• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore import Parameter
22from mindspore.ops import operations as P
23
24context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
25
26
27class UpdateCacheNet(nn.Cell):
28    def __init__(self, x):
29        super().__init__()
30        self.ops = P.UpdateCache()
31        self.max_num = 9999
32        self.x = Parameter(Tensor(x), name='x')
33
34    def construct(self, indices, update):
35        return self.ops(self.x, indices, update, self.max_num)
36
37
38@pytest.mark.level0
39@pytest.mark.platform_x86_cpu
40@pytest.mark.env_onecard
41def test_update_cache():
42    x_np = np.array([[2, 3, 4, 5],
43                     [6, 7, 8, 9],
44                     [11, 12, 13, 14],
45                     [1, 2, 3, 4],
46                     [5, 6, 7, 8]], np.int32)
47
48    indices_np = np.array([[-1, 3, 4]], np.int32)
49    update_np = np.array([[0, 0, 0, 0],
50                          [23, 34, 56, 78],
51                          [44, 55, 66, 77]], np.int32)
52
53    indices = Tensor(indices_np)
54    update = Tensor(update_np)
55
56    expect = np.array([[2, 3, 4, 5],
57                       [6, 7, 8, 9],
58                       [11, 12, 13, 14],
59                       [23, 34, 56, 78],
60                       [44, 55, 66, 77]], np.int32)
61    net = UpdateCacheNet(x_np)
62    out = net(indices, update)
63    assert np.allclose(net.x.data.asnumpy(), expect)
64    assert np.allclose(out.asnumpy(), np.array([0], np.int32))
65