• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import mindspore.context as context
17import mindspore.nn as nn
18from mindspore.common.initializer import initializer
19from mindspore.common.parameter import Parameter
20from mindspore.ops import operations as P
21
22context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
23
24
25class Net(nn.Cell):
26    def __init__(self):
27        super(Net, self).__init__()
28        self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
29        self.variable = Parameter(initializer(
30            'normal', [2, 3, 3, 4]), name='variable')
31        self.accumulation = Parameter(initializer(
32            'normal', [2, 3, 3, 4]), name='accumulation')
33        self.learning_rate = Parameter(initializer(
34            'normal', [1,]), name='learning_rate')
35        self.gradient = Parameter(initializer(
36            'normal', [2, 3, 3, 4]), name='gradient')
37        self.momentum = Parameter(initializer(
38            'normal', [1,]), name='momentum')
39
40    def construct(self):
41        return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
42
43
44def test_net():
45    apply_momentum = Net()
46    output = apply_momentum()
47    print(output.asnumpy())
48