1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include <math.h>
29
30 #include "nir/nir_builtin_builder.h"
31
32 #include "vtn_private.h"
33 #include "GLSL.std.450.h"
34
35 #define M_PIf ((float) M_PI)
36 #define M_PI_2f ((float) M_PI_2)
37 #define M_PI_4f ((float) M_PI_4)
38
39 static nir_ssa_def *
build_mat2_det(nir_builder * b,nir_ssa_def * col[2])40 build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
41 {
42 unsigned swiz[2] = {1, 0 };
43 nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2));
44 return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
45 }
46
47 static nir_ssa_def *
build_mat3_det(nir_builder * b,nir_ssa_def * col[3])48 build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
49 {
50 unsigned yzx[3] = {1, 2, 0 };
51 unsigned zxy[3] = {2, 0, 1 };
52
53 nir_ssa_def *prod0 =
54 nir_fmul(b, col[0],
55 nir_fmul(b, nir_swizzle(b, col[1], yzx, 3),
56 nir_swizzle(b, col[2], zxy, 3)));
57 nir_ssa_def *prod1 =
58 nir_fmul(b, col[0],
59 nir_fmul(b, nir_swizzle(b, col[1], zxy, 3),
60 nir_swizzle(b, col[2], yzx, 3)));
61
62 nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
63
64 return nir_fadd(b, nir_channel(b, diff, 0),
65 nir_fadd(b, nir_channel(b, diff, 1),
66 nir_channel(b, diff, 2)));
67 }
68
69 static nir_ssa_def *
build_mat4_det(nir_builder * b,nir_ssa_def ** col)70 build_mat4_det(nir_builder *b, nir_ssa_def **col)
71 {
72 nir_ssa_def *subdet[4];
73 for (unsigned i = 0; i < 4; i++) {
74 unsigned swiz[3];
75 for (unsigned j = 0; j < 3; j++)
76 swiz[j] = j + (j >= i);
77
78 nir_ssa_def *subcol[3];
79 subcol[0] = nir_swizzle(b, col[1], swiz, 3);
80 subcol[1] = nir_swizzle(b, col[2], swiz, 3);
81 subcol[2] = nir_swizzle(b, col[3], swiz, 3);
82
83 subdet[i] = build_mat3_det(b, subcol);
84 }
85
86 nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
87
88 return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
89 nir_channel(b, prod, 1)),
90 nir_fsub(b, nir_channel(b, prod, 2),
91 nir_channel(b, prod, 3)));
92 }
93
94 static nir_ssa_def *
build_mat_det(struct vtn_builder * b,struct vtn_ssa_value * src)95 build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
96 {
97 unsigned size = glsl_get_vector_elements(src->type);
98
99 nir_ssa_def *cols[4];
100 for (unsigned i = 0; i < size; i++)
101 cols[i] = src->elems[i]->def;
102
103 switch(size) {
104 case 2: return build_mat2_det(&b->nb, cols);
105 case 3: return build_mat3_det(&b->nb, cols);
106 case 4: return build_mat4_det(&b->nb, cols);
107 default:
108 vtn_fail("Invalid matrix size");
109 }
110 }
111
112 /* Computes the determinate of the submatrix given by taking src and
113 * removing the specified row and column.
