (a variable) of type
143          <code class="computeroutput"><span class="identifier">T</span></code>, and we can give this
144          variable an <span class="emphasis"><em>initial value</em></span> (through an <span class="emphasis"><em>initializer</em></span>.
145          (cf. 8.5)). When a declaration includes a non-empty initializer (an initial
146          value is given), it is said that the object has been initialized. If the
147          declaration uses an empty initializer (no initial value is given), and
148          neither default nor value initialization applies, it is said that the object
149          is <span class="bold"><strong>uninitialized</strong></span>. Its actual value exist
150          but has an <span class="emphasis"><em>indeterminate initial value</em></span> (cf. 8.5/11).
151          <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
152          intends to formalize the notion of initialization (or lack of it) allowing
153          a program to test whether an object has been initialized and stating that
154          access to the value of an uninitialized object is undefined behavior. That
155          is, when a variable is declared as <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> and no initial value is given, the
156          variable is <span class="emphasis"><em>formally</em></span> uninitialized. A formally uninitialized
157          optional object has conceptually no value at all and this situation can
158          be tested at runtime. It is formally <span class="emphasis"><em>undefined behavior</em></span>
159          to try to access the value of an uninitialized optional. An uninitialized
160          optional can be assigned a value, in which case its initialization state
161          changes to initialized. Furthermore, given the formal treatment of initialization
162          states in optional objects, it is even possible to reset an optional to
163          <span class="emphasis"><em>uninitialized</em></span>.
164        </p>
165<p>
166          In C++ there is no formal notion of uninitialized objects, which means
167          that objects always have an initial value even if indeterminate. As discussed
168          on the previous section, this has a drawback because you need additional
169          information to tell if an object has been effectively initialized. One
170          of the typical ways in which this has been historically dealt with is via
171          a special value: <code class="computeroutput"><span class="identifier">EOF</span></code>,
172          <code class="computeroutput"><span class="identifier">npos</span></code>, -1, etc... This is
173          equivalent to adding the special value to the set of possible values of
174          a given type. This super set of <code class="computeroutput"><span class="identifier">T</span></code>
175          plus some <span class="emphasis"><em>nil_t</em></span>&#8212;where <code class="computeroutput"><span class="identifier">nil_t</span></code>
176          is some stateless POD&#8212;can be modeled in modern languages as a <span class="bold"><strong>discriminated union</strong></span> of T and nil_t. Discriminated
177          unions are often called <span class="emphasis"><em>variants</em></span>. A variant has a
178          <span class="emphasis"><em>current type</em></span>, which in our case is either <code class="computeroutput"><span class="identifier">T</span></code> or <code class="computeroutput"><span class="identifier">nil_t</span></code>.
179          Using the <a href="../../../../variant/index.html" target="_top">Boost.Variant</a>
180          library, this model can be implemented in terms of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code>. There is precedent for a discriminated
181          union as a model for an optional value: the <a href="http://www.haskell.org/" target="_top">Haskell</a>
182          <span class="bold"><strong>Maybe</strong></span> built-in type constructor. Thus,
183          a discriminated union <code class="computeroutput"><span class="identifier">T</span><span class="special">+</span><span class="identifier">nil_t</span></code>
184          serves as a conceptual foundation.
185        </p>
186<p>
187          A <code class="computeroutput"><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code> follows naturally from the traditional
188          idiom of extending the range of possible values adding an additional sentinel
189          value with the special meaning of <span class="emphasis"><em>Nothing</em></span>. However,
190          this additional <span class="emphasis"><em>Nothing</em></span> value is largely irrelevant
191          for our purpose since our goal is to formalize the notion of uninitialized
192          objects and, while a special extended value can be used to convey that
193          meaning, it is not strictly necessary in order to do so.
