• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23
24context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
25
26
27class Netnan(nn.Cell):
28    def __init__(self):
29        super(Netnan, self).__init__()
30        self.isnan = P.IsNan()
31
32    def construct(self, x):
33        return self.isnan(x)
34
35
36x1 = np.array([[1.2, 2, np.nan, 88]]).astype(np.float32)
37x2 = np.array([[np.inf, 1, 88.0, 0]]).astype(np.float32)
38x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32)
39
40
41@pytest.mark.level0
42@pytest.mark.platform_x86_cpu
43@pytest.mark.env_onecard
44def test_nan():
45    ms_isnan = Netnan()
46    output1 = ms_isnan(Tensor(x1))
47    expect1 = [[False, False, True, False]]
48    assert (output1.asnumpy() == expect1).all()
49
50    output2 = ms_isnan(Tensor(x2))
51    expect2 = [[False, False, False, False]]
52    assert (output2.asnumpy() == expect2).all()
53
54    output3 = ms_isnan(Tensor(x3))
55    expect3 = [[False, False], [False, False], [False, False]]
56    assert (output3.asnumpy() == expect3).all()
57