• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16"""test hccl allreduce with 8p"""
17
18import os
19import numpy as np
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore import dtype as mstype
23from mindspore.ops import operations as P
24from mindspore.communication.management import init
25
26np.random.seed(1)
27os.environ['GRAPH_OP_RUN'] = str(1)
28os.environ['HCCL_WHITELIST_DISABLE'] = str(1)
29init()
30
31class AllReduceNet(nn.Cell):
32    def __init__(self):
33        super(AllReduceNet, self).__init__()
34        self.mul = P.Mul()
35        self.all_reduce = P.AllReduce()
36        self.add = P.Add()
37        self.y1 = Tensor(np.array([[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])).astype(np.float32)
38        self.y2 = Tensor(np.array([[-16, -16, -16, -16], [-16, -16, -16, -16], \
39                                   [-16, -16, -16, -16]])).astype(np.float32)
40
41    def construct(self, x):
42        x = self.mul(x, 2)
43        z = self.add(x, self.y1)
44        z = self.all_reduce(z)
45        out = self.add(z, self.y2)
46        out = self.all_reduce(out)
47        out = self.mul(out, 2)
48        return out
49
50def test_hccl_allreduce_8p():
51    net = AllReduceNet()
52    input_x = np.ones([3, 4]).astype(np.float32)
53    expect_output = [[256, 256, 256, 256], [256, 256, 256, 256], [256, 256, 256, 256]]
54    output = net(Tensor(input_x, mstype.float32))
55    assert np.allclose(output.asnumpy(), expect_output)
56