1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkPath.h"
9 #include "include/private/SkTo.h"
10 #include "src/core/SkAnalyticEdge.h"
11 #include "src/core/SkEdge.h"
12 #include "src/core/SkEdgeBuilder.h"
13 #include "src/core/SkEdgeClipper.h"
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkLineClipper.h"
16 #include "src/core/SkPathPriv.h"
17 #include "src/core/SkSafeMath.h"
18
combineVertical(const SkEdge * edge,SkEdge * last)19 SkEdgeBuilder::Combine SkBasicEdgeBuilder::combineVertical(const SkEdge* edge, SkEdge* last) {
20 if (last->fCurveCount || last->fDX || edge->fX != last->fX) {
21 return kNo_Combine;
22 }
23 if (edge->fWinding == last->fWinding) {
24 if (edge->fLastY + 1 == last->fFirstY) {
25 last->fFirstY = edge->fFirstY;
26 return kPartial_Combine;
27 }
28 if (edge->fFirstY == last->fLastY + 1) {
29 last->fLastY = edge->fLastY;
30 return kPartial_Combine;
31 }
32 return kNo_Combine;
33 }
34 if (edge->fFirstY == last->fFirstY) {
35 if (edge->fLastY == last->fLastY) {
36 return kTotal_Combine;
37 }
38 if (edge->fLastY < last->fLastY) {
39 last->fFirstY = edge->fLastY + 1;
40 return kPartial_Combine;
41 }
42 last->fFirstY = last->fLastY + 1;
43 last->fLastY = edge->fLastY;
44 last->fWinding = edge->fWinding;
45 return kPartial_Combine;
46 }
47 if (edge->fLastY == last->fLastY) {
48 if (edge->fFirstY > last->fFirstY) {
49 last->fLastY = edge->fFirstY - 1;
50 return kPartial_Combine;
51 }
52 last->fLastY = last->fFirstY - 1;
53 last->fFirstY = edge->fFirstY;
54 last->fWinding = edge->fWinding;
55 return kPartial_Combine;
56 }
57 return kNo_Combine;
58 }
59
combineVertical(const SkAnalyticEdge * edge,SkAnalyticEdge * last)60 SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::combineVertical(const SkAnalyticEdge* edge,
61 SkAnalyticEdge* last) {
62 auto approximately_equal = [](SkFixed a, SkFixed b) {
63 return SkAbs32(a - b) < 0x100;
64 };
65
66 if (last->fCurveCount || last->fDX || edge->fX != last->fX) {
67 return kNo_Combine;
68 }
69 if (edge->fWinding == last->fWinding) {
70 if (edge->fLowerY == last->fUpperY) {
71 last->fUpperY = edge->fUpperY;
72 last->fY = last->fUpperY;
73 return kPartial_Combine;
74 }
75 if (approximately_equal(edge->fUpperY, last->fLowerY)) {
76 last->fLowerY = edge->fLowerY;
77 return kPartial_Combine;
78 }
79 return kNo_Combine;
80 }
81 if (approximately_equal(edge->fUpperY, last->fUpperY)) {
82 if (approximately_equal(edge->fLowerY, last->fLowerY)) {
83 return kTotal_Combine;
84 }
85 if (edge->fLowerY < last->fLowerY) {
86 last->fUpperY = edge->fLowerY;
87 last->fY = last->fUpperY;
88 return kPartial_Combine;
89 }
90 last->fUpperY = last->fLowerY;
91 last->fY = last->fUpperY;
92 last->fLowerY = edge->fLowerY;
93 last->fWinding = edge->fWinding;
94 return kPartial_Combine;
95 }
96 if (approximately_equal(edge->fLowerY, last->fLowerY)) {
97 if (edge->fUpperY > last->fUpperY) {
98 last->fLowerY = edge->fUpperY;
99 return kPartial_Combine;
100 }
101 last->fLowerY = last->fUpperY;
102 last->fUpperY = edge->fUpperY;
103 last->fY = last->fUpperY;
104 last->fWinding = edge->fWinding;
105 return kPartial_Combine;
106 }
107 return kNo_Combine;
108 }
109
110 template <typename Edge>
is_vertical(const Edge * edge)111 static bool is_vertical(const Edge* edge) {
112 return edge->fDX == 0
113 && edge->fCurveCount == 0;
114 }
115
116 // TODO: we can deallocate the edge if edge->setFoo() fails
117 // or when we don't use it (kPartial_Combine or kTotal_Combine).