114 */
115 static nir_ssa_def *
build_mat_subdet(struct nir_builder * b,struct vtn_ssa_value * src,unsigned size,unsigned row,unsigned col)116 build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
117 unsigned size, unsigned row, unsigned col)
118 {
119 assert(row < size && col < size);
120 if (size == 2) {
121 return nir_channel(b, src->elems[1 - col]->def, 1 - row);
122 } else {
123 /* Swizzle to get all but the specified row */
124 unsigned swiz[NIR_MAX_VEC_COMPONENTS] = {0};
125 for (unsigned j = 0; j < 3; j++)
126 swiz[j] = j + (j >= row);
127
128 /* Grab all but the specified column */
129 nir_ssa_def *subcol[3];
130 for (unsigned j = 0; j < size; j++) {
131 if (j != col) {
132 subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
133 swiz, size - 1);
134 }
135 }
136
137 if (size == 3) {
138 return build_mat2_det(b, subcol);
139 } else {
140 assert(size == 4);
141 return build_mat3_det(b, subcol);
142 }
143 }
144 }
145
146 static struct vtn_ssa_value *
matrix_inverse(struct vtn_builder * b,struct vtn_ssa_value * src)147 matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
148 {
149 nir_ssa_def *adj_col[4];
150 unsigned size = glsl_get_vector_elements(src->type);
151
152 /* Build up an adjugate matrix */
153 for (unsigned c = 0; c < size; c++) {
154 nir_ssa_def *elem[4];
155 for (unsigned r = 0; r < size; r++) {
156 elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
157
158 if ((r + c) % 2)
159 elem[r] = nir_fneg(&b->nb, elem[r]);
160 }
161
162 adj_col[c] = nir_vec(&b->nb, elem, size);
163 }
164
165 nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
166
167 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
168 for (unsigned i = 0; i < size; i++)
169 val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
170
171 return val;
172 }
173
174 /**
175 * Approximate asin(x) by the piecewise formula:
176 * for |x| < 0.5, asin~(x) = x * (1 + x²(pS0 + x²(pS1 + x²*pS2)) / (1 + x²*qS1))
177 * for |x| ≥ 0.5, asin~(x) = sign(x) * (π/2 - sqrt(1 - |x|) * (π/2 + |x|(π/4 - 1 + |x|(p0 + |x|p1))))
178 *
179 * The latter is correct to first order at x=0 and x=±1 regardless of the p
180 * coefficients but can be made second-order correct at both ends by selecting
181 * the fit coefficients appropriately. Different p coefficients can be used
182 * in the asin and acos implementation to minimize some relative error metric
183 * in each case.
184 */
185 static nir_ssa_def *
build_asin(nir_builder * b,nir_ssa_def * x,float p0,float p1,bool piecewise)186 build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1, bool piecewise)
187 {
188 if (x->bit_size == 16) {
189 /* The polynomial approximation isn't precise enough to meet half-float
190 * precision requirements. Alternatively, we could implement this using
191 * the formula:
192 *
193 * asin(x) = atan2(x, sqrt(1 - x*x))
194 *
195 * But that is very expensive, so instead we just do the polynomial
196 * approximation in 32-bit math and then we convert the result back to
197 * 16-bit.
198 */
199 return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1, piecewise));
200 }
201 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size);
202 nir_ssa_def *half = nir_imm_floatN_t(b, 0.5f, x->bit_size);
203 nir_ssa_def *abs_x = nir_fabs(b, x);
204
205 nir_ssa_def *p0_plus_xp1 = nir_ffma_imm12(b, abs_x, p1, p0);
206
207 nir_ssa_def *expr_tail =
208 nir_ffma_imm2(b, abs_x,
209 nir_ffma_imm2(b, abs_x, p0_plus_xp1, M_PI_4f - 1.0f),
210 M_PI_2f);
211
212 nir_ssa_def *result0 = nir_fmul(b, nir_fsign(b, x),
213 nir_a_minus_bc(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size),
214 nir_fsqrt(b, nir_fsub(b, one, abs_x)),
215 expr_tail));
216 if (piecewise) {
217 /* approximation for |x| < 0.5 */
218 const float pS0 = 1.6666586697e-01f;
