• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.ops import operations as P
22from mindspore.ops.operations import _grad_ops as G
23
24context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
25
26
27class Net(nn.Cell):
28    def __init__(self):
29        super(Net, self).__init__()
30        self.cast = P.Cast()
31        self.relu = P.ReLU()
32        self.biasaddgrad = G.BiasAddGrad()
33
34    def construct(self, x):
35        x = self.relu(x)
36        x = self.relu(x)
37        x = self.relu(x)
38        x = self.biasaddgrad(x)
39        x = self.relu(x)
40        x = self.relu(x)
41        x = self.relu(x)
42        return x
43
44
45@pytest.mark.level1
46@pytest.mark.platform_arm_ascend_training
47@pytest.mark.platform_x86_ascend_training
48@pytest.mark.env_onecard
49def test_net():
50    x = np.random.randn(32, 10).astype(np.float32)
51    net = Net()
52    output = net(Tensor(x))
53    print(output.asnumpy())
54