194        </p>
195<p>
196          The observation made in the last paragraph about the irrelevant nature
197          of the additional <code class="computeroutput"><span class="identifier">nil_t</span></code>
198          with respect to <span class="underline">purpose</span> of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
199          suggests an alternative model: a <span class="emphasis"><em>container</em></span> that either
200          has a value of <code class="computeroutput"><span class="identifier">T</span></code> or nothing.
201        </p>
202<p>
203          As of this writing I don't know of any precedent for a variable-size fixed-capacity
204          (of 1) stack-based container model for optional values, yet I believe this
205          is the consequence of the lack of practical implementations of such a container
206          rather than an inherent shortcoming of the container model.
207        </p>
208<p>
209          In any event, both the discriminated-union or the single-element container
210          models serve as a conceptual ground for a class representing optional&#8212;i.e.
211          possibly uninitialized&#8212;objects. For instance, these models show the
212          <span class="emphasis"><em>exact</em></span> semantics required for a wrapper of optional
213          values:
214        </p>
215<p>
216          Discriminated-union:
217        </p>
218<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
219<li class="listitem">
220              <span class="bold"><strong>deep-copy</strong></span> semantics: copies of the
221              variant implies copies of the value.
222            </li>
223<li class="listitem">
224              <span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
225              between variants matches both current types and values
226            </li>
227<li class="listitem">
228              If the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>,
229              it is modeling an <span class="emphasis"><em>initialized</em></span> optional.
230            </li>
231<li class="listitem">
232              If the variant's current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
233              it is modeling an <span class="emphasis"><em>uninitialized</em></span> optional.
234            </li>
235<li class="listitem">
236              Testing if the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>
237              models testing if the optional is initialized
238            </li>
239<li class="listitem">
240              Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code>
241              from a variant when its current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
242              models the undefined behavior of trying to access the value of an uninitialized
243              optional
244            </li>
245</ul></div>
246<p>
247          Single-element container:
248        </p>
249<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
250<li class="listitem">
251              <span class="bold"><strong>deep-copy</strong></span> semantics: copies of the
252              container implies copies of the value.
253            </li>
254<li class="listitem">
255              <span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
256              between containers compare container size and if match, contained value
257            </li>
258<li class="listitem">
259              If the container is not empty (contains an object of type <code class="computeroutput"><span class="identifier">T</span></code>), it is modeling an <span class="emphasis"><em>initialized</em></span>
260              optional.
261            </li>
262<li class="listitem">
263              If the container is empty, it is modeling an <span class="emphasis"><em>uninitialized</em></span>
264              optional.
265            </li>
266<li class="listitem">
267              Testing if the container is empty models testing if the optional is
268              initialized
269            </li>
270<li class="listitem">
271              Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code>
272              from an empty container models the undefined behavior of trying to
273              access the value of an uninitialized optional
274            </li>
275</ul></div>
276</div>
277<div class="section">
278<div class="titlepage"><div><div><h4 class="title">
279<a name="boost_optional.tutorial.design_overview.the_semantics"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_semantics" title="The semantics">The
280        semantics</a>
281</h4></div></div></div>
282<p>
283          Objects of type <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> are intended to be used in places where
284          objects of type <code class="computeroutput"><span class="identifier">T</span></code> would
285          but which might be uninitialized. Hence, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>'s purpose is to formalize the additional
286          possibly uninitialized state. From the perspective of this role, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
287          can have the same operational semantics of <code class="computeroutput"><span class="identifier">T</span></code>
288          plus the additional semantics corresponding to this special state. As such,
289          <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
290          could be thought of as a <span class="emphasis"><em>supertype</em></span> of <code class="computeroutput"><span class="identifier">T</span></code>. Of course, we can't do that in C++,
291          so we need to compose the desired semantics using a different mechanism.
292          Doing it the other way around, that is, making <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> a <span class="emphasis"><em>subtype</em></span> of
293          <code class="computeroutput"><span class="identifier">T</span></code> is not only conceptually
294          wrong but also impractical: it is not allowed to derive from a non-class
295          type, such as a built-in type.