219 const float pS1 = -4.2743422091e-02f;
220 const float pS2 = -8.6563630030e-03f;
221 const float qS1 = -7.0662963390e-01f;
222
223 nir_ssa_def *x2 = nir_fmul(b, x, x);
224 nir_ssa_def *p = nir_fmul(b,
225 x2,
226 nir_ffma_imm2(b, x2,
227 nir_ffma_imm12(b, x2, pS2, pS1),
228 pS0));
229
230 nir_ssa_def *q = nir_ffma_imm1(b, x2, qS1, one);
231 nir_ssa_def *result1 = nir_ffma(b, x, nir_fdiv(b, p, q), x);
232 return nir_bcsel(b, nir_flt(b, abs_x, half), result1, result0);
233 } else {
234 return result0;
235 }
236 }
237
238 static nir_op
vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder * b,enum GLSLstd450 opcode,unsigned execution_mode,bool * exact)239 vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
240 enum GLSLstd450 opcode,
241 unsigned execution_mode,
242 bool *exact)
243 {
244 *exact = false;
245 switch (opcode) {
246 case GLSLstd450Round: return nir_op_fround_even;
247 case GLSLstd450RoundEven: return nir_op_fround_even;
248 case GLSLstd450Trunc: return nir_op_ftrunc;
249 case GLSLstd450FAbs: return nir_op_fabs;
250 case GLSLstd450SAbs: return nir_op_iabs;
251 case GLSLstd450FSign: return nir_op_fsign;
252 case GLSLstd450SSign: return nir_op_isign;
253 case GLSLstd450Floor: return nir_op_ffloor;
254 case GLSLstd450Ceil: return nir_op_fceil;
255 case GLSLstd450Fract: return nir_op_ffract;
256 case GLSLstd450Sin: return nir_op_fsin;
257 case GLSLstd450Cos: return nir_op_fcos;
258 case GLSLstd450Pow: return nir_op_fpow;
259 case GLSLstd450Exp2: return nir_op_fexp2;
260 case GLSLstd450Log2: return nir_op_flog2;
261 case GLSLstd450Sqrt: return nir_op_fsqrt;
262 case GLSLstd450InverseSqrt: return nir_op_frsq;
263 case GLSLstd450NMin: *exact = true; return nir_op_fmin;
264 case GLSLstd450FMin: return nir_op_fmin;
265 case GLSLstd450UMin: return nir_op_umin;
266 case GLSLstd450SMin: return nir_op_imin;
267 case GLSLstd450NMax: *exact = true; return nir_op_fmax;
268 case GLSLstd450FMax: return nir_op_fmax;
269 case GLSLstd450UMax: return nir_op_umax;
270 case GLSLstd450SMax: return nir_op_imax;
271 case GLSLstd450FMix: return nir_op_flrp;
272 case GLSLstd450Fma: return nir_op_ffma;
273 case GLSLstd450Ldexp: return nir_op_ldexp;
274 case GLSLstd450FindILsb: return nir_op_find_lsb;
275 case GLSLstd450FindSMsb: return nir_op_ifind_msb;
276 case GLSLstd450FindUMsb: return nir_op_ufind_msb;
277
278 /* Packing/Unpacking functions */
279 case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8;
280 case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8;
281 case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16;
282 case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16;
283 case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16;
284 case GLSLstd450PackDouble2x32: return nir_op_pack_64_2x32;
285 case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8;
286 case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8;
287 case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16;
288 case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16;
289 case GLSLstd450UnpackHalf2x16:
290 if (execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
291 return nir_op_unpack_half_2x16_flush_to_zero;
292 else
293 return nir_op_unpack_half_2x16;
294 case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;
295
296 default:
297 vtn_fail("No NIR equivalent");
298 }
299 }
300
301 #define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))
302
303 static void
handle_glsl450_alu(struct vtn_builder * b,enum GLSLstd450 entrypoint,const uint32_t * w,unsigned count)304 handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
305 const uint32_t *w, unsigned count)
306 {
307 struct nir_builder *nb = &b->nb;
308 const struct glsl_type *dest_type = vtn_get_type(b, w[1])->type;
309
310 /* Collect the various SSA sources */
