• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include <algorithm>
29 #include <bitset>
30 #include <stack>
31 #include <vector>
32 
33 namespace aco {
34 namespace {
35 
36 struct State {
37    Program* program;
38    Block* block;
39    std::vector<aco_ptr<Instruction>> old_instructions;
40 };
41 
42 struct NOP_ctx_gfx6 {
joinaco::__anon2b1a06080111::NOP_ctx_gfx643    void join(const NOP_ctx_gfx6& other)
44    {
45       set_vskip_mode_then_vector =
46          MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector);
47       valu_wr_vcc_then_vccz = MAX2(valu_wr_vcc_then_vccz, other.valu_wr_vcc_then_vccz);
48       valu_wr_exec_then_execz = MAX2(valu_wr_exec_then_execz, other.valu_wr_exec_then_execz);
49       valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas);
50       salu_wr_m0_then_gds_msg_ttrace =
51          MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace);
52       valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp);
53       salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds);
54       salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel);
55       setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg);
56       vmem_store_then_wr_data |= other.vmem_store_then_wr_data;
57       smem_clause |= other.smem_clause;
58       smem_write |= other.smem_write;
59       for (unsigned i = 0; i < BITSET_WORDS(128); i++) {
60          smem_clause_read_write[i] |= other.smem_clause_read_write[i];
61          smem_clause_write[i] |= other.smem_clause_write[i];
62       }
63    }
64 
operator ==aco::__anon2b1a06080111::NOP_ctx_gfx665    bool operator==(const NOP_ctx_gfx6& other)
66    {
67       return set_vskip_mode_then_vector == other.set_vskip_mode_then_vector &&
68              valu_wr_vcc_then_vccz == other.valu_wr_vcc_then_vccz &&
69              valu_wr_exec_then_execz == other.valu_wr_exec_then_execz &&
70              valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas &&
71              vmem_store_then_wr_data == other.vmem_store_then_wr_data &&
72              salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace &&
73              valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp &&
74              salu_wr_m0_then_lds == other.salu_wr_m0_then_lds &&
75              salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel &&
76              setreg_then_getsetreg == other.setreg_then_getsetreg &&
77              smem_clause == other.smem_clause && smem_write == other.smem_write &&
78              BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) &&
79              BITSET_EQUAL(smem_clause_write, other.smem_clause_write);
80    }
81 
add_wait_statesaco::__anon2b1a06080111::NOP_ctx_gfx682    void add_wait_states(unsigned amount)
83    {
84       if ((set_vskip_mode_then_vector -= amount) < 0)
85          set_vskip_mode_then_vector = 0;
86 
87       if ((valu_wr_vcc_then_vccz -= amount) < 0)
88          valu_wr_vcc_then_vccz = 0;
89 
90       if ((valu_wr_exec_then_execz -= amount) < 0)
91          valu_wr_exec_then_execz = 0;
92 
93       if ((valu_wr_vcc_then_div_fmas -= amount) < 0)
94          valu_wr_vcc_then_div_fmas = 0;
95 
96       if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0)
97          salu_wr_m0_then_gds_msg_ttrace = 0;
98 
99       if ((valu_wr_exec_then_dpp -= amount) < 0)
100          valu_wr_exec_then_dpp = 0;
101 
102       if ((salu_wr_m0_then_lds -= amount) < 0)
103          salu_wr_m0_then_lds = 0;
104 
105       if ((salu_wr_m0_then_moverel -= amount) < 0)
106          salu_wr_m0_then_moverel = 0;
107 
108       if ((setreg_then_getsetreg -= amount) < 0)
109          setreg_then_getsetreg = 0;
110 
111       vmem_store_then_wr_data.reset();
112    }
113 
114    /* setting MODE.vskip and then any vector op requires 2 wait states */
115    int8_t set_vskip_mode_then_vector = 0;
116 
117    /* VALU writing VCC/EXEC and then a VALU reading VCCZ/EXECZ requires 5 wait states */
118    int8_t valu_wr_vcc_then_vccz = 0;
119    int8_t valu_wr_exec_then_execz = 0;
120 
121    /* VALU writing VCC followed by v_div_fmas require 4 wait states */
122    int8_t valu_wr_vcc_then_div_fmas = 0;
123 
124    /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */
125    int8_t salu_wr_m0_then_gds_msg_ttrace = 0;
126 
