1 /**
2 * Copyright 2020 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #ifndef MINDSPORE_INCLUDE_API_MODEL_H
17 #define MINDSPORE_INCLUDE_API_MODEL_H
18
19 #include <string>
20 #include <vector>
21 #include <map>
22 #include <memory>
23 #include <utility>
24 #include "include/api/status.h"
25 #include "include/api/types.h"
26 #include "include/api/graph.h"
27 #include "include/api/context.h"
28 #include "include/api/callback/callback.h"
29 #include "include/api/cell.h"
30 #include "include/api/cfg.h"
31 #include "include/api/dual_abi_helper.h"
32
33 namespace mindspore {
34 class ModelImpl;
35 class Metrics;
36
37 namespace dataset {
38 class Dataset;
39 } // namespace dataset
40 /// \brief The Model class is used to define a MindSpore model, facilitating computational graph management.
41 class MS_API Model {
42 public:
43 Model();
44 ~Model();
45 Model(const Model &) = delete;
46 void operator=(const Model &) = delete;
47
48 /// \brief Builds a model so that it can run on a device.
49 ///
50 /// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed
51 /// from Graph, for example, model.Build(GraphCell(graph), context).
52 /// \param[in] model_context A context used to store options during execution.
53 /// \param[in] train_cfg A config used by training.
54 ///
55 /// \return Status.
56 Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr,
57 const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
58
59 /// \brief Resizes the shapes of inputs.
60 ///
61 /// \param[in] inputs A vector that includes all input tensors in order.
62 /// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs.
63 ///
64 /// \return Status.
65 Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims);
66
67 /// \brief Inference model.
68 ///
69 /// \param[in] inputs A vector where model inputs are arranged in sequence.
70 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
71 /// \param[in] before CallBack before predict.
72 /// \param[in] after CallBack after predict.
73 ///
74 /// \return Status.
75 Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
76 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
77
78 /// \brief Inference model with preprocess in model.
79 ///
80 /// \param[in] inputs A vector where model inputs are arranged in sequence.
81 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
82 /// \param[in] whether to use data preprocess in model.
83 /// \param[in] before CallBack before predict.
84 /// \param[in] after CallBack after predict.
85 ///
86 /// \return Status.
87 Status PredictWithPreprocess(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
88 const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
89
90 /// \brief Apply data preprocess if it exits in model.
91 ///
92 /// \param[in] inputs A vector where model inputs are arranged in sequence.
93 /// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
94 ///
95 /// \return Status.
96 Status Preprocess(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs);
97
98 /// \brief Check if data preprocess exists in model.
99 /// \return true if data preprocess exists.
100 bool HasPreprocess();
101
102 /// \brief Load config file.
103 ///
104 /// \param[in] config_path config file path.
105 ///
106 /// \return Status.
107 Status LoadConfig(const std::string &config_path);
108
109 /// \brief Obtains all input tensors of the model.
110 ///
111 /// \return The vector that includes all input tensors.
112 std::vector<MSTensor> GetInputs();
113
114 /// \brief Obtains the input tensor of the model by name.
115 ///
116 /// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned.
117 inline MSTensor GetInputByTensorName(const std::string &tensor_name);
118
119 /// \brief Obtains all gradient tensors of the model.
120 ///
121 /// \return The vector that includes all gradient tensors.
122 std::vector<MSTensor> GetGradients() const;
123
124 /// \brief update gradient tensors of the model.
125 ///
126 /// \param[in] inputs A vector new gradients.
127 /// \return Status of operation
128 Status ApplyGradients(const std::vector<MSTensor> &gradients);
129
130 /// \brief Obtains optimizer params tensors of the model.
131 ///
132 /// \return The vector that includes all params tensors.
133 std::vector<MSTensor> GetOptimizerParams() const;
134
135 /// \brief update the optimizer parameters
136 ///
137 /// \param[in] inputs A vector new optimizer params.
138 /// \return Status of operation
139 Status SetOptimizerParams(const std::vector<MSTensor> ¶ms);
140
141 Status InitMetrics(std::vector<Metrics *> metrics);
142 std::vector<Metrics *> GetMetrics();
143
144 /// \brief Obtains all output tensors of the model.
145 ///
146 /// \return The vector that includes all output tensors.
147 std::vector<MSTensor> GetOutputs();
148
149 /// \brief Obtains names of all output tensors of the model.
150 ///
151 /// \return A vector that includes names of all output tensors.
152 inline std::vector<std::string> GetOutputTensorNames();
153
154 /// \brief Obtains the output tensor of the model by name.
155 ///
156 /// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned.
157 inline MSTensor GetOutputByTensorName(const std::string &tensor_name);
158
159 /// \brief Get output MSTensors of model by node name.
160 ///
161 /// \param[in] node_name Define node name.
162 ///
163 /// \note Deprecated, replace with GetOutputByTensorName
164 ///
165 /// \return The vector of output MSTensor.
166 inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name);
167
168 /// \brief Inference model.
169 ///
170 /// \param[in] device_type Device type,options are kGPU, kAscend910, etc.
171 /// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM.
172 ///
173 /// \return Is supported or not.
174 static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type);
175
176 Status SetTrainMode(bool train);
177 bool GetTrainMode() const;
178 Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
179 Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
180
181 /// \brief Build a model from model buffer so that it can run on a device. Only valid for Lite.
182 ///
183 /// \param[in] model_data Define the buffer read from a model file.
184 /// \param[in] size Define bytes number of model buffer.
185 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
186 /// ModelType::kMindIR is valid for Lite.
187 /// \param[in] model_context Define the context used to store options during execution.
188 /// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32.
189 /// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC.
190 ///
191 /// \return Status.
192 Status Build(const void *model_data, size_t data_size, ModelType model_type,
193 const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {},
194 const std::string &dec_mode = kDecModeAesGcm);
195
196 /// \brief Load and build a model from model buffer so that it can run on a device. Only valid for Lite.
197 ///
198 /// \param[in] model_path Define the model path.
199 /// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
200 /// ModelType::kMindIR is valid for Lite.
201 /// \param[in] model_context Define the context used to store options during execution.
202 /// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32.
203 /// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC.
204 ///
205 /// \return Status.
206 Status Build(const std::string &model_path, ModelType model_type,
207 const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {},
208 const std::string &dec_mode = kDecModeAesGcm);
209
210 private:
211 friend class Serialization;
212 // api without std::string
213 MSTensor GetInputByTensorName(const std::vector<char> &tensor_name);
214 std::vector<std::vector<char>> GetOutputTensorNamesChar();
215 MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name);
216 std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name);
217
218 std::shared_ptr<ModelImpl> impl_;
219 };
220
GetInputByTensorName(const std::string & tensor_name)221 MSTensor Model::GetInputByTensorName(const std::string &tensor_name) {
222 return GetInputByTensorName(StringToChar(tensor_name));
223 }
224
GetOutputTensorNames()225 std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); }
226
GetOutputByTensorName(const std::string & tensor_name)227 MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) {
228 return GetOutputByTensorName(StringToChar(tensor_name));
229 }
230
GetOutputsByNodeName(const std::string & node_name)231 std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) {
232 return GetOutputsByNodeName(StringToChar(node_name));
233 }
234 } // namespace mindspore
235 #endif // MINDSPORE_INCLUDE_API_MODEL_H
236