296        </p>
297<p>
298          We can draw from the purpose of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> the required basic semantics:
299        </p>
300<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
301<li class="listitem">
302              <span class="bold"><strong>Default Construction:</strong></span> To introduce
303              a formally uninitialized wrapped object.
304            </li>
305<li class="listitem">
306              <span class="bold"><strong>Direct Value Construction via copy:</strong></span>
307              To introduce a formally initialized wrapped object whose value is obtained
308              as a copy of some object.
309            </li>
310<li class="listitem">
311              <span class="bold"><strong>Deep Copy Construction:</strong></span> To obtain
312              a new yet equivalent wrapped object.
313            </li>
314<li class="listitem">
315              <span class="bold"><strong>Direct Value Assignment (upon initialized):</strong></span>
316              To assign a value to the wrapped object.
317            </li>
318<li class="listitem">
319              <span class="bold"><strong>Direct Value Assignment (upon uninitialized):</strong></span>
320              To initialize the wrapped object with a value obtained as a copy of
321              some object.
322            </li>
323<li class="listitem">
324              <span class="bold"><strong>Assignment (upon initialized):</strong></span> To
325              assign to the wrapped object the value of another wrapped object.
326            </li>
327<li class="listitem">
328              <span class="bold"><strong>Assignment (upon uninitialized):</strong></span> To
329              initialize the wrapped object with value of another wrapped object.
330            </li>
331<li class="listitem">
332              <span class="bold"><strong>Deep Relational Operations (when supported by
333              the type T):</strong></span> To compare wrapped object values taking into
334              account the presence of uninitialized states.
335            </li>
336<li class="listitem">
337              <span class="bold"><strong>Value access:</strong></span> To unwrap the wrapped
338              object.
339            </li>
340<li class="listitem">
341              <span class="bold"><strong>Initialization state query:</strong></span> To determine
342              if the object is formally initialized or not.
343            </li>
344<li class="listitem">
345              <span class="bold"><strong>Swap:</strong></span> To exchange wrapped objects.
346              (with whatever exception safety guarantees are provided by <code class="computeroutput"><span class="identifier">T</span></code>'s swap).
347            </li>
348<li class="listitem">
349              <span class="bold"><strong>De-initialization:</strong></span> To release the
350              wrapped object (if any) and leave the wrapper in the uninitialized
351              state.
352            </li>
353</ul></div>
354<p>
355          Additional operations are useful, such as converting constructors and converting
356          assignments, in-place construction and assignment, and safe value access
357          via a pointer to the wrapped object or null.
358        </p>
359</div>
360<div class="section">
361<div class="titlepage"><div><div><h4 class="title">
362<a name="boost_optional.tutorial.design_overview.the_interface"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface" title="The Interface">The
363        Interface</a>
364</h4></div></div></div>
365<p>
366          Since the purpose of optional is to allow us to use objects with a formal
367          uninitialized additional state, the interface could try to follow the interface
368          of the underlying <code class="computeroutput"><span class="identifier">T</span></code> type
369          as much as possible. In order to choose the proper degree of adoption of
370          the native <code class="computeroutput"><span class="identifier">T</span></code> interface,
371          the following must be noted: Even if all the operations supported by an
372          instance of type <code class="computeroutput"><span class="identifier">T</span></code> are
373          defined for the entire range of values for such a type, an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
374          extends such a set of values with a new value for which most (otherwise
375          valid) operations are not defined in terms of <code class="computeroutput"><span class="identifier">T</span></code>.
376        </p>
377<p>
378          Furthermore, since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> itself is merely a <code class="computeroutput"><span class="identifier">T</span></code>
379          wrapper (modeling a <code class="computeroutput"><span class="identifier">T</span></code> supertype),
380          any attempt to define such operations upon uninitialized optionals will
381          be totally artificial w.r.t. <code class="computeroutput"><span class="identifier">T</span></code>.