127    /* VALU writing EXEC followed by DPP requires 5 wait states */
128    int8_t valu_wr_exec_then_dpp = 0;
129 
130    /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */
131    int8_t salu_wr_m0_then_lds = 0;
132 
133    /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */
134    int8_t salu_wr_m0_then_moverel = 0;
135 
136    /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states
137     * currently we don't look at the actual register */
138    int8_t setreg_then_getsetreg = 0;
139 
140    /* some memory instructions writing >64bit followed by a instructions
141     * writing the VGPRs holding the writedata requires 1 wait state */
142    std::bitset<256> vmem_store_then_wr_data;
143 
144    /* we break up SMEM clauses that contain stores or overwrite an
145     * operand/definition of another instruction in the clause */
146    bool smem_clause = false;
147    bool smem_write = false;
148    BITSET_DECLARE(smem_clause_read_write, 128) = {0};
149    BITSET_DECLARE(smem_clause_write, 128) = {0};
150 };
151 
152 struct NOP_ctx_gfx10 {
153    bool has_VOPC = false;
154    bool has_nonVALU_exec_read = false;
155    bool has_VMEM = false;
156    bool has_branch_after_VMEM = false;
157    bool has_DS = false;
158    bool has_branch_after_DS = false;
159    bool has_NSA_MIMG = false;
160    bool has_writelane = false;
161    std::bitset<128> sgprs_read_by_VMEM;
162    std::bitset<128> sgprs_read_by_SMEM;
163 
joinaco::__anon2b1a06080111::NOP_ctx_gfx10164    void join(const NOP_ctx_gfx10& other)
165    {
166       has_VOPC |= other.has_VOPC;
167       has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
168       has_VMEM |= other.has_VMEM;
169       has_branch_after_VMEM |= other.has_branch_after_VMEM;
170       has_DS |= other.has_DS;
171       has_branch_after_DS |= other.has_branch_after_DS;
172       has_NSA_MIMG |= other.has_NSA_MIMG;
173       has_writelane |= other.has_writelane;
174       sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
175       sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
176    }
177 
operator ==aco::__anon2b1a06080111::NOP_ctx_gfx10178    bool operator==(const NOP_ctx_gfx10& other)
179    {
180       return has_VOPC == other.has_VOPC && has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
181              has_VMEM == other.has_VMEM && has_branch_after_VMEM == other.has_branch_after_VMEM &&
182              has_DS == other.has_DS && has_branch_after_DS == other.has_branch_after_DS &&
183              has_NSA_MIMG == other.has_NSA_MIMG && has_writelane == other.has_writelane &&
184              sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
185              sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
186    }
187 };
188 
189 int
get_wait_states(aco_ptr<Instruction> & instr)190 get_wait_states(aco_ptr<Instruction>& instr)
191 {
192    if (instr->opcode == aco_opcode::s_nop)
193       return instr->sopp().imm + 1;
194    else if (instr->opcode == aco_opcode::p_constaddr)
195       return 3; /* lowered to 3 instructions in the assembler */
196    else
197       return 1;
198 }
199 
200 bool
regs_intersect(PhysReg a_reg,unsigned a_size,PhysReg b_reg,unsigned b_size)201 regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
202 {
203    return a_reg > b_reg ? (a_reg - b_reg < b_size) : (b_reg - a_reg < a_size);
204 }
205 
206 template <bool Valu, bool Vintrp, bool Salu>
207 bool
handle_raw_hazard_instr(aco_ptr<Instruction> & pred,PhysReg reg,int * nops_needed,uint32_t * mask)208 handle_raw_hazard_instr(aco_ptr<Instruction>& pred, PhysReg reg, int* nops_needed, uint32_t* mask)
209 {
210    unsigned mask_size = util_last_bit(*mask);
211 
212    uint32_t writemask = 0;
213    for (Definition& def : pred->definitions) {
214       if (regs_intersect(reg, mask_size, def.physReg(), def.size())) {
215          unsigned start = def.physReg() > reg ? def.physReg() - reg : 0;
216          unsigned end = MIN2(mask_size, start + def.size());
217          writemask |= u_bit_consecutive(start, end - start);
218       }
219    }
220 
221    bool is_hazard = writemask != 0 && ((pred->isVALU() && Valu) || (pred->isVINTRP() && Vintrp) ||
222                                        (pred->isSALU() && Salu));
223    if (is_hazard)
224       return true;
225 
226    *mask &= ~writemask;
