• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.common.api import ms_function
23from mindspore.ops import operations as P
24from mindspore.ops.composite import GradOperation
25
26context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
27
28
29class Grad(nn.Cell):
30    def __init__(self, network):
31        super(Grad, self).__init__()
32        self.grad = GradOperation(get_all=True, sens_param=True)
33        self.network = network
34
35    @ms_function
36    def construct(self, input_, output_grad):
37        return self.grad(self.network)(input_, output_grad)
38
39
40class Net(nn.Cell):
41    def __init__(self):
42        super(Net, self).__init__()
43        self.HSwish = P.HSwish()
44
45    def construct(self, x):
46        return self.HSwish(x)
47
48
49@pytest.mark.level0
50@pytest.mark.platform_x86_cpu
51@pytest.mark.env_onecard
52def test_net():
53    x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
54    hswish = Net()
55    y = hswish(Tensor(x))
56    expect = np.array([-0.33333334, -0.33333334, 0., 1.6666666, 0.6666667]).astype(np.float32)
57    assert np.all(y.asnumpy() == expect)
58    sens = np.random.randn(5).astype(np.float32)
59    backword_net = Grad(Net())
60    output = backword_net(Tensor(x), Tensor(sens))
61    print(len(output))
62    print(output[0].asnumpy())
63