382        </p>
383<p>
384          This library chooses an interface which follows from <code class="computeroutput"><span class="identifier">T</span></code>'s
385          interface only for those operations which are well defined (w.r.t the type
386          <code class="computeroutput"><span class="identifier">T</span></code>) even if any of the operands
387          are uninitialized. These operations include: construction, copy-construction,
388          assignment, swap and relational operations.
389        </p>
390<p>
391          For the value access operations, which are undefined (w.r.t the type <code class="computeroutput"><span class="identifier">T</span></code>) when the operand is uninitialized,
392          a different interface is chosen (which will be explained next).
393        </p>
394<p>
395          Also, the presence of the possibly uninitialized state requires additional
396          operations not provided by <code class="computeroutput"><span class="identifier">T</span></code>
397          itself which are supported by a special interface.
398        </p>
399<h6>
400<a name="boost_optional.tutorial.design_overview.the_interface.h0"></a>
401          <span class="phrase"><a name="boost_optional.tutorial.design_overview.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_"></a></span><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_">Lexically-hinted
402          Value Access in the presence of possibly untitialized optional objects:
403          The operators * and -&gt;</a>
404        </h6>
405<p>
406          A relevant feature of a pointer is that it can have a <span class="bold"><strong>null
407          pointer value</strong></span>. This is a <span class="emphasis"><em>special</em></span> value
408          which is used to indicate that the pointer is not referring to any object
409          at all. In other words, null pointer values convey the notion of nonexistent
410          objects.
411        </p>
412<p>
413          This meaning of the null pointer value allowed pointers to became a <span class="emphasis"><em>de
414          facto</em></span> standard for handling optional objects because all you
415          have to do to refer to a value which you don't really have is to use a
416          null pointer value of the appropriate type. Pointers have been used for
417          decades&#8212;from the days of C APIs to modern C++ libraries&#8212;to <span class="emphasis"><em>refer</em></span>
418          to optional (that is, possibly nonexistent) objects; particularly as optional
419          arguments to a function, but also quite often as optional data members.
420        </p>
421<p>
422          The possible presence of a null pointer value makes the operations that
423          access the pointee's value possibly undefined, therefore, expressions which
424          use dereference and access operators, such as: <code class="computeroutput"><span class="special">(</span>
425          <span class="special">*</span><span class="identifier">p</span>
426          <span class="special">=</span> <span class="number">2</span> <span class="special">)</span></code> and <code class="computeroutput"><span class="special">(</span>
427          <span class="identifier">p</span><span class="special">-&gt;</span><span class="identifier">foo</span><span class="special">()</span> <span class="special">)</span></code>, implicitly convey the notion of optionality,
428          and this information is tied to the <span class="emphasis"><em>syntax</em></span> of the
429          expressions. That is, the presence of operators <code class="computeroutput"><span class="special">*</span></code>
430          and <code class="computeroutput"><span class="special">-&gt;</span></code> tell by themselves
431          &#8212;without any additional context&#8212; that the expression will be undefined
432          unless the implied pointee actually exist.
433        </p>
434<p>
435          Such a <span class="emphasis"><em>de facto</em></span> idiom for referring to optional objects
436          can be formalized in the form of a concept: the <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a>
437          concept. This concept captures the syntactic usage of operators <code class="computeroutput"><span class="special">*</span></code>, <code class="computeroutput"><span class="special">-&gt;</span></code>
438          and contextual conversion to <code class="computeroutput"><span class="keyword">bool</span></code>
439          to convey the notion of optionality.
440        </p>
441<p>
442          However, pointers are good to <span class="underline">refer</span>
443          to optional objects, but not particularly good to handle the optional objects
444          in all other respects, such as initializing or moving/copying them. The
445          problem resides in the shallow-copy of pointer semantics: if you need to
446          effectively move or copy the object, pointers alone are not enough. The
447          problem is that copies of pointers do not imply copies of pointees. For
448          example, as was discussed in the motivation, pointers alone cannot be used
449          to return optional objects from a function because the object must move
450          outside from the function and into the caller's context.