227    *nops_needed = MAX2(*nops_needed - get_wait_states(pred), 0);
228 
229    if (*mask == 0)
230       *nops_needed = 0;
231 
232    return *nops_needed == 0;
233 }
234 
235 template <bool Valu, bool Vintrp, bool Salu>
236 int
handle_raw_hazard_internal(State & state,Block * block,int nops_needed,PhysReg reg,uint32_t mask,bool start_at_end)237 handle_raw_hazard_internal(State& state, Block* block, int nops_needed, PhysReg reg, uint32_t mask,
238                            bool start_at_end)
239 {
240    if (block == state.block && start_at_end) {
241       /* If it's the current block, block->instructions is incomplete. */
242       for (int pred_idx = state.old_instructions.size() - 1; pred_idx >= 0; pred_idx--) {
243          aco_ptr<Instruction>& instr = state.old_instructions[pred_idx];
244          if (!instr)
245             break; /* Instruction has been moved to block->instructions. */
246          if (handle_raw_hazard_instr<Valu, Vintrp, Salu>(instr, reg, &nops_needed, &mask))
247             return nops_needed;
248       }
249    }
250    for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) {
251       if (handle_raw_hazard_instr<Valu, Vintrp, Salu>(block->instructions[pred_idx], reg,
252                                                       &nops_needed, &mask))
253          return nops_needed;
254    }
255 
256    int res = 0;
257 
258    /* Loops require branch instructions, which count towards the wait
259     * states. So even with loops this should finish unless nops_needed is some
260     * huge value. */
261    for (unsigned lin_pred : block->linear_preds) {
262       res =
263          std::max(res, handle_raw_hazard_internal<Valu, Vintrp, Salu>(
264                           state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true));
265    }
266    return res;
267 }
268 
269 template <bool Valu, bool Vintrp, bool Salu>
270 void
handle_raw_hazard(State & state,int * NOPs,int min_states,Operand op)271 handle_raw_hazard(State& state, int* NOPs, int min_states, Operand op)
272 {
273    if (*NOPs >= min_states)
274       return;
275    int res = handle_raw_hazard_internal<Valu, Vintrp, Salu>(
276       state, state.block, min_states, op.physReg(), u_bit_consecutive(0, op.size()), false);
277    *NOPs = MAX2(*NOPs, res);
278 }
279 
280 static auto handle_valu_then_read_hazard = handle_raw_hazard<true, true, false>;
281 static auto handle_vintrp_then_read_hazard = handle_raw_hazard<false, true, false>;
282 static auto handle_valu_salu_then_read_hazard = handle_raw_hazard<true, true, true>;
283 
284 void
set_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)285 set_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
286 {
287    unsigned end = start + size - 1;
288    unsigned start_mod = start % BITSET_WORDBITS;
289    if (start_mod + size <= BITSET_WORDBITS) {
290       BITSET_SET_RANGE_INSIDE_WORD(words, start, end);
291    } else {
292       unsigned first_size = BITSET_WORDBITS - start_mod;
293       set_bitset_range(words, start, BITSET_WORDBITS - start_mod);
294       set_bitset_range(words, start + first_size, size - first_size);
295    }
296 }
297 
298 bool
test_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)299 test_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
300 {
301    unsigned end = start + size - 1;
302    unsigned start_mod = start % BITSET_WORDBITS;
303    if (start_mod + size <= BITSET_WORDBITS) {
304       return BITSET_TEST_RANGE(words, start, end);
305    } else {
306       unsigned first_size = BITSET_WORDBITS - start_mod;
307       return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) ||
308              test_bitset_range(words, start + first_size, size - first_size);
309    }
310 }
311 
312 /* A SMEM clause is any group of consecutive SMEM instructions. The
313  * instructions in this group may return out of order and/or may be replayed.
314  *
315  * To fix this potential hazard correctly, we have to make sure that when a
316  * clause has more than one instruction, no instruction in the clause writes
317  * to a register that is read by another instruction in the clause (including
318  * itself). In this case, we have to break the SMEM clause by inserting non
319  * SMEM instructions.
320  *
321  * SMEM clauses are only present on GFX8+, and only matter when XNACK is set.
