• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.nn as nn
18from mindspore import Tensor
19from mindspore.ops import operations as P
20
21class LeNet(nn.Cell):
22    def __init__(self):
23        super(LeNet, self).__init__()
24        self.relu = P.ReLU()
25        self.batch_size = 1
26        weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
27        weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
28        self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
29        self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
30        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
31
32        self.reshape = P.Reshape()
33        self.reshape1 = P.Reshape()
34
35        self.fc1 = nn.Dense(400, 120)
36        self.fc2 = nn.Dense(120, 84)
37        self.fc3 = nn.Dense(84, 10)
38
39    def construct(self, input_x):
40        output = self.conv1(input_x)
41        output = self.relu(output)
42        output = self.pool(output)
43        output = self.conv2(output)
44        output = self.relu(output)
45        output = self.pool(output)
46        output = self.reshape(output, (self.batch_size, -1))
47        output = self.fc1(output)
48        output = self.fc2(output)
49        output = self.fc3(output)
50        return output
51