• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import pytest
16from mindspore.ops import composite as C
17import mindspore.common.dtype as mstype
18import mindspore.nn as nn
19import mindspore.context as context
20from mindspore.common.tensor import Tensor
21
22class Net(nn.Cell):
23    def construct(self, x, y):
24        while x < y:
25            x = x * x + 1
26        return x
27
28
29class GradNet(nn.Cell):
30    def __init__(self, net):
31        super().__init__()
32        self.net = net
33        self.grad_op = C.GradOperation(get_all=True)
34
35    def construct(self, x, y):
36        gradient_function = self.grad_op(self.net)
37        return gradient_function(x, y)
38
39
40@pytest.mark.level1
41@pytest.mark.platform_arm_ascend_training
42@pytest.mark.platform_x86_ascend_training
43@pytest.mark.env_onecard
44def test_while_grad():
45    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
46    x = Tensor([2.0], dtype=mstype.float32)
47    y = Tensor([2.0], dtype=mstype.float32)
48    GradNet(Net())(x, y)
49