322  */
323 void
handle_smem_clause_hazards(Program * program,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,int * NOPs)324 handle_smem_clause_hazards(Program* program, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
325                            int* NOPs)
326 {
327    /* break off from previous SMEM clause if needed */
328    if (!*NOPs & (ctx.smem_clause || ctx.smem_write)) {
329       /* Don't allow clauses with store instructions since the clause's
330        * instructions may use the same address. */
331       if (ctx.smem_write || instr->definitions.empty() ||
332           instr_info.is_atomic[(unsigned)instr->opcode]) {
333          *NOPs = 1;
334       } else if (program->dev.xnack_enabled) {
335          for (Operand op : instr->operands) {
336             if (!op.isConstant() &&
337                 test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) {
338                *NOPs = 1;
339                break;
340             }
341          }
342 
343          Definition def = instr->definitions[0];
344          if (!*NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()))
345             *NOPs = 1;
346       }
347    }
348 }
349 
350 /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */
351 void
handle_instruction_gfx6(State & state,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)352 handle_instruction_gfx6(State& state, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
353                         std::vector<aco_ptr<Instruction>>& new_instructions)
354 {
355    /* check hazards */
356    int NOPs = 0;
357 
358    if (instr->isSMEM()) {
359       if (state.program->chip_class == GFX6) {
360          /* A read of an SGPR by SMRD instruction requires 4 wait states
361           * when the SGPR was written by a VALU instruction. According to LLVM,
362           * there is also an undocumented hardware behavior when the buffer
363           * descriptor is written by a SALU instruction */
364          for (unsigned i = 0; i < instr->operands.size(); i++) {
365             Operand op = instr->operands[i];
366             if (op.isConstant())
367                continue;
368 
369             bool is_buffer_desc = i == 0 && op.size() > 2;
370             if (is_buffer_desc)
371                handle_valu_salu_then_read_hazard(state, &NOPs, 4, op);
372             else
373                handle_valu_then_read_hazard(state, &NOPs, 4, op);
374          }
375       }
376 
377       handle_smem_clause_hazards(state.program, ctx, instr, &NOPs);
378    } else if (instr->isSALU()) {
379       if (instr->opcode == aco_opcode::s_setreg_b32 ||
380           instr->opcode == aco_opcode::s_setreg_imm32_b32 ||
381           instr->opcode == aco_opcode::s_getreg_b32) {
382          NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
383       }
384 
385       if (state.program->chip_class == GFX9) {
386          if (instr->opcode == aco_opcode::s_movrels_b32 ||
387              instr->opcode == aco_opcode::s_movrels_b64 ||
388              instr->opcode == aco_opcode::s_movreld_b32 ||
389              instr->opcode == aco_opcode::s_movreld_b64) {
390             NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
391          }
392       }
393 
394       if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata)
395          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
396    } else if (instr->isDS() && instr->ds().gds) {
397       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
398    } else if (instr->isVALU() || instr->isVINTRP()) {
399       for (Operand op : instr->operands) {
400          if (op.physReg() == vccz)
401             NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_vccz);
402          if (op.physReg() == execz)
403             NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_execz);
404       }
405 
406       if (instr->isDPP()) {
407          NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
408          handle_valu_then_read_hazard(state, &NOPs, 2, instr->operands[0]);
409       }
410 
411       for (Definition def : instr->definitions) {
412          if (def.regClass().type() != RegType::sgpr) {
413             for (unsigned i = 0; i < def.size(); i++)
414                NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]);
415          }
416       }
417 
418       if ((instr->opcode == aco_opcode::v_readlane_b32 ||
419            instr->opcode == aco_opcode::v_readlane_b32_e64 ||
420            instr->opcode == aco_opcode::v_writelane_b32 ||
421            instr->opcode == aco_opcode::v_writelane_b32_e64) &&
422           !instr->operands[1].isConstant()) {
423          handle_valu_then_read_hazard(state, &NOPs, 4, instr->operands[1]);
424       }
425 
426       /* It's required to insert 1 wait state if the dst VGPR of any v_interp_*
427        * is followed by a read with v_readfirstlane or v_readlane to fix GPU
428        * hangs on GFX6. Note that v_writelane_* is apparently not affected.
429        * This hazard isn't documented anywhere but AMD confirmed that hazard.