118
addLine(const SkPoint pts[])119 void SkBasicEdgeBuilder::addLine(const SkPoint pts[]) {
120 SkEdge* edge = fAlloc.make<SkEdge>();
121 if (edge->setLine(pts[0], pts[1], fClipShift)) {
122 Combine combine = is_vertical(edge) && !fList.empty()
123 ? this->combineVertical(edge, (SkEdge*)fList.top())
124 : kNo_Combine;
125
126 switch (combine) {
127 case kTotal_Combine: fList.pop(); break;
128 case kPartial_Combine: break;
129 case kNo_Combine: fList.push_back(edge); break;
130 }
131 }
132 }
addLine(const SkPoint pts[])133 void SkAnalyticEdgeBuilder::addLine(const SkPoint pts[]) {
134 SkAnalyticEdge* edge = fAlloc.make<SkAnalyticEdge>();
135 if (edge->setLine(pts[0], pts[1])) {
136
137 Combine combine = is_vertical(edge) && !fList.empty()
138 ? this->combineVertical(edge, (SkAnalyticEdge*)fList.top())
139 : kNo_Combine;
140
141 switch (combine) {
142 case kTotal_Combine: fList.pop(); break;
143 case kPartial_Combine: break;
144 case kNo_Combine: fList.push_back(edge); break;
145 }
146 }
147 }
addQuad(const SkPoint pts[])148 void SkBasicEdgeBuilder::addQuad(const SkPoint pts[]) {
149 SkQuadraticEdge* edge = fAlloc.make<SkQuadraticEdge>();
150 if (edge->setQuadratic(pts, fClipShift)) {
151 fList.push_back(edge);
152 }
153 }
addQuad(const SkPoint pts[])154 void SkAnalyticEdgeBuilder::addQuad(const SkPoint pts[]) {
155 SkAnalyticQuadraticEdge* edge = fAlloc.make<SkAnalyticQuadraticEdge>();
156 if (edge->setQuadratic(pts)) {
157 fList.push_back(edge);
158 }
159 }
160
addCubic(const SkPoint pts[])161 void SkBasicEdgeBuilder::addCubic(const SkPoint pts[]) {
162 SkCubicEdge* edge = fAlloc.make<SkCubicEdge>();
163 if (edge->setCubic(pts, fClipShift)) {
164 fList.push_back(edge);
165 }
166 }
addCubic(const SkPoint pts[])167 void SkAnalyticEdgeBuilder::addCubic(const SkPoint pts[]) {
168 SkAnalyticCubicEdge* edge = fAlloc.make<SkAnalyticCubicEdge>();
169 if (edge->setCubic(pts)) {
170 fList.push_back(edge);
171 }
172 }
173
174 // TODO: merge addLine() and addPolyLine()?
175
addPolyLine(SkPoint pts[],char * arg_edge,char ** arg_edgePtr)176 SkEdgeBuilder::Combine SkBasicEdgeBuilder::addPolyLine(SkPoint pts[],
177 char* arg_edge, char** arg_edgePtr) {
178 auto edge = (SkEdge*) arg_edge;
179 auto edgePtr = (SkEdge**)arg_edgePtr;
180
181 if (edge->setLine(pts[0], pts[1], fClipShift)) {
182 return is_vertical(edge) && edgePtr > (SkEdge**)fEdgeList
183 ? this->combineVertical(edge, edgePtr[-1])
184 : kNo_Combine;
185 }
186 return SkEdgeBuilder::kPartial_Combine; // A convenient lie. Same do-nothing behavior.
187 }
addPolyLine(SkPoint pts[],char * arg_edge,char ** arg_edgePtr)188 SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::addPolyLine(SkPoint pts[],
189 char* arg_edge, char** arg_edgePtr) {
190 auto edge = (SkAnalyticEdge*) arg_edge;
191 auto edgePtr = (SkAnalyticEdge**)arg_edgePtr;
192
193 if (edge->setLine(pts[0], pts[1])) {
194 return is_vertical(edge) && edgePtr > (SkAnalyticEdge**)fEdgeList
195 ? this->combineVertical(edge, edgePtr[-1])
196 : kNo_Combine;
197 }
198 return SkEdgeBuilder::kPartial_Combine; // As above.
