• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2
3<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
4  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
5<html xmlns="http://www.w3.org/1999/xhtml">
6  <head>
7    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
8
9    <title>How to access data using raw pointers - Boost.Python NumPy extension 1.0 documentation</title>
10    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
11    <link rel="stylesheet" href="../_static/style.css" type="text/css" />
12    <script type="text/javascript">
13      var DOCUMENTATION_OPTIONS = {
14          URL_ROOT:    '../',
15          VERSION:     '1.0',
16          COLLAPSE_MODINDEX: false,
17          FILE_SUFFIX: '.html'
18      };
19    </script>
20    <script type="text/javascript" src="../_static/jquery.js"></script>
21    <script type="text/javascript" src="../_static/underscore.js"></script>
22    <script type="text/javascript" src="../_static/doctools.js"></script>
23    <link rel="index" title="Index" href="../genindex.html" />
24    <link rel="search" title="Search" href="../search.html" />
25    <link rel="top" title="Boost.Python NumPy extension 1.0 documentation" href="../index.html" />
26    <link rel="up" title="Boost.Python NumPy extension Tutorial" href="index.html" />
27    <link rel="next" title="Boost.Python NumPy extension Reference" href="../reference/index.html" />
28    <link rel="prev" title="Ufuncs" href="ufunc.html" />
29  </head>
30  <body>
31    <div class="header">
32    <table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
33    "header">
34      <tr>
35        <td valign="top" width="300">
36          <h3><a href="../index.html"><img
37          alt="C++ Boost" src="../_static/bpl.png" border="0"></a></h3>
38        </td>
39
40        <td >
41          <h1 align="center"><a href="../index.html">(NumPy)</a></h1>
42<!--          <h2 align="center">CallPolicies Concept</h2>-->
43        </td>
44	<td>
45      <div id="searchbox" style="display: none">
46        <form class="search" action="../search.html" method="get">
47          <input type="text" name="q" size="18" />
48          <input type="submit" value="Search" />
49          <input type="hidden" name="check_keywords" value="yes" />
50          <input type="hidden" name="area" value="default" />
51        </form>
52      </div>
53      <script type="text/javascript">$('#searchbox').show(0);</script>
54	</td>
55      </tr>
56    </table>
57    </div>
58    <hr/>
59    <div class="content">
60    <div class="navbar" style="text-align:right;">
61
62
63      <a class="prev" title="Ufuncs" href="ufunc.html"><img src="../_static/prev.png" alt="prev"/></a>
64      <a class="up" title="Boost.Python NumPy extension Tutorial" href="index.html"><img src="../_static/up.png" alt="up"/></a>
65      <a class="next" title="Boost.Python NumPy extension Reference" href="../reference/index.html"><img src="../_static/next.png" alt="next"/></a>
66
67    </div>
68
69  <div class="section" id="how-to-access-data-using-raw-pointers">
70<h1>How to access data using raw pointers</h1>
71<p>One of the advantages of the ndarray wrapper is that the same data can be used in both Python and C++ and changes can be made to reflect at both ends.