430        */
431       if (state.program->chip_class == GFX6 &&
432           (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */
433            instr->opcode == aco_opcode::v_readfirstlane_b32)) {
434          handle_vintrp_then_read_hazard(state, &NOPs, 1, instr->operands[0]);
435       }
436 
437       if (instr->opcode == aco_opcode::v_div_fmas_f32 ||
438           instr->opcode == aco_opcode::v_div_fmas_f64)
439          NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
440    } else if (instr->isVMEM() || instr->isFlatLike()) {
441       /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
442       for (Operand op : instr->operands) {
443          if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr)
444             handle_valu_then_read_hazard(state, &NOPs, 5, op);
445       }
446    }
447 
448    if (!instr->isSALU() && instr->format != Format::SMEM)
449       NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
450 
451    if (state.program->chip_class == GFX9) {
452       bool lds_scratch_global = (instr->isScratch() || instr->isGlobal()) && instr->flatlike().lds;
453       if (instr->isVINTRP() || lds_scratch_global ||
454           instr->opcode == aco_opcode::ds_read_addtid_b32 ||
455           instr->opcode == aco_opcode::ds_write_addtid_b32 ||
456           instr->opcode == aco_opcode::buffer_store_lds_dword) {
457          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
458       }
459    }
460 
461    ctx.add_wait_states(NOPs + get_wait_states(instr));
462 
463    // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
464    if (NOPs) {
465       /* create NOP */
466       aco_ptr<SOPP_instruction> nop{
467          create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
468       nop->imm = NOPs - 1;
469       nop->block = -1;
470       new_instructions.emplace_back(std::move(nop));
471    }
472 
473    /* update information to check for later hazards */
474    if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) {
475       ctx.smem_clause = false;
476       ctx.smem_write = false;
477 
478       if (state.program->dev.xnack_enabled) {
479          BITSET_ZERO(ctx.smem_clause_read_write);
480          BITSET_ZERO(ctx.smem_clause_write);
481       }
482    }
483 
484    if (instr->isSMEM()) {
485       if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
486          ctx.smem_write = true;
487       } else {
488          ctx.smem_clause = true;
489 
490          if (state.program->dev.xnack_enabled) {
491             for (Operand op : instr->operands) {
492                if (!op.isConstant()) {
493                   set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size());
494                }
495             }
496 
497             Definition def = instr->definitions[0];
498             set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size());
499             set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size());
500          }
501       }
502    } else if (instr->isVALU()) {
503       for (Definition def : instr->definitions) {
504          if (def.regClass().type() == RegType::sgpr) {
505             if (def.physReg() == vcc || def.physReg() == vcc_hi) {
506                ctx.valu_wr_vcc_then_vccz = 5;
507                ctx.valu_wr_vcc_then_div_fmas = 4;
508             }
509             if (def.physReg() == exec || def.physReg() == exec_hi) {
510                ctx.valu_wr_exec_then_execz = 5;
511                ctx.valu_wr_exec_then_dpp = 5;
512             }
513          }
514       }
515    } else if (instr->isSALU() && !instr->definitions.empty()) {
516       if (!instr->definitions.empty()) {
517          /* all other definitions should be SCC */
518          Definition def = instr->definitions[0];
519          if (def.physReg() == m0) {
520             ctx.salu_wr_m0_then_gds_msg_ttrace = 1;
521             ctx.salu_wr_m0_then_lds = 1;
522             ctx.salu_wr_m0_then_moverel = 1;
523          }
524       } else if (instr->opcode == aco_opcode::s_setreg_b32 ||
525                  instr->opcode == aco_opcode::s_setreg_imm32_b32) {
526          SOPK_instruction& sopk = instr->sopk();
527          unsigned offset = (sopk.imm >> 6) & 0x1f;
528          unsigned size = ((sopk.imm >> 11) & 0x1f) + 1;
529          unsigned reg = sopk.imm & 0x3f;
530          ctx.setreg_then_getsetreg = 2;
531 
532          if (reg == 1 && offset >= 28 && size > (28 - offset))
533             ctx.set_vskip_mode_then_vector = 2;
534       }
535    } else if (instr->isVMEM() || instr->isFlatLike()) {
536       /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */
537       bool consider_buf = (instr->isMUBUF() || instr->isMTBUF()) && instr->operands.size() == 4 &&
538                           instr->operands[3].size() > 2 && instr->operands[2].physReg() >= 128;
539       /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit
540        * store) */
541       bool consider_mimg = instr->isMIMG() &&
542                            instr->operands[1].regClass().type() == RegType::vgpr &&
543                            instr->operands[1].size() > 2 && instr->operands[0].size() == 4;
544       /* FLAT/GLOBAL/SCRATCH store with >64-bit data */
545       bool consider_flat =
546          instr->isFlatLike() && instr->operands.size() == 3 && instr->operands[2].size() > 2;
547       if (consider_buf || consider_mimg || consider_flat) {
548          PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg();
549          unsigned size = instr->operands[consider_flat ? 2 : 3].size();
550          for (unsigned i = 0; i < size; i++)
551             ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1;
552       }
553    }
554 }
555 
556 template <std::size_t N>
557 bool
