• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""define loss function for network"""
16import mindspore.nn as nn
17from mindspore import Tensor
18from mindspore.common import dtype as mstype
19from mindspore.nn.loss.loss import LossBase
20from mindspore.ops import functional as F
21from mindspore.ops import operations as P
22
23
24class CrossEntropySmooth(LossBase):
25    """CrossEntropy"""
26    def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
27        super(CrossEntropySmooth, self).__init__()
28        self.onehot = P.OneHot()
29        self.sparse = sparse
30        self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
31        self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
32        self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
33
34    def construct(self, logit, label):
35        if self.sparse:
36            label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
37        loss = self.ce(logit, label)
38        return loss
39