72The from_data method makes this possible.</p>
73<p>Like before, first get the necessary headers, setup the namespaces and initialize the Python runtime and numpy module:</p>
74<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/python/numpy.hpp&gt;</span><span class="cp"></span>
75<span class="cp">#include</span> <span class="cpf">&lt;iostream&gt;</span><span class="cp"></span>
76
77<span class="k">namespace</span> <span class="n">p</span> <span class="o">=</span> <span class="n">boost</span><span class="o">::</span><span class="n">python</span><span class="p">;</span>
78<span class="k">namespace</span> <span class="n">np</span> <span class="o">=</span> <span class="n">boost</span><span class="o">::</span><span class="n">python</span><span class="o">::</span><span class="n">numpy</span><span class="p">;</span>
79
80<span class="kt">int</span> <span class="nf">main</span><span class="p">(</span><span class="kt">int</span> <span class="n">argc</span><span class="p">,</span> <span class="kt">char</span> <span class="o">**</span><span class="n">argv</span><span class="p">)</span>
81<span class="p">{</span>
82  <span class="n">Py_Initialize</span><span class="p">();</span>
83  <span class="n">np</span><span class="o">::</span><span class="n">initialize</span><span class="p">();</span>
84</pre></div>
85</div>
86<p>Create an array in C++ , and pass the pointer to it to the from_data method to create an ndarray:</p>
87<div class="highlight-c++"><div class="highlight"><pre><span class="kt">int</span> <span class="n">arr</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">};</span>
88<span class="n">np</span><span class="o">::</span><span class="n">ndarray</span> <span class="n">py_array</span> <span class="o">=</span> <span class="n">np</span><span class="o">::</span><span class="n">from_data</span><span class="p">(</span><span class="n">arr</span><span class="p">,</span> <span class="n">np</span><span class="o">::</span><span class="n">dtype</span><span class="o">::</span><span class="n">get_builtin</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(),</span>
89                                     <span class="n">p</span><span class="o">::</span><span class="n">make_tuple</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span>
90                                     <span class="n">p</span><span class="o">::</span><span class="n">make_tuple</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">)),</span>
91                                     <span class="n">p</span><span class="o">::</span><span class="n">object</span><span class="p">());</span>
92</pre></div>
93</div>
94<p>Print the source C++ array, as well as the ndarray, to check if they are the same:</p>
95<div class="highlight-c++"><div class="highlight"><pre><span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;C++ array :&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
96<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">j</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="n">j</span><span class="o">&lt;</span><span class="mi">4</span><span class="p">;</span><span class="n">j</span><span class="o">++</span><span class="p">)</span>
97<span class="p">{</span>
98  <span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">arr</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&lt;&lt;</span> <span class="sc">&#39; &#39;</span><span class="p">;</span>
99<span class="p">}</span>
100<span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span>
101          <span class="o">&lt;&lt;</span> <span class="s">&quot;Python ndarray :&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">p</span><span class="o">::</span><span class="n">extract</span><span class="o">&lt;</span><span class="kt">char</span> <span class="k">const</span> <span class="o">*&gt;</span><span class="p">(</span><span class="n">p</span><span class="o">::</span><span class="n">str</span><span class="p">(</span><span class="n">py_array</span><span class="p">))</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
102</pre></div>
103</div>
104<p>Now, change an element in the Python ndarray, and check if the value changed correspondingly in the source C++ array:</p>
105<div class="highlight-c++"><div class="highlight"><pre><span class="n">py_array</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span>
106<span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;Is the change reflected in the C++ array used to create the ndarray ? &quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
107<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">j</span> <span class="o">&lt;</span> <span class="mi">5</span><span class="p">;</span> <span class="n">j</span><span class="o">++</span><span class="p">)</span>
108<span class="p">{</span>
109  <span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">arr</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&lt;&lt;</span> <span class="sc">&#39; &#39;</span><span class="p">;</span>
110<span class="p">}</span>
111</pre></div>
112</div>
113<p>Next, change an element of the source C++ array and see if it is reflected in the Python ndarray:</p>
114<div class="highlight-c++"><div class="highlight"><pre>  <span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">8</span><span class="p">;</span>
115  <span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span>
116            <span class="o">&lt;&lt;</span> <span class="s">&quot;Is the change reflected in the Python ndarray ?&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span>
117            <span class="o">&lt;&lt;</span> <span class="n">p</span><span class="o">::</span><span class="n">extract</span><span class="o">&lt;</span><span class="kt">char</span> <span class="k">const</span> <span class="o">*&gt;</span><span class="p">(</span><span class="n">p</span><span class="o">::</span><span class="n">str</span><span class="p">(</span><span class="n">py_array</span><span class="p">))</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
118<span class="p">}</span>
119</pre></div>
120</div>
121<p>As we can see, the changes are reflected across the ends. This happens because the from_data method passes the C++ array by reference to create the ndarray, and thus uses the same locations for storing data.</p>
122</div>
123
124
125    <div class="navbar" style="text-align:right;">
126
127
128      <a class="prev" title="Ufuncs" href="ufunc.html"><img src="../_static/prev.png" alt="prev"/></a>
129      <a class="up" title="Boost.Python NumPy extension Tutorial" href="index.html"><img src="../_static/up.png" alt="up"/></a>
130      <a class="next" title="Boost.Python NumPy extension Reference" href="../reference/index.html"><img src="../_static/next.png" alt="next"/></a>
131
132    </div>
133    </div>
134  </body>
135</html>