• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""momentum"""
16from mindspore.ops import functional as F, composite as C, operations as P
17from mindspore.common.parameter import Parameter
18from mindspore.common.tensor import Tensor
19import mindspore.common.dtype as mstype
20from mindspore._checkparam import Validator
21from .optimizer import Optimizer
22from .optimizer import opt_init_args_register
23
24_momentum_opt = C.MultitypeFuncGraph("momentum_opt")
25
26
27@_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool", "Bool")
28def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment, ps_parameter, cache_enable):
29    """Apply momentum optimizer to the weight parameter using Tensor."""
30    if ps_parameter and not cache_enable:
31        op_shape = P.Shape()
32        _ps_pull = P.Pull()
33        _ps_push = P.Push("ApplyMomentum", [])
34        shapes = (op_shape(learning_rate), op_shape(gradient), op_shape(momentum))
35        success = F.depend(True, _ps_pull(_ps_push((learning_rate, gradient, momentum), shapes), weight))
36    else:
37        success = F.depend(True, opt(weight, moment, learning_rate, gradient, momentum))
38    return success
39
40
41class Momentum(Optimizer):
42    r"""
43    Implements the Momentum algorithm.
44
45    Refer to the paper on the importance of initialization and momentum in deep learning for more details.
46
47    .. math::
48            v_{t+1} = v_{t} \ast u + gradients
49
50    If use_nesterov is True:
51
52    .. math::
53            p_{t+1} =  p_{t} - (grad \ast lr + v_{t+1} \ast u \ast lr)
54
55    If use_nesterov is False:
56
57    .. math::
58            p_{t+1} = p_{t} - lr \ast v_{t+1}
59
60    Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively.
61
62    Note:
63        When separating parameter groups, the weight decay in each group will be applied on the parameters if the
64        weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
65        on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
66
67        When separating parameter groups, if you want to centralize the gradient, set grad_centralization to True,
68        but the gradient centralization can only be applied to the parameters of the convolution layer.
69        If the parameters of the non convolution layer are set to True, an error will be reported.
70
71        To improve parameter groups performance, the customized order of parameters can be supported.
72
73    Args:
74        params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
75            the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
76            "lr", "weight_decay" and "order_params" are the keys can be parsed.
77
78            - params: Required. The value must be a list of `Parameter`.
79
80            - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
81              If not, the `learning_rate` in the API will be used.
82
83            - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
84              will be used. If not, the `weight_decay` in the API will be used.
85
86            - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
87              the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
88              in the value of 'order_params' must be in one of group parameters.
89
90            - grad_centralization: Optional. The data type of "grad_centralization" is Bool. If "grad_centralization"
91              is in the keys, the set value will be used. If not, the `grad_centralization` is False by default.
92              This parameter only works on the convolution layer.
93
94        learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
95            When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
96            the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
97            use dynamic learning rate, the i-th learning rate will be calculated during the process of training
98            according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
99            dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
100            equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
101        momentum (float): Hyperparameter of type float, means momentum for the moving average.
102            It must be at least 0.0.
103        weight_decay (int, float): Weight decay (L2 penalty). It must be equal to or greater than 0.0. Default: 0.0.
104        loss_scale (float): A floating point value for the loss scale. It must be greater than 0.0. In general, use the
105            default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
106            `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
107            `FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details.
108            Default: 1.0.
109        use_nesterov (bool): Enable Nesterov momentum. Default: False.
110
111    Inputs:
112        - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
113
114    Outputs:
115        tuple[bool]. All elements are True.
116
117    Raises:
118        TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
119        TypeError: If element of `parameters` is neither Parameter nor dict.
120        TypeError: If `loss_scale` or `momentum` is not a float.
121        TypeError: If `weight_decay` is neither float nor int.
122        TypeError: If `use_nesterov` is not a bool.
123        ValueError: If `loss_scale` is less than or equal to 0.
124        ValueError: If `weight_decay` or `momentum` is less than 0.
125
126    Supported Platforms:
127        ``Ascend`` ``GPU`` ``CPU``
128
129    Examples:
130        >>> net = Net()
131        >>> #1) All parameters use the same learning rate and weight decay
132        >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
133        >>>
134        >>> #2) Use parameter groups and set different values
135        >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
136        >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
137        >>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
138        ...                 {'params': no_conv_params, 'lr': 0.01},
139        ...                 {'order_params': net.trainable_params()}]
140        >>> optim = nn.Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0)
141        >>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01 and
142        >>> # grad centralization of True.
143        >>> # The no_conv_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0
144        >>> # and grad centralization of False..
145        >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
146        >>>
147        >>> loss = nn.SoftmaxCrossEntropyWithLogits()
148        >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
149    """
150    @opt_init_args_register
151    def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False):
152        super(Momentum, self).__init__(learning_rate, params, weight_decay, loss_scale)
153        Validator.check_value_type("momentum", momentum, [float], self.cls_name)
154        if isinstance(momentum, float) and momentum < 0.0:
155            raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum))
156        self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
157        self.params = self.parameters
158        self.use_nesterov = Validator.check_bool(use_nesterov)
159        self.moments = self.params.clone(prefix="moments", init='zeros')
160        self.opt = P.ApplyMomentum(use_nesterov=self.use_nesterov)
161
162    def construct(self, gradients):
163        params = self.params
164        moments = self.moments
165        gradients = self.decay_weight(gradients)
166        gradients = self.gradients_centralization(gradients)
167        gradients = self.scale_grad(gradients)
168        lr = self.get_lr()
169        if self.is_group_lr:
170            success = self.hyper_map_reverse(F.partial(_momentum_opt, self.opt, self.momentum),
171                                             lr, gradients, params, moments, self.ps_parameters, self.cache_enable)
172        else:
173            success = self.hyper_map_reverse(F.partial(_momentum_opt, self.opt, self.momentum, lr),
174                                             gradients, params, moments, self.ps_parameters, self.cache_enable)
175        return success
176