311 unsigned num_inputs = count - 5;
312 nir_ssa_def *src[3] = { NULL, };
313 for (unsigned i = 0; i < num_inputs; i++) {
314 /* These are handled specially below */
315 if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
316 continue;
317
318 src[i] = vtn_get_nir_ssa(b, w[i + 5]);
319 }
320
321 struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type);
322 vtn_handle_no_contraction(b, vtn_untyped_value(b, w[2]));
323 switch (entrypoint) {
324 case GLSLstd450Radians:
325 dest->def = nir_radians(nb, src[0]);
326 break;
327 case GLSLstd450Degrees:
328 dest->def = nir_degrees(nb, src[0]);
329 break;
330 case GLSLstd450Tan:
331 dest->def = nir_ftan(nb, src[0]);
332 break;
333
334 case GLSLstd450Modf: {
335 nir_ssa_def *sign = nir_fsign(nb, src[0]);
336 nir_ssa_def *abs = nir_fabs(nb, src[0]);
337 dest->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
338
339 struct vtn_pointer *i_ptr = vtn_value(b, w[6], vtn_value_type_pointer)->pointer;
340 struct vtn_ssa_value *whole = vtn_create_ssa_value(b, i_ptr->type->type);
341 whole->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
342 vtn_variable_store(b, whole, i_ptr, 0);
343 break;
344 }
345
346 case GLSLstd450ModfStruct: {
347 nir_ssa_def *sign = nir_fsign(nb, src[0]);
348 nir_ssa_def *abs = nir_fabs(nb, src[0]);
349 vtn_assert(glsl_type_is_struct_or_ifc(dest_type));
350 dest->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
351 dest->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
352 break;
353 }
354
355 case GLSLstd450Step:
356 dest->def = nir_sge(nb, src[1], src[0]);
357 break;
358
359 case GLSLstd450Length:
360 dest->def = nir_fast_length(nb, src[0]);
361 break;
362 case GLSLstd450Distance:
363 dest->def = nir_fast_distance(nb, src[0], src[1]);
364 break;
365 case GLSLstd450Normalize:
366 dest->def = nir_fast_normalize(nb, src[0]);
367 break;
368
369 case GLSLstd450Exp:
370 dest->def = nir_fexp(nb, src[0]);
371 break;
372
373 case GLSLstd450Log:
374 dest->def = nir_flog(nb, src[0]);
375 break;
376
377 case GLSLstd450FClamp:
378 dest->def = nir_fclamp(nb, src[0], src[1], src[2]);
379 break;
380 case GLSLstd450NClamp:
381 nb->exact = true;
382 dest->def = nir_fclamp(nb, src[0], src[1], src[2]);
383 nb->exact = false;
384 break;
385 case GLSLstd450UClamp:
386 dest->def = nir_uclamp(nb, src[0], src[1], src[2]);
387 break;
388 case GLSLstd450SClamp:
389 dest->def = nir_iclamp(nb, src[0], src[1], src[2]);
390 break;
391
392 case GLSLstd450Cross: {
393 dest->def = nir_cross3(nb, src[0], src[1]);
394 break;
395 }
396
397 case GLSLstd450SmoothStep: {
398 dest->def = nir_smoothstep(nb, src[0], src[1], src[2]);
399 break;
400 }
401
402 case GLSLstd450FaceForward:
403 dest->def =
404 nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
405 NIR_IMM_FP(nb, 0.0)),
406 src[0], nir_fneg(nb, src[0]));
407 break;
408
409 case GLSLstd450Reflect:
410 /* I - 2 * dot(N, I) * N */
411 dest->def =
412 nir_a_minus_bc(nb, src[0],
413 src[1],
414 nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
415 NIR_IMM_FP(nb, 2.0)));
416 break;
417
418 case GLSLstd450Refract: {
419 nir_ssa_def *I = src[0];
420 nir_ssa_def *N = src[1];
421 nir_ssa_def *eta = src[2];
422 nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
423 nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
424 nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
425 /* According to the SPIR-V and GLSL specs, eta is always a float
426 * regardless of the type of the other operands. However in practice it
427 * seems that if you try to pass it a float then glslang will just
428 * promote it to a double and generate invalid SPIR-V. In order to
429 * support a hypothetical fixed version of glslang we’ll promote eta to
430 * double if the other operands are double also.