451        </p>
452<p>
453          A solution to the shallow-copy problem that is often used is to resort
454          to dynamic allocation and use a smart pointer to automatically handle the
455          details of this. For example, if a function is to optionally return an
456          object <code class="computeroutput"><span class="identifier">X</span></code>, it can use <code class="computeroutput"><span class="identifier">shared_ptr</span><span class="special">&lt;</span><span class="identifier">X</span><span class="special">&gt;</span></code>
457          as the return value. However, this requires dynamic allocation of <code class="computeroutput"><span class="identifier">X</span></code>. If <code class="computeroutput"><span class="identifier">X</span></code>
458          is a built-in or small POD, this technique is very poor in terms of required
459          resources. Optional objects are essentially values so it is very convenient
460          to be able to use automatic storage and deep-copy semantics to manipulate
461          optional values just as we do with ordinary values. Pointers do not have
462          this semantics, so are inappropriate for the initialization and transport
463          of optional values, yet are quite convenient for handling the access to
464          the possible undefined value because of the idiomatic aid present in the
465          <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a>
466          concept incarnated by pointers.
467        </p>
468<h6>
469<a name="boost_optional.tutorial.design_overview.the_interface.h1"></a>
470          <span class="phrase"><a name="boost_optional.tutorial.design_overview.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee"></a></span><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee">Optional&lt;T&gt;
471          as a model of OptionalPointee</a>
472        </h6>
473<p>
474          For value access operations <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> uses operators <code class="computeroutput"><span class="special">*</span></code>
475          and <code class="computeroutput"><span class="special">-&gt;</span></code> to lexically warn
476          about the possibly uninitialized state appealing to the familiar pointer
477          semantics w.r.t. to null pointers.
478        </p>
479<div class="warning"><table border="0" summary="Warning">
480<tr>
481<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
482<th align="left">Warning</th>
483</tr>
484<tr><td align="left" valign="top"><p>
485            However, it is particularly important to note that <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> objects are not pointers. <span class="underline"><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> is not, and does not model, a
486            pointer</span>.
487          </p></td></tr>
488</table></div>
489<p>
490          For instance, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> does not have shallow-copy so does
491          not alias: two different optionals never refer to the <span class="emphasis"><em>same</em></span>
492          value unless <code class="computeroutput"><span class="identifier">T</span></code> itself is
493          a reference (but may have <span class="emphasis"><em>equivalent</em></span> values). The
494          difference between an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> and a pointer must be kept in mind,
495          particularly because the semantics of relational operators are different:
496          since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
497          is a value-wrapper, relational operators are deep: they compare optional
498          values; but relational operators for pointers are shallow: they do not
499          compare pointee values. As a result, you might be able to replace <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
500          by <code class="computeroutput"><span class="identifier">T</span><span class="special">*</span></code>
501          on some situations but not always. Specifically, on generic code written
502          for both, you cannot use relational operators directly, and must use the
503          template functions <a href="../../../../utility/OptionalPointee.html#equal" target="_top"><code class="computeroutput"><span class="identifier">equal_pointees</span><span class="special">()</span></code></a>
504          and <a href="../../../../utility/OptionalPointee.html#less" target="_top"><code class="computeroutput"><span class="identifier">less_pointees</span><span class="special">()</span></code></a>
505          instead.
506        </p>
507</div>
508</div>
509</div>
510<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
511<td align="left"></td>
512<td align="right"><div class="copyright-footer">Copyright &#169; 2003-2007 Fernando Luis Cacciola Carballal<br>Copyright &#169; 2014 Andrzej Krzemie&#324;ski<p>
513        Distributed under the Boost Software License, Version 1.0. (See accompanying
514        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
515      </p>
516</div></td>
517</tr></table>
518<hr>
519<div class="spirit-nav">
520<a accesskey="p" href="quick_start.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
521</div>
522</body>
523</html>
524