check_written_regs(const aco_ptr<Instruction> & instr,const std::bitset<N> & check_regs)558 check_written_regs(const aco_ptr<Instruction>& instr, const std::bitset<N>& check_regs)
559 {
560    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
561                       [&check_regs](const Definition& def) -> bool
562                       {
563                          bool writes_any = false;
564                          for (unsigned i = 0; i < def.size(); i++) {
565                             unsigned def_reg = def.physReg() + i;
566                             writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
567                          }
568                          return writes_any;
569                       });
570 }
571 
572 template <std::size_t N>
573 void
mark_read_regs(const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)574 mark_read_regs(const aco_ptr<Instruction>& instr, std::bitset<N>& reg_reads)
575 {
576    for (const Operand& op : instr->operands) {
577       for (unsigned i = 0; i < op.size(); i++) {
578          unsigned reg = op.physReg() + i;
579          if (reg < reg_reads.size())
580             reg_reads.set(reg);
581       }
582    }
583 }
584 
585 bool
VALU_writes_sgpr(aco_ptr<Instruction> & instr)586 VALU_writes_sgpr(aco_ptr<Instruction>& instr)
587 {
588    if (instr->isVOPC())
589       return true;
590    if (instr->isVOP3() && instr->definitions.size() == 2)
591       return true;
592    if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
593        instr->opcode == aco_opcode::v_readlane_b32 ||
594        instr->opcode == aco_opcode::v_readlane_b32_e64)
595       return true;
596    return false;
597 }
598 
599 bool
instr_writes_exec(const aco_ptr<Instruction> & instr)600 instr_writes_exec(const aco_ptr<Instruction>& instr)
601 {
602    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
603                       [](const Definition& def) -> bool
604                       { return def.physReg() == exec_lo || def.physReg() == exec_hi; });
605 }
606 
607 bool
instr_writes_sgpr(const aco_ptr<Instruction> & instr)608 instr_writes_sgpr(const aco_ptr<Instruction>& instr)
609 {
610    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
611                       [](const Definition& def) -> bool
612                       { return def.getTemp().type() == RegType::sgpr; });
613 }
614 
615 inline bool
instr_is_branch(const aco_ptr<Instruction> & instr)616 instr_is_branch(const aco_ptr<Instruction>& instr)
617 {
618    return instr->opcode == aco_opcode::s_branch || instr->opcode == aco_opcode::s_cbranch_scc0 ||
619           instr->opcode == aco_opcode::s_cbranch_scc1 ||
620           instr->opcode == aco_opcode::s_cbranch_vccz ||
621           instr->opcode == aco_opcode::s_cbranch_vccnz ||
622           instr->opcode == aco_opcode::s_cbranch_execz ||
623           instr->opcode == aco_opcode::s_cbranch_execnz ||
624           instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
625           instr->opcode == aco_opcode::s_cbranch_cdbguser ||
626           instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
627           instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
628           instr->opcode == aco_opcode::s_subvector_loop_begin ||
629           instr->opcode == aco_opcode::s_subvector_loop_end ||
630           instr->opcode == aco_opcode::s_setpc_b64 || instr->opcode == aco_opcode::s_swappc_b64 ||
631           instr->opcode == aco_opcode::s_getpc_b64 || instr->opcode == aco_opcode::s_call_b64;
632 }
633 
634 void
handle_instruction_gfx10(State & state,NOP_ctx_gfx10 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)635 handle_instruction_gfx10(State& state, NOP_ctx_gfx10& ctx, aco_ptr<Instruction>& instr,
636                          std::vector<aco_ptr<Instruction>>& new_instructions)
637 {
638    // TODO: s_dcache_inv needs to be in it's own group on GFX10
639 
640    /* VMEMtoScalarWriteHazard
641     * Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)"
642     * in-between.
643     */
644    if (instr->isVMEM() || instr->isFlatLike() || instr->isDS()) {
645       /* Remember all SGPRs that are read by the VMEM instruction */
646       mark_read_regs(instr, ctx.sgprs_read_by_VMEM);
647       ctx.sgprs_read_by_VMEM.set(exec);
648       if (state.program->wave_size == 64)
649          ctx.sgprs_read_by_VMEM.set(exec_hi);
650    } else if (instr->isSALU() || instr->isSMEM()) {
651       if (instr->opcode == aco_opcode::s_waitcnt) {
652          /* Hazard is mitigated by "s_waitcnt vmcnt(0)" */
653          uint16_t imm = instr->sopp().imm;
654          unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
655          if (vmcnt == 0)
656             ctx.sgprs_read_by_VMEM.reset();
657       } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
658          /* Hazard is mitigated by a s_waitcnt_depctr with a magic imm */
659          if (instr->sopp().imm == 0xffe3)
660             ctx.sgprs_read_by_VMEM.reset();
661       }
662 
663       /* Check if SALU writes an SGPR that was previously read by the VALU */
664       if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) {
665          ctx.sgprs_read_by_VMEM.reset();
666 
667          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
668          aco_ptr<SOPP_instruction> depctr{
669             create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
670          depctr->imm = 0xffe3;
671          depctr->block = -1;
672          new_instructions.emplace_back(std::move(depctr));
673       }
674    } else if (instr->isVALU()) {
675       /* Hazard is mitigated by any VALU instruction */
676       ctx.sgprs_read_by_VMEM.reset();
677    }
678 
679    /* VcmpxPermlaneHazard
680     * Handle any permlane following a VOPC instruction, insert v_mov between them.