199 }
200
recoverClip(const SkIRect & src) const201 SkRect SkBasicEdgeBuilder::recoverClip(const SkIRect& src) const {
202 return { SkIntToScalar(src.fLeft >> fClipShift),
203 SkIntToScalar(src.fTop >> fClipShift),
204 SkIntToScalar(src.fRight >> fClipShift),
205 SkIntToScalar(src.fBottom >> fClipShift), };
206 }
recoverClip(const SkIRect & src) const207 SkRect SkAnalyticEdgeBuilder::recoverClip(const SkIRect& src) const {
208 return SkRect::Make(src);
209 }
210
allocEdges(size_t n,size_t * size)211 char* SkBasicEdgeBuilder::allocEdges(size_t n, size_t* size) {
212 *size = sizeof(SkEdge);
213 return (char*)fAlloc.makeArrayDefault<SkEdge>(n);
214 }
allocEdges(size_t n,size_t * size)215 char* SkAnalyticEdgeBuilder::allocEdges(size_t n, size_t* size) {
216 *size = sizeof(SkAnalyticEdge);
217 return (char*)fAlloc.makeArrayDefault<SkAnalyticEdge>(n);
218 }
219
220 // TODO: maybe get rid of buildPoly() entirely?
buildPoly(const SkPath & path,const SkIRect * iclip,bool canCullToTheRight)221 int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canCullToTheRight) {
222 SkPath::Iter iter(path, true);
223 SkPoint pts[4];
224 SkPath::Verb verb;
225
226 size_t maxEdgeCount = path.countPoints();
227 if (iclip) {
228 // clipping can turn 1 line into (up to) kMaxClippedLineSegments, since
229 // we turn portions that are clipped out on the left/right into vertical
230 // segments.
231 SkSafeMath safe;
232 maxEdgeCount = safe.mul(maxEdgeCount, SkLineClipper::kMaxClippedLineSegments);
233 if (!safe) {
234 return 0;
235 }
236 }
237
238 size_t edgeSize;
239 char* edge = this->allocEdges(maxEdgeCount, &edgeSize);
240
241 SkDEBUGCODE(char* edgeStart = edge);
242 char** edgePtr = fAlloc.makeArrayDefault<char*>(maxEdgeCount);
243 fEdgeList = (void**)edgePtr;
244
245 if (iclip) {
246 SkRect clip = this->recoverClip(*iclip);
247
248 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
249 switch (verb) {
250 case SkPath::kMove_Verb:
251 case SkPath::kClose_Verb:
252 // we ignore these, and just get the whole segment from
253 // the corresponding line/quad/cubic verbs
254 break;
255 case SkPath::kLine_Verb: {
256 SkPoint lines[SkLineClipper::kMaxPoints];
257 int lineCount = SkLineClipper::ClipLine(pts, clip, lines, canCullToTheRight);
258 SkASSERT(lineCount <= SkLineClipper::kMaxClippedLineSegments);
259 for (int i = 0; i < lineCount; i++) {
260 switch( this->addPolyLine(lines + i, edge, edgePtr) ) {
261 case kTotal_Combine: edgePtr--; break;
262 case kPartial_Combine: break;
263 case kNo_Combine: *edgePtr++ = edge;
264 edge += edgeSize;
265 }
266 }
267 break;
268 }
269 default:
270 SkDEBUGFAIL("unexpected verb");
271 break;
272 }
273 }
274 } else {
275 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
276 switch (verb) {
277 case SkPath::kMove_Verb:
278 case SkPath::kClose_Verb:
279 // we ignore these, and just get the whole segment from
280 // the corresponding line/quad/cubic verbs
281 break;
282 case SkPath::kLine_Verb: {
283 switch( this->addPolyLine(pts, edge, edgePtr) ) {
284 case kTotal_Combine: edgePtr--; break;
285 case kPartial_Combine: break;
286 case kNo_Combine: *edgePtr++ = edge;
287 edge += edgeSize;
288 }
289 break;
290 }
291 default:
292 SkDEBUGFAIL("unexpected verb");
293 break;
294 }
295 }
296 }
297 SkASSERT((size_t)(edge - edgeStart) <= maxEdgeCount * edgeSize);
298 SkASSERT((size_t)(edgePtr - (char**)fEdgeList) <= maxEdgeCount);
299 return SkToInt(edgePtr - (char**)fEdgeList);
300 }
301
build(const SkPath & path,const SkIRect * iclip,bool canCullToTheRight)302 int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullToTheRight) {
303 SkAutoConicToQuads quadder;
304 const SkScalar conicTol = SK_Scalar1 / 4;
305
306 SkPath::Iter iter(path, true);