431 */
432 if (I->bit_size != eta->bit_size) {
433 nir_op conversion_op =
434 nir_type_conversion_op(nir_type_float | eta->bit_size,
435 nir_type_float | I->bit_size,
436 nir_rounding_mode_undef);
437 eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
438 }
439 /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
440 nir_ssa_def *k =
441 nir_a_minus_bc(nb, one, eta,
442 nir_fmul(nb, eta, nir_a_minus_bc(nb, one, n_dot_i, n_dot_i)));
443 nir_ssa_def *result =
444 nir_a_minus_bc(nb, nir_fmul(nb, eta, I),
445 nir_ffma(nb, eta, n_dot_i, nir_fsqrt(nb, k)),
446 N);
447 /* XXX: bcsel, or if statement? */
448 dest->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
449 break;
450 }
451
452 case GLSLstd450Sinh:
453 /* 0.5 * (e^x - e^(-x)) */
454 dest->def =
455 nir_fmul_imm(nb, nir_fsub(nb, nir_fexp(nb, src[0]),
456 nir_fexp(nb, nir_fneg(nb, src[0]))),
457 0.5f);
458 break;
459
460 case GLSLstd450Cosh:
461 /* 0.5 * (e^x + e^(-x)) */
462 dest->def =
463 nir_fmul_imm(nb, nir_fadd(nb, nir_fexp(nb, src[0]),
464 nir_fexp(nb, nir_fneg(nb, src[0]))),
465 0.5f);
466 break;
467
468 case GLSLstd450Tanh: {
469 /* tanh(x) := (e^x - e^(-x)) / (e^x + e^(-x))
470 *
471 * We clamp x to [-10, +10] to avoid precision problems. When x > 10,
472 * e^x dominates the sum, e^(-x) is lost and tanh(x) is 1.0 for 32 bit
473 * floating point.
474 *
475 * For 16-bit precision this we clamp x to [-4.2, +4.2].
476 */
477 const uint32_t bit_size = src[0]->bit_size;
478 const double clamped_x = bit_size > 16 ? 10.0 : 4.2;
479 nir_ssa_def *x = nir_fclamp(nb, src[0],
480 nir_imm_floatN_t(nb, -clamped_x, bit_size),
481 nir_imm_floatN_t(nb, clamped_x, bit_size));
482 dest->def =
483 nir_fdiv(nb, nir_fsub(nb, nir_fexp(nb, x),
484 nir_fexp(nb, nir_fneg(nb, x))),
485 nir_fadd(nb, nir_fexp(nb, x),
486 nir_fexp(nb, nir_fneg(nb, x))));
487 break;
488 }
489
490 case GLSLstd450Asinh:
491 dest->def = nir_fmul(nb, nir_fsign(nb, src[0]),
492 nir_flog(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
493 nir_fsqrt(nb, nir_ffma_imm2(nb, src[0], src[0], 1.0f)))));
494 break;
495 case GLSLstd450Acosh:
496 dest->def = nir_flog(nb, nir_fadd(nb, src[0],
497 nir_fsqrt(nb, nir_ffma_imm2(nb, src[0], src[0], -1.0f))));
498 break;
499 case GLSLstd450Atanh: {
500 nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size);
501 dest->def =
502 nir_fmul_imm(nb, nir_flog(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one),
503 nir_fsub(nb, one, src[0]))),
504 0.5f);
505 break;
506 }
507
508 case GLSLstd450Asin:
509 dest->def = build_asin(nb, src[0], 0.086566724, -0.03102955, true);
510 break;
511
512 case GLSLstd450Acos:
513 dest->def =
514 nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size),
515 build_asin(nb, src[0], 0.08132463, -0.02363318, false));
516 break;
517
518 case GLSLstd450Atan:
519 dest->def = nir_atan(nb, src[0]);
520 break;
521
522 case GLSLstd450Atan2:
523 dest->def = nir_atan2(nb, src[0], src[1]);
524 break;
525
526 case GLSLstd450Frexp: {
527 dest->def = nir_frexp_sig(nb, src[0]);
528
529 struct vtn_pointer *i_ptr = vtn_value(b, w[6], vtn_value_type_pointer)->pointer;
530 struct vtn_ssa_value *exp = vtn_create_ssa_value(b, i_ptr->type->type);
531 exp->def = nir_frexp_exp(nb, src[0]);
532 vtn_variable_store(b, exp, i_ptr, 0);
533 break;
534 }
535
536 case GLSLstd450FrexpStruct: {
537 vtn_assert(glsl_type_is_struct_or_ifc(dest_type));
538 dest->elems[0]->def = nir_frexp_sig(nb, src[0]);
539 dest->elems[1]->def = nir_frexp_exp(nb, src[0]);
540 break;
541 }
542
543 default: {