681     */
682    if (instr->isVOPC()) {
683       ctx.has_VOPC = true;
684    } else if (ctx.has_VOPC && (instr->opcode == aco_opcode::v_permlane16_b32 ||
685                                instr->opcode == aco_opcode::v_permlanex16_b32)) {
686       ctx.has_VOPC = false;
687 
688       /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
689       aco_ptr<VOP1_instruction> v_mov{
690          create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
691       v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
692       v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
693       new_instructions.emplace_back(std::move(v_mov));
694    } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
695       ctx.has_VOPC = false;
696    }
697 
698    /* VcmpxExecWARHazard
699     * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
700     */
701    if (!instr->isVALU() && instr->reads_exec()) {
702       ctx.has_nonVALU_exec_read = true;
703    } else if (instr->isVALU()) {
704       if (instr_writes_exec(instr)) {
705          ctx.has_nonVALU_exec_read = false;
706 
707          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
708          aco_ptr<SOPP_instruction> depctr{
709             create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
710          depctr->imm = 0xfffe;
711          depctr->block = -1;
712          new_instructions.emplace_back(std::move(depctr));
713       } else if (instr_writes_sgpr(instr)) {
714          /* Any VALU instruction that writes an SGPR mitigates the problem */
715          ctx.has_nonVALU_exec_read = false;
716       }
717    } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
718       /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
719       if ((instr->sopp().imm & 0xfffe) == 0xfffe)
720          ctx.has_nonVALU_exec_read = false;
721    }
722 
723    /* SMEMtoVectorWriteHazard
724     * Handle any VALU instruction writing an SGPR after an SMEM reads it.
725     */
726    if (instr->isSMEM()) {
727       /* Remember all SGPRs that are read by the SMEM instruction */
728       mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
729    } else if (VALU_writes_sgpr(instr)) {
730       /* Check if VALU writes an SGPR that was previously read by SMEM */
731       if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
732          ctx.sgprs_read_by_SMEM.reset();
733 
734          /* Insert s_mov to mitigate the problem */
735          aco_ptr<SOP1_instruction> s_mov{
736             create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
737          s_mov->definitions[0] = Definition(sgpr_null, s1);
738          s_mov->operands[0] = Operand::zero();
739          new_instructions.emplace_back(std::move(s_mov));
740       }
741    } else if (instr->isSALU()) {
742       if (instr->format != Format::SOPP) {
743          /* SALU can mitigate the hazard */
744          ctx.sgprs_read_by_SMEM.reset();
745       } else {
746          /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
747          const SOPP_instruction& sopp = instr->sopp();
748          if (sopp.opcode == aco_opcode::s_waitcnt_lgkmcnt) {
749             if (sopp.imm == 0 && sopp.definitions[0].physReg() == sgpr_null)
750                ctx.sgprs_read_by_SMEM.reset();
751          } else if (sopp.opcode == aco_opcode::s_waitcnt) {
752             unsigned lgkm = (sopp.imm >> 8) & 0x3f;
753             if (lgkm == 0)
754                ctx.sgprs_read_by_SMEM.reset();
755          }
756       }
757    }
758 
759    /* LdsBranchVmemWARHazard
760     * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
761     */
762    if (instr->isVMEM() || instr->isGlobal() || instr->isScratch()) {
763       ctx.has_VMEM = true;
764       ctx.has_branch_after_VMEM = false;
765       /* Mitigation for DS is needed only if there was already a branch after */
766       ctx.has_DS = ctx.has_branch_after_DS;
767    } else if (instr->isDS()) {
768       ctx.has_DS = true;
769       ctx.has_branch_after_DS = false;
770       /* Mitigation for VMEM is needed only if there was already a branch after */
771       ctx.has_VMEM = ctx.has_branch_after_VMEM;
772    } else if (instr_is_branch(instr)) {
773       ctx.has_branch_after_VMEM = ctx.has_VMEM;
774       ctx.has_branch_after_DS = ctx.has_DS;
775    } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
776       /* Only s_waitcnt_vscnt can mitigate the hazard */
777       const SOPK_instruction& sopk = instr->sopk();
778       if (sopk.definitions[0].physReg() == sgpr_null && sopk.imm == 0)
779          ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
780    }
781    if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
782       ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
783 
784       /* Insert s_waitcnt_vscnt to mitigate the problem */
785       aco_ptr<SOPK_instruction> wait{
786          create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
787       wait->definitions[0] = Definition(sgpr_null, s1);
788       wait->imm = 0;
789       new_instructions.emplace_back(std::move(wait));
790    }
791 
792    /* NSAToVMEMBug
793     * Handles NSA MIMG (4 or more dwords) immediately followed by MUBUF/MTBUF (with offset[2:1] !=
794     * 0).