307 SkPoint pts[4];
308 SkPath::Verb verb;
309
310 bool is_finite = true;
311
312 if (iclip) {
313 SkRect clip = this->recoverClip(*iclip);
314 SkEdgeClipper clipper(canCullToTheRight);
315
316 auto apply_clipper = [this, &clipper, &is_finite] {
317 SkPoint pts[4];
318 SkPath::Verb verb;
319
320 while ((verb = clipper.next(pts)) != SkPath::kDone_Verb) {
321 const int count = SkPathPriv::PtsInIter(verb);
322 if (!SkScalarsAreFinite(&pts[0].fX, count*2)) {
323 is_finite = false;
324 return;
325 }
326 switch (verb) {
327 case SkPath::kLine_Verb: this->addLine (pts); break;
328 case SkPath::kQuad_Verb: this->addQuad (pts); break;
329 case SkPath::kCubic_Verb: this->addCubic(pts); break;
330 default: break;
331 }
332 }
333 };
334
335 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
336 switch (verb) {
337 case SkPath::kMove_Verb:
338 case SkPath::kClose_Verb:
339 // we ignore these, and just get the whole segment from
340 // the corresponding line/quad/cubic verbs
341 break;
342 case SkPath::kLine_Verb:
343 if (clipper.clipLine(pts[0], pts[1], clip)) {
344 apply_clipper();
345 }
346 break;
347 case SkPath::kQuad_Verb:
348 if (clipper.clipQuad(pts, clip)) {
349 apply_clipper();
350 }
351 break;
352 case SkPath::kConic_Verb: {
353 const SkPoint* quadPts = quadder.computeQuads(
354 pts, iter.conicWeight(), conicTol);
355 for (int i = 0; i < quadder.countQuads(); ++i) {
356 if (clipper.clipQuad(quadPts, clip)) {
357 apply_clipper();
358 }
359 quadPts += 2;
360 }
361 } break;
362 case SkPath::kCubic_Verb:
363 if (clipper.clipCubic(pts, clip)) {
364 apply_clipper();
365 }
366 break;
367 default:
368 SkDEBUGFAIL("unexpected verb");
369 break;
370 }
371 }
372 } else {
373 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
374 auto handle_quad = [this](const SkPoint pts[3]) {
375 SkPoint monoX[5];
376 int n = SkChopQuadAtYExtrema(pts, monoX);
377 for (int i = 0; i <= n; i++) {
378 this->addQuad(&monoX[i * 2]);
379 }
380 };
381
382 switch (verb) {
383 case SkPath::kMove_Verb:
384 case SkPath::kClose_Verb:
385 // we ignore these, and just get the whole segment from
386 // the corresponding line/quad/cubic verbs
387 break;
388 case SkPath::kLine_Verb:
389 this->addLine(pts);
390 break;
391 case SkPath::kQuad_Verb: {
392 handle_quad(pts);
393 break;
394 }
395 case SkPath::kConic_Verb: {
396 const SkPoint* quadPts = quadder.computeQuads(
397 pts, iter.conicWeight(), conicTol);
398 for (int i = 0; i < quadder.countQuads(); ++i) {
399 handle_quad(quadPts);
400 quadPts += 2;
401 }
402 } break;
403 case SkPath::kCubic_Verb: {
404 SkPoint monoY[10];
405 int n = SkChopCubicAtYExtrema(pts, monoY);
406 for (int i = 0; i <= n; i++) {
407 this->addCubic(&monoY[i * 3]);
408 }
409 break;
410 }
411 default:
412 SkDEBUGFAIL("unexpected verb");
413 break;
414 }
415 }
416 }
417 fEdgeList = fList.begin();
418 return is_finite ? fList.count() : 0;
419 }
420
buildEdges(const SkPath & path,const SkIRect * shiftedClip)421 int SkEdgeBuilder::buildEdges(const SkPath& path,
422 const SkIRect* shiftedClip) {
423 // If we're convex, then we need both edges, even if the right edge is past the clip.
424 const bool canCullToTheRight = !path.isConvex();
425
426 // We can use our buildPoly() optimization if all the segments are lines.
427 // (Edges are homogenous and stored contiguously in memory, no need for indirection.)
428 const int count = SkPath::kLine_SegmentMask == path.getSegmentMasks()
429 ? this->buildPoly(path, shiftedClip, canCullToTheRight)
430 : this->build (path, shiftedClip, canCullToTheRight);
431
432 SkASSERT(count >= 0);
433
434 // If we can't cull to the right, we should have count > 1 (or 0).
435 if (!canCullToTheRight) {
436 SkASSERT(count != 1);
437 }
438 return count;
439 }
440