544 unsigned execution_mode =
545 b->shader->info.float_controls_execution_mode;
546 bool exact;
547 nir_op op = vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint, execution_mode, &exact);
548 /* don't override explicit decoration */
549 b->nb.exact |= exact;
550 dest->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], NULL);
551 break;
552 }
553 }
554 b->nb.exact = false;
555
556 vtn_push_ssa_value(b, w[2], dest);
557 }
558
559 static void
handle_glsl450_interpolation(struct vtn_builder * b,enum GLSLstd450 opcode,const uint32_t * w,unsigned count)560 handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
561 const uint32_t *w, unsigned count)
562 {
563 nir_intrinsic_op op;
564 switch (opcode) {
565 case GLSLstd450InterpolateAtCentroid:
566 op = nir_intrinsic_interp_deref_at_centroid;
567 break;
568 case GLSLstd450InterpolateAtSample:
569 op = nir_intrinsic_interp_deref_at_sample;
570 break;
571 case GLSLstd450InterpolateAtOffset:
572 op = nir_intrinsic_interp_deref_at_offset;
573 break;
574 default:
575 vtn_fail("Invalid opcode");
576 }
577
578 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);
579
580 struct vtn_pointer *ptr =
581 vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
582 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
583
584 /* If the value we are interpolating has an index into a vector then
585 * interpolate the vector and index the result of that instead. This is
586 * necessary because the index will get generated as a series of nir_bcsel
587 * instructions so it would no longer be an input variable.
588 */
589 const bool vec_array_deref = deref->deref_type == nir_deref_type_array &&
590 glsl_type_is_vector(nir_deref_instr_parent(deref)->type);
591
592 nir_deref_instr *vec_deref = NULL;
593 if (vec_array_deref) {
594 vec_deref = deref;
595 deref = nir_deref_instr_parent(deref);
596 }
597 intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa);
598
599 switch (opcode) {
600 case GLSLstd450InterpolateAtCentroid:
601 break;
602 case GLSLstd450InterpolateAtSample:
603 case GLSLstd450InterpolateAtOffset:
604 intrin->src[1] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[6]));
605 break;
606 default:
607 vtn_fail("Invalid opcode");
608 }
609
610 intrin->num_components = glsl_get_vector_elements(deref->type);
611 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
612 glsl_get_vector_elements(deref->type),
613 glsl_get_bit_size(deref->type), NULL);
614
615 nir_builder_instr_insert(&b->nb, &intrin->instr);
616
617 nir_ssa_def *def = &intrin->dest.ssa;
618 if (vec_array_deref)
619 def = nir_vector_extract(&b->nb, def, vec_deref->arr.index.ssa);
620
621 vtn_push_nir_ssa(b, w[2], def);
622 }
623
624 bool
vtn_handle_glsl450_instruction(struct vtn_builder * b,SpvOp ext_opcode,const uint32_t * w,unsigned count)625 vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
626 const uint32_t *w, unsigned count)
627 {
628 switch ((enum GLSLstd450)ext_opcode) {
629 case GLSLstd450Determinant: {
630 vtn_push_nir_ssa(b, w[2], build_mat_det(b, vtn_ssa_value(b, w[5])));
631 break;
632 }
633
634 case GLSLstd450MatrixInverse: {
635 vtn_push_ssa_value(b, w[2], matrix_inverse(b, vtn_ssa_value(b, w[5])));
636 break;
637 }
638
639 case GLSLstd450InterpolateAtCentroid:
640 case GLSLstd450InterpolateAtSample:
641 case GLSLstd450InterpolateAtOffset:
642 handle_glsl450_interpolation(b, (enum GLSLstd450)ext_opcode, w, count);
643 break;
644
645 default:
646 handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
647 }
648
649 return true;
650 }
651