795     */
796    if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 1) {
797       ctx.has_NSA_MIMG = true;
798    } else if (ctx.has_NSA_MIMG) {
799       ctx.has_NSA_MIMG = false;
800 
801       if (instr->isMUBUF() || instr->isMTBUF()) {
802          uint32_t offset = instr->isMUBUF() ? instr->mubuf().offset : instr->mtbuf().offset;
803          if (offset & 6)
804             Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0);
805       }
806    }
807 
808    /* waNsaCannotFollowWritelane
809     * Handles NSA MIMG immediately following a v_writelane_b32.
810     */
811    if (instr->opcode == aco_opcode::v_writelane_b32_e64) {
812       ctx.has_writelane = true;
813    } else if (ctx.has_writelane) {
814       ctx.has_writelane = false;
815       if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 0)
816          Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0);
817    }
818 }
819 
820 template <typename Ctx>
821 using HandleInstr = void (*)(State& state, Ctx&, aco_ptr<Instruction>&,
822                              std::vector<aco_ptr<Instruction>>&);
823 
824 template <typename Ctx, HandleInstr<Ctx> Handle>
825 void
handle_block(Program * program,Ctx & ctx,Block & block)826 handle_block(Program* program, Ctx& ctx, Block& block)
827 {
828    if (block.instructions.empty())
829       return;
830 
831    State state;
832    state.program = program;
833    state.block = &block;
834    state.old_instructions = std::move(block.instructions);
835 
836    block.instructions.clear(); // Silence clang-analyzer-cplusplus.Move warning
837    block.instructions.reserve(state.old_instructions.size());
838 
839    for (aco_ptr<Instruction>& instr : state.old_instructions) {
840       Handle(state, ctx, instr, block.instructions);
841       block.instructions.emplace_back(std::move(instr));
842    }
843 }
844 
845 template <typename Ctx, HandleInstr<Ctx> Handle>
846 void
mitigate_hazards(Program * program)847 mitigate_hazards(Program* program)
848 {
849    std::vector<Ctx> all_ctx(program->blocks.size());
850    std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
851 
852    for (unsigned i = 0; i < program->blocks.size(); i++) {
853       Block& block = program->blocks[i];
854       Ctx& ctx = all_ctx[i];
855 
856       if (block.kind & block_kind_loop_header) {
857          loop_header_indices.push(i);
858       } else if (block.kind & block_kind_loop_exit) {
859          /* Go through the whole loop again */
860          for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
861             Ctx loop_block_ctx;
862             for (unsigned b : program->blocks[idx].linear_preds)
863                loop_block_ctx.join(all_ctx[b]);
864 
865             handle_block<Ctx, Handle>(program, loop_block_ctx, program->blocks[idx]);
866 
867             /* We only need to continue if the loop header context changed */
868             if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
869                break;
870 
871             all_ctx[idx] = loop_block_ctx;
872          }
873 
874          loop_header_indices.pop();
875       }
876 
877       for (unsigned b : block.linear_preds)
878          ctx.join(all_ctx[b]);
879 
880       handle_block<Ctx, Handle>(program, ctx, block);
881    }
882 }
883 
884 } /* end namespace */
885 
886 void
insert_NOPs(Program * program)887 insert_NOPs(Program* program)
888 {
889    if (program->chip_class >= GFX10_3)
890       ; /* no hazards/bugs to mitigate */
891    else if (program->chip_class >= GFX10)
892       mitigate_hazards<NOP_ctx_gfx10, handle_instruction_gfx10>(program);
893    else
894       mitigate_hazards<NOP_ctx_gfx6, handle_instruction_gfx6>(program);
895 }
896 
897 } // namespace aco
898